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Research Goals

Analysis and control of complex systems

Paradigmatic Example

Power grids comprised of thousands nonlinear components linked
across thousands of kilometers.

Problems
The grid aging, centralized, and inflexible control infrastructure does
not provide the flexibility which power systems need to guarantee its
robust stability.
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Research Goals

Paradigm Shift
The new demands on the electricity delivery system are requiring that
it function in ways for which it was never originally designed.

Challenges (Opportunities)
Distributed & renewable generation, emerging demand response,
real time measurements (PMU).
Stochastic and epistemic uncertainty.
The system’s dynamic components become increasingly
independent and autonomous agents.

Future Transformations
Modern distributed measurements, control, and management
concepts are necessary to operate the grid.
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Research Goals

Project Goals
Construct an algorithmic synthesis of nonlinear and distributed
control techniques for large networked (power) systems.
Build a decentralized approach which exploits separability and
decomposition of the corresponding control problem into nonlinear
sub-problems which can be solved locally and efficiently.
Design scalable analysis and control algorithms.
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Background & Significance Transient Stability

The problem we study

Basic Stability Problem
We assume a dynamical system described by an autonomous set of
nonliner equations

ẋ = f (x) , x ∈ Rm . (1)

Assume that x = 0 is a stable equilibrium point (SEP), i.e. f (0) = 0.

Fundamental Stability Question
Assume that the system reaches the state xc when the disturbance is
finally cleared. Does the trajectory x(t) with x(0) = xc converge to the
SEP as t →∞?
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Background & Significance Power Grid Examples

Power System Example I

Consider this model:

0v

x’
d

x
L

x
Th

G

e δ

ẋ1 = x2

ẋ2 = 10λ− 20 sin(x1)− x2

The equilibrium points can be found from the steady-state (power
flow) equations:

0 = x2

0 = 10λ− 20 sin(x10)− x20

Milano, F., Power System Modelling and Scripting, Springer, Heidelberg.
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Background & Significance Power Grid Examples

Equilibria

The solutions are: [
x10
x20

]
=

[
sin−1(λ/2)

0

]
(2)

With two equilibrium points (and their periodic images):

x1s = sin−1(λ/2)

x1u = π − sin−1(λ/2)
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Background & Significance Power Grid Examples

Stability and Region of Attraction
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Background & Significance Power Grid Examples

Power System Example II

ẋ1 = x2

ẋ2 = − sin(x1)− 0.5 sin(x1 − x3)− 0.4x2

ẋ3 = x4

ẋ4 = −0.5 sin(x3)− 0.5 sin(x3 − x1)

− 0.5x4 + 0.05

where x1 = δ1, x2 = ω1, x3 = δ2, x4 = ω2.

Remark
No transfer conductances!
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The boundary of the region of attraction for the SEP
xs located at the origin (�). This boundary contains
12 hyperbolic equilibrium points (•). Four more
equlibrium points are also shown (◦).

Jump to Energy Function Jump to Classical Model

H. D. Chiang, Direct Methods for Stability Analysis of Electric Power Systems,Wiley, 2011.
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Methods Lyapunov Function Methods

Lyapunov’s Theorem
If ∃D ⊂ Rm containing xs = 0 and V : D → R such that

V (0) = 0 , andV (x) > 0 ∀x ∈ D�{0} ,

V̇ (x) =
∂V
∂x

f (x) ≤ 0 ∀x ∈ D ,

then the origin is a stable equilibrium. Moreover, if

V̇ (x) < 0 ∀x ∈ D�{0} ,

then the origin is asymptotically stable.

ROA estimates
Any level set Ωc = {x ∈ Rm | V (x) ≤ c}, such that Ωc ∈ D , describes a
positively invariant region contained in the domain of attraction of the
equilibrium point.
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Methods Lyapunov Function Methods

The trouble with Lyapunov

They are not constructive conditions; they do not tell us how to
find a Lyapunov function for a particular system.
Testing the positivity conditions required in the theorem is
notoriously difficult.
Even when both the vector field f and the Lyapunov function
candidate V are polynomial, the Lyapunov conditions are
essentially polynomial non-negativity conditions which are known
to be NP-hard to test.
Fortunately, if we relax the polynomial non-negativity conditions to
appropriate sum of squares (SOS) conditions, testing SOS
conditions can be done efficiently using SDP.
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Methods Sums of Squares Methods

Positive Polynomials

Gramm Matrix Representation

Any p ∈ Rm,2d can be represented as p(x) = zm,d (x)T Qzm,d (x), where
zn,d (x) is a vector of monomials

zm,d (x) := [1, x1, x2, . . . , xm, x2
1 , x1x2, . . . , x2

m, . . . , x
d
m]T (3)

Remark: zm,d (x) is a
(m+d

d

)
-vector.

