A Python-based Software Tool for Power System Analysis

Dr. Federico Milano

E-mail: Federico.Milano@ucd.ie

School of Electrical, Electronic and Communications Engineering

University College Dublin

Ireland
Why Python?

- Python is a modern scripting language which merges together the flexibility of class-oriented programming (such as Java) and neat functional programming schemes (such as Haskell).
- It includes a huge number of third-party modules for mathematical applications, 2D and 3D plotting, html and xml parsing, etc.
- However, Python is an interpreted language, hence it is slow . . .
Python is just a Glue!

- Another property of Python is that it can be easily linked to C, C++ and Fortran libraries.

- So, Python can be used as a glue to link together efficient (compiled) mathematical libraries.

- In conclusion Dome can be quite fast!

- For example, to solve the power flow analysis of the UCTE test system (1254 buses and 1944 lines) takes about 0.05 seconds (neat CPU time of the NR routine) on a standard Dell workstation.
Dome: Objectives

- A Python-based Tool for Power System Analysis.
- Dome has been designed with the following objectives in mind:
 - Modularity
 - Fast prototyping of models, algorithms and libraries
 - Parallel computing
 - Lazyness
Dome: Structure

Data Format Filters

User Filters

Output Formats

Custom Output

Dome Core

Device Models

User Models

Routines

User Routines
Dome: Methodological Rules

- Dome has been designed based on systematic methodological (even *philosophical*) rules:
 - Bottom-up approach (or *divide et impera*)
 - No code duplicates (heavily based on Python classes)
 - *Everything* can be customized (Hegel's approach!)
 - Separation between *models* and *solvers*
 - Minimizing the amount of *essential* code sections
 - Never complain (use defaults and warn the user!)
 - Code and documentation live (and update) together
 - Layered structure
 - The *world* is described by differential algebraic equations and/or if-then rules.
Layered Structure

- User Interface
 - Top-level device functions
 - Low-level device functions
 - Solver algorithms
 - Software core
 - Expert developers

Surface usage
Deep usage
Mathematical Model: DAE

• Dome requires a set of nonlinear differential algebraic equations (DAE) with discrete variables, as follows:

\[
\dot{x} = f(x, y, \eta, u, t) \quad \text{(1)}
\]
\[
0 = g(x, y, \eta, u, t)
\]

where \(x (x \in \mathbb{R}^{n_x})\) indicates the vector state variables, \(y (y \in \mathbb{R}^{n_y})\) are the algebraic variables, \(\eta (\eta \in \mathbb{R}^{n_\eta})\) are the controllable parameters, \(u (u \in \mathbb{R}^{n_u})\) are discrete variables, \(f (\varphi : \mathbb{R}^{n_x} \times \mathbb{R}^{n_y} \times \mathbb{R}^{n_\eta} \times \mathbb{R}^{n_u} \times \mathbb{R}^+ \mapsto \mathbb{R}^{n_x})\) are the differential equations, and \(g (\varphi : \mathbb{R}^{n_x} \times \mathbb{R}^{n_y} \times \mathbb{R}^{n_\eta} \times \mathbb{R}^{n_u} \times \mathbb{R}^+ \mapsto \mathbb{R}^{n_y})\).

• Discrete variables \(u\) can be often translated into if-then rules.
Mathematical Model: SDAE

- Dome can take into account stochastic processes leading to stochastic differential algebraic equations (SDAE):

\[
\begin{align*}
\dot{x} &= f(x, y, \eta, u, t) + B(x, y, \eta, u, t)\xi \\
0 &= g(x, y, \eta, u, t)
\end{align*}
\]

where \(\xi\) are white noises, i.e., the time derivative of Wiener’s processes:

\[
\xi = \frac{dW}{dt}
\]

and \(B\) is the diffusion tensor.
Stochastic Time Domain Analysis

- Dome allows solving time domain simulations in parallel.

- Solving 1000 simulations with a fixed time step of 0.05 s and a standard dishonest NR solver for a 200-variable system takes about 8.5 seconds on a 12-CPU workstation.
Mathematical Model: DDAE

- Dome can take into account delays leading to delayed differential algebraic equations (DDAE):

\[
\begin{align*}
\dot{x} &= f(x, y, x_d, y_d, \eta, u, t) \\
0 &= g(x, y, x_d, y_d, \eta, u, t)
\end{align*}
\]

(3)

where \(x_d\) and \(y_d\) are delayed variables:

\[
\begin{align*}
x_d &= x(t - \tau) \\
y_d &= y(t - \tau)
\end{align*}
\]

and \(\tau\) are the delays (non-necessarily time-independent).
• Dome allows finding approximated solutions of the characteristic equation of a DDAE.

