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Energy system simulators

A large part of the study of energy systems involves the building of
simulators (deterministic or stochastic) to represent particular
aspects of an energy system. A simulator:

takes a set of inputs (known, uncertain, control parameters)

produces a set of outputs from these inputs

is an approximation of a system.

Simulators can be thought of as a function f , with

y = f (x).

where inputs= x, outputs= y.
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All models are wrong

George Box: ‘Essentially, all models are
wrong, but some are useful’

To determine how useful a simulator is,
need to quantify how much it reduces
our uncertainty.
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Types of uncertainty

Input uncertainty: uncertainty about the appropriate input
parameters (x) to use.

E.g. demand forecasts, investor risk level, weather data.

Structural uncertainty: how the simulator itself (f ) relates
to the real-world process it is modelling

E.g. is this process really Normally distributed? what effect
does this simplifying assumption have on the results?

Function uncertainty: what the output of the simulator,
f (x) is at untested x.

Problem: it is hard to quantify uncertainty when simulators are
computationally expensive.
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Emulation - general idea

Many simulators take a long time to run - so standard Monte
Carlo simulation methods for investigating uncertainty are
infeasible,

Instead build statistical model of underlying energy system
simulator, based on a small number of simulator evaluations
(an emulator).

At inputs for which simulator hasn’t been evaluated, don’t
know what simulator output is (i.e. function uncertainty).

Emulator gives a distribution for the output at each input.
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Model

Can model simulator output as:

f (x) =

p∑
i=1

βihi (x) + ε(x),

with βi a set of constants, hi (x) a set of basis functions and
ε(x) a stochastic process.

Common choice for ε(x) is a Gaussian Process - for m
different input vectors, x1, . . . , xm, the joint distribution of
ε(x1), . . . , ε(xm) follows a multivariate Normal distribution.

Set prior distributions for βi , variance of ε(x) and set a prior
correlation function for the Gaussian Process (e.g. Gaussian,
Matérn).

Use data D to update beliefs about these parameters.
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Example
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The Dynamic Dispatch Model (DDM)

Large planning simulator of the future energy market (e.g.
simulates future energy prices, mix of generators, emissions),

Built by LCP (consulting firm),

Used by DECC, National Grid and others for making
evidence-based policy decisions.
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Strike price analysis

As part of Electricity Market Reform, government planned to
hold auctions for support for renewable technologies
(replacing Renewables Obligation).

Renewable generation would be guaranteed a fixed price for
power (known as a strike price).

Individual generators can make bids, but the price awarded is
subject to an ‘administrative strike price’ or a maximum set by
the government for each future year.

First auction was held in late 2014, with results in February
2015.



Durham University

Example

Decision problem

In 2013, DDM was used to help determine the parameters of
the auction.

Aimed to find administrative strike prices that would result in:

a total cost in 2020 of less than £7.6bn,
a proportion of renewable generation greater than 30% in 2020,
emissions of less than 100 gC02/kWh in 2030.

Also wanted to test sensitivity of these outputs to changes in
inputs, and to assess overall uncertainty.
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Scenarios

Takes around 1 hour to run the DDM for the strike price
analysis,

In 2013, approach was to use different scenarios to assess
uncertainty/ sensitivity,

But only possible to test around 20 scenarios - so no idea of
model output between scenarios (in very large input space),

Difficult to find strike prices that will meet constraints with a
high probability with so few model runs.

Could emulation resolve these issues?
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Statistical study

14 inputs considered: 6 parameters associated with strike
prices (for onshore, offshore and solar), demand, fuel prices
(coal, gas), technology costs, hurdle rates (onshore and
offshore) and load factors (onshore and offshore).

Three outputs: spend (2020), proportion of renewables (2020)
and emissions (2030).

Three sets of model evaluations completed:

Wave one - 40 runs.
Wave two - 16 runs.
Wave three - 24 runs.

Built a separate emulator for each of the three outputs.
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Choice of design

Very few DDM evaluations possible,

To maximise use of every run, developed criteria (evaluated
over a grid) to select design for third wave:

Ẽ

[∑
j

(
Var∗(EZ [fs(θ

(j), z)]) + Var∗(EZ [fr (θ
(j), z)]) + Var∗(EZ [fe(θ

(j), z)])
)]

×

P(fr (θ
(j), z) + εr > 0.3, fe(θ

(j), z) + εe < 100, fs(θ
(j), z) + εs < 7.6)

Criteria seeks to reduce the function uncertainty (the emulator
variance) but focussing on the region of the space where the
three criteria are met with a high probability (after integrating
over other parametric uncertainties).
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Basis functions