SOS polynomials

p is a sum of squares (SOS) if there exist polynomials {pi}Ni=1 such
that p =

∑N
i=1 p2

i . If p is SOS then p ≥ 0. The reverse implications is
not true except in some specific cases.
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Methods Sums of Squares Methods

Theorem
Fix p ∈ Rm,2d . Then p(x) ∈ Σm,2d iff there exists Q � 0.

Remark

All solutions to p(x) = zm,d (x)T Qzm,d (x) can be expressed as
Q = Q0 +

∑n
i=1 λiQi where p = zT

m,dQ0zm,d and each Qi satisfies
zT

m,dQizm,d = 0.
Jump to SOS example

Determining if a SOS decomposition exists for a given polynomial
is equivalent to a linear matrix inequality feasibility problem.

find λ1, . . . , λn

s.t. Q0 +
n∑

i=1

λiQi � 0
(4)
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Methods Sums of Squares Methods

SOS programming

Given w ∈ Rs and polynomials {pk}sk=0 solve:

min
α∈Rm

wTα

subject to: p0 +
s∑

k=1

αkpk ∈ Σ[x ]

This SOS programming problem is an SDP:
The cost is a linear function of α.
The SOS constraint can be replaced with a LMI constraint.
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Methods Sums of Squares Methods

SOSTOOLS

SOSP SDP

SOSP
Solution Solution

SDP

SeDuMi/
SDPT3

SOSTOOLS

SOSTOOLS

Converts the SOS program to
a SDP.
Calls the SDP solver.
Converts the SDP solution
back to the solution of the
SOS program.

S.Prajna, A.Papachristodoulou, and P.A.Parrilo. SOSTOOLS — A Sum of Squares Optimization Toolbox, 2013.

http://www.cds.caltech.edu/sostools/
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Methods Sums of Squares Methods

SOS search for Lyapunov functions
SOS technique is used to find polynomial functions V ∈ Rm, with
V (0) = 0 such that

V (x)− φ1(x) ∈ Σm ∀x ∈ D (5)

−V̇ (x)− φ2(x) ∈ Σm ∀x ∈ D (6)

for some domain D around x = 0 and positive definite functions
φ1,2(x). For example φ1,2(x) = ε1,2

∑m
i=1 x2

i and ε1,2 > 0.

Notes
It is convenient to define the domain D = {x ∈ Rm | p(x) ≤ β} for
some positive polynomial p(x) =

∑m
i=1 x2

i and β > 0.
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Methods Sums of Squares Methods

Representation Theorems

Putinar’s Positivestellensatz Theorem
Let K = {x ∈ Rm | g1(x) ≥ 0, . . . ,gn(x) ≥ 0} be a compact set. If
p(x) is positive on K, then p(x) = σ0 +

∑
j σjgj(x) | σ0, σj ∈ Σm,∀j .

SOS problem

Given p(x) find σj ∈ Σm, j = 1,2, . . . ,n such that
p(x)−

∑
j σjgj(x) ∈ Σm. We can also search for unknown coefficients

of p so that p is positive on K.

M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana University Mathematics Journal,
vol. 42, no. 3, pp. 969 - 984, 1993.

J. B. Lasserre, Moments, Positive Polynomials and Their Applications, Imperial College Press, 2010.
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Methods Sums of Squares Methods

Power System Example

SOS search for Lyapunov functions
If there exists a constant β > 0 and polynomial functions V ,p1,2 ∈ Rm,
and σ1,2 ∈ Σm such that V (0) = 0 and

V − σ1(β − p)− p1G − φ1 ∈ Σm (7)

−V̇ − σ2(β − p)− p2G − φ2 ∈ Σm (8)

then x = 0 is a stable equilibrium point.

Remark
The vectors of polynomials G enforce algebraic constraints produced
by a recasting procedure that transforms the non-polynomial ODEs
into a set of polynomials DAEs.

