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Research Question 1 \ o#s |

What is the "internal” frequency of a converter?

 We know well that the internal frequency of a synchronous
machine is the rotor angular speed.

 The rotor speed is the frequency of the internal emf of the machine

 (Can we define a similar “internal” frequency for converters and,
more in general, for devices that do not have a rotor?
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Research Question 2 \ o#s |

What is the link between frequency and power
injection?

This is relevant because, if we know this link, then:

* We can understand better what to expect from existing
controllers

* It is easier to design new and effective controllers
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Powe

U = ug + Juq = uexp(Jp)

!

exp(In(u) + j9)

Definition 1

U= (4/u+3p) U= (pu+Jwu) U =1, T.

4

|
|
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Complex Frequency (CF) of \ e
Voltage and Current

Up = 1M, Uh Ih =1,

The CF includes:

* a real part, which represents a translation and depends only on
the magnitude of the Park vector; and

* an imaginary part, which represents a rotation and depends only
on the phase angle of the Park vector.
-]



(virtual) (physical)
internal bus network bus

—/
(U Uh
(apes | IEEE

Terminal bus vs
“internal” bus ; .

The goal is to use the CF to find the equations that describe
what happens in the box.



Complex Frequency and Complex
Power

Sp = Vp, i;;

The complex power is an invariant (it is the same, independently from
the reference frame):

/ = (M, +7,) 3h

Sh
\’ = 7, + ()] 3n
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Ideal DER Controllers - 1 \ s |

* |deal constant current control:

%h=0, n, =0
Sp, =1, 3h.

* Constant current source and constant power factor

pz:o) Wy = Wy

Sh = PuSh -
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Ideal DER Controllers - 2 \ s |

* (Constant Power:

e Constant admittance

pv:pz, wv=Wz

§h — 2pv§h .
[
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Ideal DER Controllers - 3 \ s

* Constant active power and constant voltage:

pv:O, 15=0

q_
p (wv T wz)
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Effect of PLLs \ feps.

The very first device that we can
consider within the DER is the PLL
which introduces a (transient) shift
between the grid and the internal

reference frame of the voltage and —> K
current of the DER:

!
vh, q
S

Ny = Ty _.75
Uh=exp(30)V,, W =exp(y0)7, = |
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Current Control \ (s |

The effect of the current control

is only on the real part of the CF: _>?.[:
—% s / b» Td

§h — (ﬁ:ref T nPI) ﬁlh bref T (ﬁ',v - nPI) Sh Ld,n

where: ke = K,;/K,

(ﬁ;)* + Kpr = ﬁ: + (KPI +.75)
ﬁr,u — Kpy =7, — (Kpr +790)
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Voltage Feed Forward (VFF) \ fope

The effect of the VFF (dotted
boxes in the figure) is inversely
proportional to the proportional
gain of the current controller:

Sh = (M}, +Ker) Uy, Grog + (T, — Kpr) S — = (77,,) "0}y




(eres | OIEEE

Power & Energy Society®




@%ﬁs <©IEEE
GFL Controllers \ =

Current control with constant current reference:

Sh = Kpr Up, Uret + (T — Ke1) Sh
Current control with constant power reference:

sh = (M), — Ke1) (Sh — Sret)
Current control with virtual admittance loop:

Sh = —V3Y 20y + Y .17, U, res
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GFL controllers \ e

Voltage control: 5, = (K7}, _+ K} )v,v;

ref

— (K (m,)" + K} )i + (M, — Kp1) S

dszSM_w’v7

. 1 ref
wVSMZJ(pe Ph

Synchronization:

+ D, (wyn, — Wysm))

Wn Wyvsm
Outer voltage loop:  Vref = JUq,ref = TPvWyswm
N, Uref = ](¢UWVSM + %d}vs,M)

nvref — pvref
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Effect Current Control Gains \ e
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Effect of VFF (epes
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GFL current control \
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GFM virtual shaft
6 0.5
49 0.4—! D, =1
é?_‘ 2 .:{“\\ ’”'\ ) orl,)_' O.BI ....... Dp —
Y 11 N NSNS Rl -- D, =5
= 21 2 |
o, | =% 0.1-| |
= 4 Dp =1 S 23 7.\ S
3:3 b 3 O_j_.‘\. /.' X / SN - - -~ . -
_ell Dp — l \ \g/ AWS
_8 -- D, = —0.117
10 L . . . _09%
101 2 3 4 5 0 1 2 3 4 5
Time [s] Time [s]







< IEEE

Power & Energy Society®

Design of the PLL
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Interaction among SM, VSM and GF\ @ﬁs
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Conclusions \

CF approach decouples the contribution on the local frequency of each sub-controller
and identifies critical control parameters.

*  The current con- troller is shown to represent a constant translation of the real part of
the CF while the synchronization control, regardless of its type, affects the imaginary
part.

*  For GFL configurations, the PLL parameters are shown to have the largest impact on the
local frequency.

*  For GFM, active power droop parameter as well as VSM damping parameter are shown
to affect the frequency response after a contingency.

For the GFM case, the internal frequency of the controller achieves a better transient
response than the exact frequency.
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Future Work ‘

* |t seems to be relevant to extend the use of the calculated
internal frequencies of the converters for control applications.

* There seem to be a potential of using non-conventional
controllers based on CF or controllers based on non-
conventional input signals (based on the real part of CF).

* The effect on CF of multiple converters, their dynamic
interaction and the impact of this interaction on converter

frequency control will also be studied.