Basis functions selected by testing different regression models
and making a subjective assessment of which parameters
might be influential:

All three emulators included linear terms for: strike price rate
of decay (offshore), starting strike price (offshore), starting
strike price (onshore), gas price, technology costs, hurdle rate
(offshore), load factor (offshore). In addition,

Renewables emulator - linear terms: demand, hurdle rate
(onshore), load factor (onshore). Four interaction terms.
Emissions emulator - linear terms: demand, coal price. Six
interaction terms.
Spend emulator - linear terms: load factor (onshore). Eight
interaction terms.
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Problem

Coefficient (Renewables emulator) Low (coeff 3) High (coeff 3)
1. Constant -0.07 0.02
2. Strike price rate of decay (offshore) -0.13 -0.13
3. Starting strike price (offshore) 0.33 0.40
4. Starting strike price (onshore) 0.03 0.08
5. Demand -0.49 -0.54
6. Gas price 0.06 0.05
7. Technology cost -0.31 -0.37
8. Hurdle rate (offshore) -0.14 -0.19
9. Hurdle rate (onshore) -0.02 -0.08
10. Load factor (offshore) 0.58 0.75
11. Load factor (onshore) 0.23 0.23
12. Interaction:3*7*10 0.16 0.07
13. Interaction:3*7 0.01 -0.06
14. Interaction:3*10 0.18 0.00
15. Interaction:3*10 -0.11 -0.03
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Model

Outputs of big computer models can be very different in
different regions of the input space.

Can fit emulator in waves, with each wave focussing on a
subset of the previous wave (throwing away information from
previous waves).

Have very limited data so this approach is not a good one!

Instead allow the parameters governing the global response of
the model to vary in different areas of the input space.



Durham University

Example

Model

Proposed model:

f (x) =
∑
i

βihi (x) +
∑
i

εβi
(x)hi (x),

where εβi
(x) are stochastic processes, βi are constants and

hi (x) are basis functions.

For comparison, the model described earlier was:

f (x) =
∑
i

βihi (x) + ε(x).
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Modelling uncertainty

Want to find strike prices which meet the three criteria
(renewables>30%, emissions<100gCO2/kWh and
cost<£7.6bn) with a high probability, given parametric
uncertainty, structural discrepancy and function uncertainty.

Set parametric uncertainty using ranges and means in NG and
DECC scenarios (multivariate Normal distribution). Set (coal,
gas) correlation to 0.4 and (coal, demand) and (gas, demand)
correlation to 0.2.

No historical data - set structural discrepancy to around 10%
to investigate impact on probability of meeting criteria.

Used emulators with MC simulation to estimate probability of
meeting all three criteria and hence to select potential strike
prices.



Durham University

Example

Results

Five strike price choices (scaled by mean and sd) with highest
expected probability of meeting criteria:

Prob Rate of Start Rate of Start Rate of Start
decay price decay price decay price

Offshore Offshore Solar Solar Onshore Onshore
11.3% -1.20 0.77 -1.16 -0.23 1.58 -1.68
11.1% -0.98 1.07 1.10 -0.83 0.39 -1.66
10.7% -1.28 0.76 -0.99 1.26 -1.76 -1.45
10.5% -1.00 0.92 -1.35 -1.66 -1.48 -1.51
10.4% -1.02 1.30 -1.43 0.40 -0.71 -1.50
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Results

Strike price choice with highest expected probability of meeting
criteria (11.3%):

Parametric uncertainty
Expectation (sd) Std deviation (sd)

% Renewables 0.32 (0.00) 0.02 (0.00)
Emissions (gCO2/kWh) 122.22 (1.14) 25.85 (0.83)

Cost (£m) 6991.44 (26.86) 578.12 (20.22)



Durham University

Example

Results

Emulators are much faster to run than the DDM - would be
difficult to quantify uncertainty in this much detail without
emulation.

Able to give policy-makers a much better idea of risk than
with traditional scenario analysis.

Could use these results to choose further DDM evaluations.
Emulation can give an idea of which model evaluations are
likely to meet criteria, without having to do a time consuming
search.
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Conclusion

Important to consider uncertainties when modelling -
parametric, structural and functional.

Without assessing uncertainties, it is not normally possible to
use a simulator to say anything about the ‘real-world’.

Emulation can be a useful tool for quantifying function
uncertainty

Combining emulation with a model for structural uncertainty
and with distributions over model inputs allow structural and
parametric uncertainties to be assessed even in simulators that
are slow to run.
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