Jump to Analysis of Non-polynomial systems
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Methods Sums of Squares Methods

Remark
An algorithm to maximize the size of the invariant subset is needed in order to
improve the estimated ROA.

Wloszek, Lyapunov based analysis and controller synthesis for polynomial systems using SOS optimization, Ph.D. dissertation,
UC Berkeley, 2003.
Anghel et al, Algorithmic Construction of Lyapunov Functions for Power System Stability Analysis. TCS 60, 2533-2546, 2013.

Go to Bretas model
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Methods Sums of Squares Methods

The Trouble with SOS

There are serious difficulties before these algebraic methods can
be applied to large power systems.
The difficulties are not conceptual but numerical.
It is currently very hard to construct Lyapunov functions of
systems with large state dimension, for cubic vector fields and
quartic Lyapunov functions.
This limitation renders the proposed algorithm impractical in its
current formulation.
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Large Scale Systems Analysis

Decomposition/Aggregation Approach

System decomposition and analysis of its components (subsystems)
and their interconnections.

J. Anderson and A. Papachristodoulou, A decomposition technique for nonlinear dynamical system analysis, IEEE TAC 57,
1516 - 1521, June 2012.

Fundamental Questions
How to guarantee the global stability of a nonlinear interconnected
system form the local stability of its subsystems?
How to design local controllers that respond to local disturbances?
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Large Scale Systems Analysis

Generic Analysis Tools
1 vector Lyapunov functions and linear comparison principles
2 composite Lyapunov functions (do not scale well!)
3 small-gain theorems for networked systems (do not scale well!)

Proposed Approach
1 We employ a system decomposition technique in order to derive a

collection of low order, weakly interacting subsystems.
2 We perform a Lyapunov stability analysis for each isolated

subsystem.
3 We analyze the stability of the full system using the subsystem

Lyapunov functions and disturbance analysis techniques.
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Large Scale Systems Analysis System Decomposition

Network of Dynamical systems

We seek a decomposition

ẋ1 = f1(x1)+g1(x1, xN1 )

ẋ2 = f2(x2)+g2(x2, xN2 )

...
ẋn = fn(xn)+gn(xn, xNn )

where fi (0) = 0,gi (xi ,0) = 0,∀i , and
Ni : {neighbors of ’i’}.

Fundamental Questions
Is it asymptotically stable, i.e. limt→∞ xi(t) = 0?
If not, is there a distributed stabilizing control ui(xi)?
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Large Scale Systems Analysis Lyapunov Functions and Interactions

Isolated Subsystem Analysis

Analyze the isolated dynamics ẋi = fi(xi)

If ∃Di ⊂ Rmi and Vi : Di → R such that

Vi (0) = 0 , Vi (xi ) > 0 ∀xi ∈ Di�{0} ,

V̇i (xi ) = ∇V T
i fi (xi ) < 0 ∀xi ∈ Di ,

Finaly, R0
i = {xi ∈ Rmi | Vi (xi ) ≤ 1} ⊆ Di ,

Let’s point the obvious

With no interactions R = R0
1 ×R0

2 × . . .×R0
n approximates the global

ROA.

Under interactions from neighbors V̇i (xi ) = ∇V T
i (fi (xi ) + gi ) < 0 only if

‖gi‖2 is sufficiently small. This is not quite so as xi → 0.
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Large Scale Systems Analysis Generic Network Stability

Stability of Two Connected Systems
Assume two interacting subsystems

ẋ1 = f1(x1) + g1(x1, x2) ,

ẋ2 = f2(x2) + g2(x2, x1) .

We assume that fi(xi) = 0 and gi(x1, x2) = 0, for i = 1,2.
There ∃ Lyapunov functions Vi(xi) for each isolated subsystem
ẋi = fi(xi) , and ROA estimates given by
Ωi

1 = {xi ∈ Rni | Vi(xi) ≤ 1} for i = 1,2.
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Large Scale Systems Analysis Generic Network Stability

Example I

Coupled Van der Pol oscillators
Dynamics:

ẋ1 = −x2 + ax2x3

ẋ2 = x1 + (x2
1 − 1)x2 + bx1x4

ẋ3 = −x4 + ax4x1

ẋ4 = x3 + (x2
3 − 1)x4 + bx3x2 ,

There ∃ quadratic Lyapunov functions :

V1 = 0.77x2
1 − 0.49x1x2 + 0.47x2

2 ,

V2 = 0.77x2
3 − 0.49x3x4 + 0.47x2

4 .
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Large Scale Systems Analysis Generic Network Stability

Problem Formulation
Assume that a disturbance moves the coupled system to the state
(x0

1 , x
0
2 ) after which the disturbance is removed.

