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@ Context



RESGen: Renewable Energy Scenario Generation platform m @Es

e EPRI, US, sponsored us to produce open-source code to generate space-time
trajectories (for wind and solar power):

o the application area is the whole US Western Interconnection!
o it will be used to feed system studies at various US institutions (e.g., DoE)

North American Regional
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o RESGen is open-source (python code and data): any one can use it for
operational/planning studies, for any test case of interest, or further develop it... , ,,



Originality stemming from the decision framework
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@ The first setup for the platform originated from discussion with EPRI

@ More than an interest in the stochastic processes themselves, a more complete
package was envisaged:
e simulation of space-time renewable power generation (wind and solar),
o simulation of single-valued forecats, possibly of various quality,

e simulation of probabilistic forecasts and multivariate space-time trajectories (somewhat
simulating forecast errors),
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. and, eventually, diagnostics and verification tools!



Later on, a bit more ambitious o @Es
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Let us build a (very) large-scale dataset for the whole European system (RE-Europe)
— o

NawralGas @ Fuel Oil Natural Gas
i Nuclear i Nuclear
Unknown nite n

@ cou

Also open-access (python code and data) for research purposes at zenodo.org (ackn.
Aiia +A Tiia A/ lancean fAr bard vwarlk Aan +he RE Eiiranae Aatacat)


zenodo.org

The big picture...
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o The “grand forecasting challenge”: predict renewable power generation, dynamic

uncertainties and space-time dependencies at once for the whole Europe...!

2012-01-01 00:00:00

o Linkage with future electricity markets:

Power flow strength [MW]

50

T &
Power injection [MW]

o Monitoring, simulating and forecasting of the complete “Energy Weather” over Europe
e Provides all necessary information for coupling of various existing markets (e.g.,

day-ahead, balancing), as well as simulation for planning decisions
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Methodological framework - Inputs and dimensions m @FES
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@ Since the decision framework is similar to the case of operational forecasts, the core
of our approach is similar...

@ Inputs available:
o renewable power (wind or solar) observations ys; ¢ for a number of discrete locations s;
and times t
o single valued forecasts ysj,tmt corresponding to the different problems of interest, i.e.,
day-ahead and rolling intra-day

o 3 interesting problems:
e improve input single valued forecasts }A’sj,H—k\t (not discussed further)

o generate predictive marginals I:_Sj’Hk‘t, somewhat describing the conditional densities
of the observations given the forecasts

o generate sets of high-dimensional space-time trajectories igb)

of interest, jointly informing on J locations and K lead times

, at each and every time t

@ For our 2 setups: US - J =25, K =6 or 24 (dim(z)=150 or 528)
EU - J = 1500, K < 96 (dim(z)~150.000)



=]
=1
=

Methodological framework - Basics

m

Powor & Energy Socisy®

o All predictive marginals

FSJ,t+k|t(y)7 .j:17"'7-]7 k:177K
are linked together using a Gaussian copula
@ This is equivalent to working with a latent Gaussian random field in space and in
time, then transformed to the power space on a point-wise basis

@ A key result is that, if predictive marginals I:'sijk‘t are probabilistically calibrated,
then

Zoeeste = O (Fyernte(Ysern)) ~ N (0,1)

J

o Consequently the full dependence structure
simplifies to

e An empirical covariance matrix X, to be
estimated based on (lots of) data - US dataset

e A covariance model C(dk,ds), separable or not -
EU dataset
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Obtaining predictive marginals m @Es
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o Probabilistic forecasting of renewable power generation has been widely studied
over the last 10 years:

e in both parametric and nonparametric framework
o to issue quantile, interval and density forecasts
o for lead times between a few minutes and several months (or years!) ahead

o Alternative approaches: 0
80
90%
o based on quantile _m -
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@ In the present case, we use spline-based linear and nonlinear quantile regression for
number of nominal levels aj, i=1,...,m
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Dependence structures - Modelling and estimation m @Es
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o Nonparametric: Simply estimating X based on all observations transformed through
predictive marginals,

. 1 -
3 = ﬁZztzt

where z: = [zy, tixpelik,  Zserhie = 7! (st-,t+k|t(ysj',t+k))
(possibly needing some scaling since z,; +,4: may not be perfectly A/(0,1) in
practice)

@ More advanced approaches may involve time-varying covariance tracking,
regime-switching, etc.
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o Parametric: By first assuming separability, we fit and analyse simple covariance
models for time and space, e.g.

e exponential, C(6k) = exp (—bk/T) (similar for ds)
e powered exponential, C(0k) = exp (—(0k/Tk) k) (similar for ds)
o Cauchy, C(sk)= (1+ Tk6k2'“<)_1 (similar for §s)

@ We also generalize to non-separable models following the approach of Gneiting et al.
(2007), based on a coupling parameter 3 to be estimated in a second stage

o That we used, eventually, reads

-1
C(6k,0s) = (1 + msi”k) exp {—55}

Ts(1 + Tk(S,fw)g

For the case 8 = 0, one retrieves a separable case.

@ Estimation is performed with either direct or 2-stage weighted least squares



Dependence structures - Example non-separable fit
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Example for a Denmark subset of data

For our various test cases, the improvement in RMSE from fitting a non-separable model

is in the order of 40%...
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@ Sample results
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Node 1038 in Denmark (RE-Europe dataset), 5 May 2014, forecasts issued at 12:00

16 /22



=]
=1
=

Example day-ahead solar scenarios
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Node 205 in Spain (RE-Europe dataset), 2 June 2014, forecasts issued at 00:00
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Calibration of predictive marginals
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Example calibration results for day-ahead wind trajectories for Western US (given area) -

Other properties of the trajectories (e.g., skill, dependence structure) were analysed
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@ We considered more focused setups for Western US, France, Portugal, Denmark

2000
1500
1000

500

0 500 1000 1500 2000 2500 3000

. then building the full dependence structure for all
318 nodes - various experiments fitting on 5% of nodes (and 10 lead times in that example)
data, cross-validating, etc.

@ It was naturally found that space-time dependencies varies in space and in time!
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@ There is a crucial need for methods permitting to model and simulation
high-dimensional space-time stochatic processes for renewable energy applications

@ Here the approach presented is simple and flexible...

Next steps will focus on:
e nonstationary covariance structures (in space and in time)
e anisotropic and conditional covariance models

o modelling of precision matrices
o possibly using SPDEs

@ But also, in terms of verification

o better understanding of the characteristics of existing toolbox
o new scores and diagnostic tools

o Finally, it is a collaborative venture! - Download it from Github and improve it...
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http://pierrepinson.com/docs/arduin16.pdf
https://github.com/igorarduin/RESGen_EU
http://pierrepinson.com/docs/pinsongirard11.pdf
http://pierrepinson.com/docs/pinson13_windstat.pdf
http://orbit.dtu.dk/files/56966842/tr13_15_Pinson_Tastu.pdf
http://pierrepinson.com/docs/Tastuetal2013_windtrajectories_revised.pdf
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