• It turns to be the solution of a huge eigenvalue problem (thousands of eigenvalues!).
Some Statistics

- Dome currently includes:
 - 45 data format (e.g., PSS/E, GE PSLF, DigSilent, etc.)
 - 357 device models (e.g., synchronous machines and their primary controllers, FACTS, wind turbines, DERs, energy storage systems, etc.)
 - 10 power flow algorithms ranging from the standard NR to a GPU-based BFS.
 - 13 mathematical libraries (e.g., KLU, UMFPACK, SLUDIST, PETSC, MAGMA, etc.)
 - Several static and dynamic analysis tools (eigenvalue analysis, CPF, OPF, time domain analysis, short-circuit analysis, equivalencing techniques, polynomial recasting, electric vehicles management, etc.).
Supported Models

- Dome currently supports:
 - Standard quasi-static phasors representing single-phase equivalents of three-phase balanced and symmetrical devices
 - Park vectors
 - EMT models
 - DC, AC and power electronics devices
 - Three-phase unbalanced systems
 - Physical micro-controller devices (beta!)
 - A mix of all the above (with proper interfaces!)
Research

- Dome is an efficient research tool.
- It is currently used by a small group of researchers under the supervision of Federico Milano to study the following topics:
 - Modeling power systems through stochastic differential equations.
 - Stability of power system controllers including functional delays.
 - Parallellization of power flow analysis and time domain integration.
 - Detailed modeling of DERs and energy storage devices.
Power System Education

- Dome proved to be a challenging educational tool.
- It has been used at the University of Castilla-La Mancha for the lab activities of the course *Power System Control*.
- It is currently used for teaching basic power system control and stability concepts at Stage 4 of the Electrical Engineering program at UCD.
Benchmarking

- Dome can be used to test mathematical libraries.
- For example, one can test the performance of libraries for sparse matrix factorization.
- The table below refers to the power flow solution of the 1254-bus 1944-line network that models the UCTE 2002 Winter Off-peak.

<table>
<thead>
<tr>
<th>Library</th>
<th>Total CPU time [s]</th>
<th>1st fact. time [s]</th>
<th>Next fact. time [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLU</td>
<td>0.0933</td>
<td>0.0044</td>
<td>0.0026</td>
</tr>
<tr>
<td>CXSPARSE</td>
<td>0.0936</td>
<td>0.0043</td>
<td>0.0027</td>
</tr>
<tr>
<td>UMFPACK</td>
<td>0.1750</td>
<td>0.0126</td>
<td>0.0095</td>
</tr>
<tr>
<td>SUPERLU</td>
<td>0.1927</td>
<td>0.0247</td>
<td>0.0082</td>
</tr>
<tr>
<td>LUSOL</td>
<td>0.3112</td>
<td>0.0360</td>
<td>0.0195</td>
</tr>
</tbody>
</table>
Consulting

- Dome can be easily extended, can run on any platform supported by Python and the resulting code is 100% open source.

- These features makes Dome ideal for consulting activities.

- It has been successfully used to develop an optimal load management algorithm, data format filtering, stability analysis, etc., for a variety of European and American companies.

- A spin-out based on Dome is under evaluation at UCD.
Current Challenges

- Extensions that are currently under study and/or development are:
 - Real-time simulation capability
 - *Hardware-in-the-loop*
 - Capability of being a OPC (OLE for Process Control) server
 - Include diverse energy system models (e.g., gas and water)
 - Parallel computing based on heterogeneous architectures (CPUS and GPUs)
Hardware-in-the-loop with Arduino

- A very first attempt to include hardware-in-the-loop: Arduino micro-controllers.
To-Do List

- Graphical user interface (originally omitted by purpose!)
- Full support on Windows operating systems
- Improve documentation (e.g., automatic generation of device equations)
- Support for discrete-event-simulation (DES) models (see for example the tools developed at Oak Ridge National Laboratory, US)

...
Try Dome!

- Further details and a demo version of Dome are available at:

 http://faraday1.ucd.ie/dome.html

- If you are interested in giving Dome a try, just let me know and I will open an account for you on my server.
UCD-ERC Software Tools

- A new page that collects information on software tools developed at ERC has been included in the ERC web-page:

 http://erc.ucd.ie/outputs/software

- The page can be accessed from the ERC main page:

 Menu Options → Software Tools
Thanks for your attention!