Will the system evolve back to its stable equilibrium (0,0)?

x
1

x
2 x

1
x

2

Compute Stability Curves

Find the γ2(γ1) such that Ω1
γ1
, γ1 ≤ 1, remains invariant under bounded

disturbances Ω2
γ2
, γ2 ≤ 1, and the action of the system’s dynamics.
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Large Scale Systems Analysis Generic Network Stability

Example I
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Stability Condition

For two connected systems the
answer is very simple:

If for γ1 = V1(x0
1 ) the state

x0
2 ∈ {x2 ∈ Rn | V2(x2) ≤ γ2(γ1)},

If for γ2 = V2(x0
2 ) the state

x0
1 ∈ {x1 ∈ Rn | V1(x1) ≤ γ1(γ2)},

then the composite system is stable.
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Large Scale Systems Analysis Generic Network Stability

Network Stability Conditions
Let’s assume a system composed of n subsystems:

ẋi = fi(xi) +
∑

j∈N (i)

gij(xi , xj) , for k = 1, . . . ,M. (9)

Assume that the system is in the state (x0
1 , . . . , x

0
n ).

Compute γi = Vi(x0
i ). For each i solve the SOS programs

− s2V̇i −
∑

j∈N (i)

s1j(γj − Vj(xj))− q(Vi − γi) ∈ Σn+m . (10)

If a solution exists for all i the system is stable.
The subsystems for which a solution is not found might be
unstable. Apply local controllers to restore stability.
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Large Scale Systems Analysis Generic Network Stability

Example II

Coupled 1D Systems

ẋ1 = −0.1x1 + 0.03x2
1 +0.04x2, V1 = 0.09x2

1 ,R0
1 = [−3.3,3.3].

ẋ2 = −0.6x2 + 0.20x2
2 +0.30x1, V2 = 0.11x2

2 ,R0
1 = [−3.0,3.0].
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Large Scale Systems Analysis Generic Network Stability

Iterative Stability Algorithm: Step # 1

+

V` = ε0` Vj = ε0j

Vi = ε0i

Vi = ε1i

Communicate ε0i = Vi(xi(0))

Then, for each i , find the minimum ε1i ∈ [0, ε0i ), such that

∇V T
i (fi + gi) < 0 on {x

∣∣∣Vi ∈ [ε1i , ε
0
i ],Vj ∈ [0, ε0j ]∀j ∈ Ni }
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Large Scale Systems Analysis Generic Network Stability

Iterative Stability Algorithm: Step # k

++

V` = εk`
Vj = εkj

Vi = εki

Vi = εk+1
i

If εki =0 : STOP. Else,
Communicate εki (from step k)

Then, for each i , find the minimum εk+1
i ∈ [0, εki ), such that

∇V T
i (fi + gi) < 0 on {x

∣∣∣Vi ∈ [εk+1
i , εki ],Vj ∈ [0, εkj ]∀j ∈ Ni }
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Large Scale Systems Analysis Generic Network Stability

Example I: Network of Van Der Pol Oscillators

4

3

2

1

9

87

6

5

Polynomial Lyapunov functions,
using

Expanding interior algorithm, see
Wloszek 2003, Anghel et al
2013, and

Estimates of isolated ROAs for
varying polynomial orders.

ẋi1 = xi2

ẋi2 = µi xi2 (1− x2
i1)− xi1+

∑
j∈Ni\{i}

ζij xi1xj2
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Large Scale Systems Analysis Generic Network Stability

Example I: Network of Van Der Pol Oscillators

The red lines are the contour level sets defined
by the initial conditions: ε0

i = Vi (xi (0)).
Evolution of the stability analysis algorithm.
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Large Scale Systems Analysis Generic Network Stability

Stabilizing Control Design

Necessary when the stability algorithm fails
Attributes:

Decentralized: activated and designed locally
Minimal: applied on certain "rings" in the state-space

Design method (at each step k, for each i),
Decide if control is needed,
i.e. if ∇V T

i (fi + gi )
∣∣
Vi=ε

k
i ,Vj≤εk

j ∀j 6=i ≥ 0 .

If needed, compute control uk
i (xi ), so that

∇V T
i (fi + gi + uk

i )
∣∣
Vi=ε

k
i ,Vj≤εk

j ∀j 6=i < 0

Find the minimum εk+1
i ∈ [0, εki ) with the controlled dynamics.
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Large Scale Systems Analysis Generic Network Stability

Control Example
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Control applied at subsystems – 1, 2 and 5.
Conservative design, due to (1) its distributed nature, and (2) the
inherent conservativeness of the Lyapunov functions
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Large Scale Systems Analysis Generic Network Stability

Control Example
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Control applied at subsystems – 1, 2 and 5.
Conservative design, due to (1) its distributed nature, and (2) the
inherent conservativeness of the Lyapunov functions
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Large Scale Systems Analysis Generic Network Stability

Example II: Power System Example

Network preserving model:

Di δ̇i = −PDi − PEi (δ) , i = 1, . . . ,L ,

δ̇L+i = ωi , i = 1, . . . ,G ,

Mi ω̇i + DL+iωi = PMi − PEL+i (δ) .

Bergen & Hill, A structure preserving model for power

system stability analysis, TPAS, 100, 25-35, 1981.

Overlapping decomposition:

δin = δi − δn, for i = 1, . . . ,L + G − 1,
ωin = ωi − ωn, for i = 1, . . . ,G − 1,
ωG = ωn.

Jump to Dynamic Load Model

Load node

Generator 
node

Shadow 
reference

Reference 
node

7

2

1
4

65

8 9

3

Subsystem 
node

Network of three generators and six load nodes. We perform an
overlapping decomposition in which the speed dynamics of the
reference node (generator node 3) is shared with all the
subsystems.
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Large Scale Systems Analysis Generic Network Stability

Example II: Power System Example
Disturbance Analysis
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(a) ROA of subsystem 2 (node 5) (b) ROA of subsystem 7 (node 2)

Estimates of regions of attraction of isolated subsystems using expanding interior algorithm.
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Large Scale Systems Analysis Generic Network Stability

Stability in the sense of Lyapunov, under control

A disturbance was created by tripping the line between nodes 5-7 for the duration t ∈ [0, 3s] and also tripping the line between
nodes 7-8 for t ∈ [1s, 3s], essentially disconnecting the nodes 7 and 2 from the rest of the network for t ∈ [1s, 2s].

k εk
1 εk

2 εk
3 εk

4 εk
5 εk

6 εk
7 εk

8
0 0.0001∗ 0.0007∗ 0.0002∗ 0.3471 0.0003∗ 0.0001∗ 0.6663∗ 0.0001∗

1 0.0000 0.0000 0.0002 0.0312 0.0000 0.0001 0.4451 0.0000
2 0.0000 0.0000 0.0001 0.0203 0.0000 0.0000 0.4260 0.0001
3 0.0000 0.0000 0.0001 0.0195 0.0000 0.0000 0.3478 0.0000
4 0.0000 0.0000 0.0000 0.0154 0.0000 0.0000 0.3383 0.0000
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

11 0.0000 0.0000 0.0000 0.0103 0.0000 0.0000 0.2481 0.0000
12 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.2374 0.0000
13 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0492 0.0000
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0094 0.0000
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

State-Feedback Control

State-feedback example

U0
7 = 5.1 cos δ2,1−38.4ω2,1−1.8ω1−71.4 sin δ2,1−5.1

which is applied to the speed dynamics equation of the generator 2 of S7.
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Conclusions

Key Points
Distributed, scalable, and parallel algorithm for large-scale
nonlinear dynamical systems
Robust to structural changes in the network
Local communications and measurements
Can be extended to cases when Lyapunov function level-sets
show initial increase (Kundu & Anghel 2015)
The method opens up the possibility to include more refined
subsystem models in the analysis of large (power) systems.
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Appendices Power System Model

Classical Power System Model

In a classical power system model consisting of n synchronous
generators the dynamics of the generator phase angles are modeled
by the swing equations:

δ̇i = ωi , (11a)

ω̇i = −λiωi +
1
Mi

(Pmi − Pei(δ)) , (11b)

where

Pei(δ) = E2
i Gii +

∑
j,j 6=i

EiEj [Bij sin(δi − δj) + Gij cos(δi − δj)] .

Return to Power System Example
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Appendices Energy Function Methods

Energy Function
When Gij = 0 the classical model has the following energy function:

V (δ, ω) =
1
2

∑
i

Miω
2
i −

∑
i

Pi (δi − δs
i )−∑

j,j 6=i

EiEjBij{cos(δi − δj )− cos(δs
i − δs

j )}

Estimating ROA

The Closest UEP algorithm

The Boundary of stability
region-based Controlling Unstable
equilibrium point (BCU) method.

Return to Power System Example

Return to Troubles with Lyapunov
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Appendices Energy Function Methods

... and some Remarkable Weaknesses

No analytical energy functions for power systems with transfer
conductances exists.

The task of computing the critical energy value is very difficult.

∃ counter-examples in which these methods produce wrong results.
A. Llamas et al, Clarifications of the BCU method for transient stability analysis, PES 10,210-219,1995.

The assumption of the method do not hold generically for power system
models. There are no theoretical guarantees. F. Paganini et al, Generic Properties,

One-Parameter Deformations, and the BCU Method, TCS 46, 760-763, 1999.

The only methods with zero miss probability are those who survey all
UEPs. R. Fischl et al, A comparison of dynamic security indices based on direct methods, IJEPES 10,

210-232,1988.

Return to Power System Example Return to Troubles with Lyapunov
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Appendices SOS Example

Example

The polynomial p = 2x4
1 + 2x3

1 x2 − x2
1 x2

2 + 5x4
2 can be written as

p = zT
2,2Qz2,2 where

z2,2 =

 x2
1

x1x2
x2

2

Q0 =

 2 1 −0.5
1 0 0
−0.5 0 5

Q1 =

 0 0 −0.5
0 1 0
−0.5 0 0


We can define an affine subspace of symmetric matrices related
to p as

Sp = {Q|zT
n,dQzn,d = p(x)} =

{
Q0 +

h∑
i=1

λiQi
∣∣λi ∈ R

}
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Appendices SOS Example

p = 2x4
1 + 2x3

1 x2 − x2
1 x2

2 + 5x4
2 is SOS since Q0 + λ1Q1 � 0 for

λ1 = 5.
An SOS decomposition can be constructed from a Cholesky
factorization:

Q + λ1Q1 = LT L

where:

L =
1√
2

[
2 1 −3
0 3 1

]
Thus p = (Lz)T (Lz) == 1

2(2x2
1 − 3x2

2 + x1x2)2 + 1
2(x2

3 + 3x1x2)2

A Tutorial on Sum of Squares Techniques for Systems Analysis Antonis Papachristodoulou and Stephen Prajna, ACC 2005.

Return to SOS Polynomials
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Appendices Analysis of Non-polynomial Systems

Analysis of Non-polynomial systems

Theorem
Any system with non-polynomial nonlinearities can be converted to a
polynomial system with a larger state dimension, but with a series of
equality constraints restricting the states to a manifold of the original
state dimension.

1 Define the new state variables z3i−2 = sin(δi), z3i−1 = 1− cos(δi),
z3i = ωi for i = 1, . . . , (n − 1).

2 Use the chain rule of differentiation to derive the dynamics of the
new state variables.

3 Derive the equality constraints that arise from the recasting
process:

Gi(z) = z2
3i−2 + z2

3i−1 − 2z3i−1 = 0 , (12)

where i = 1, . . . ,n − 1.
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Appendices Analysis of Non-polynomial Systems

Recasted dynamics: ż = f (z), where z = F (x), f : RM → RM , with
M = m1 + m2, and m1 = n − 1 and m2 = 2(n − 1).

ż1 = z3 − z2z3

ż2 = z1z3

ż3 = 0.4996z4 − 0.4z3 − 1.4994z1 − 0.0200z5 + 0.0200z1z4

+ 0.4996z1z5 − 0.4996z2z4 + 0.0200z2z5

ż4 = z6 − z5z6

ż5 = z4z6

ż6 = 0.4996z1 + 0.0200z2 − 0.9986z4 + 0.0500z5 − 0.5z6

− 0.0200z1z4 − 0.4996z1z5 + 0.4996z2z4 − 0.0200z2z5

The recasting process introduces the following constraints:

G1(z) = z2
1 + z2

2 − 2.0z2 = 0

G2(z) = z2
4 + z2

5 − 2.0z5 = 0

Return to Power System Example
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Appendices A model with transfer conductances

Another Example

A model with transfer conductances:

ẋ1 = x2

ẋ2 = 33.5849− 1.8868 cos(x1 − x3)− 5.2830 cos(x1)

− 16.9811 sin(x1 − x3)− 59.6226 sin(x1)

− 1.8868x2

ẋ3 = x4

ẋ4 = 11.3924 sin(x1 − x3)− 1.2658 cos(x1 − x3)

− 3.2278 cos(x3)− 1.2658x4 − 99.3671 sin(x3)

+ 48.4810

where x1 = δ1, x2 = ω1, x3 = δ2, x4 = ω2.

Return to Power System Example
Bretas and Alberto, Lyapunov function for power systems with transfer conductances: Extension of the invariance principle, TPS
18, 769-777, 2003.
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Appendices Disturbance Analysis

Disturbance Analysis

Problem Formulation
We consider a polynomial dynamical system

ẋ = f (x) + g(x ,w) , (13)

where x(t) ∈ Rn,w(t) ∈ Rm, f ∈ Rn
n, f (0) = 0, and g ∈ Rn×m

n .
We define the peak of w to be bounded by ‖w(t)‖∞ ≤

√
γ2 .

Define the invariant set as Ωγ1 = {x ∈ Rn | V (x) ≤ γ1} , where
V (x), is the Lyapunov function of the isolated system (w = 0).
Find the γ2 such that Ωγ1 remains invariant under these bounded
disturbances and the action of the system’s dynamics.
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Appendices Disturbance Analysis

SOS formulation

If V̇ (x ,w) ≤ 0 on the boundary of Ωγ1 for all ‖w(t)‖∞ ≤
√
γ2 , then

Ωγ1 is invariant.
Solving the SOS program

− s1(γ2 − wT w)− s2V̇ − q(V − γ1) ∈ Σn+m . (14)

by searching over the polynomials q and the si , i = 1,2 to
maximize γ2 subject to (14).
Compute stability curve γ2(γ1).

Remarks
SOS techniques can be used to perform Nonlinear Reachable Set
Analysis and to incorporate Parametric Uncertainty.

Return to Stability of Two Connected Systems
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Network Preserving Model

Dynamic Load Modeling

In classical power system model, the dynamics of the system is given by
the “swing equations” of the generators alone. The loads in the network
are simply modeled as constant impedance for the purpose of stability
analysis.

This is not necessarily a valid assumption. Especially considering that in
a “future grid” there will be increasingly higher demand side participation
which is likely to introduce faster dynamics at the load bus (or node).

One usually adopted dynamic load model represents the frequency
dynamics at the load nodes as a function of their real (or active) power.
However, other dynamics can also be considered, for example, the
voltage magnitude dynamics as a function of the reactive load.

A. R. Bergen and D. J. Hill, A structure preserving model for power system stability analysis, IEEE PAS-100(1), 25-35, Jan 1981.
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Network Preserving Model

Frequency-dependent Load Power

Each load is modeled as a frequency-dependent power load, while
assuming that the load bus voltage magnitude remains constant (an
assumption that can be relaxed if desired).

δ̇i =
1
Di

(PLi − Pei (δ)) , (15a)

where

Pei (δ) = E2
i Gii +

∑
j,j 6=i

EiEj [Bij sin(δi − δj ) + Gij cos(δi − δj )] .

and PLi is the nominal (or rated) active power load. At the limit Di → 0+,
it is constant power load, with Pei = PLi .
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Network Preserving Model

Frequency-dependent Load Power (Cont.)

The frequency-dependent load model has its advantages:

In Lyapunov stability analysis, the transfer conductances in lines are
often ignored, which becomes invalid if active loads are absorbed as
equivalent resistances. Frequency-dependent load model resolves that
issue.

The structural aspect of the network is nicely preserved. Thus the
Lyapunov function truly represents the spatial distribution of stored
energy in the network (a “topological Lyapunov function”).

This also gives us the tool to consider other dynamics, such as a voltage
magnitude dependent reactive power load model.

There are demand side control algorithms that changes the active power
consumption on a real-time basis based on the network condition).
Preserving the network topology helps us explicity account for such load
control techniques in analyzing stability of the network.

Return to Network Preserving Model
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