

Modelling and (Co-)simulation of power systems, controls and components for analysing complex energy systems

Workshop on Software Tools for Power System Modelling and Analysis

University College Dublin – 11th October 2013 Stifter Matthias – AIT, Energy Department, Complex Energy Systems

About Co-Simulation

Co-Simulation Motivation

- Multi-domain problems not covered in one tool
 - Electrical power system
 - Communication system
 - Controls / SCADA
- Different simulation time steps
- Different concepts: continuous time and discrete event time systems
- Use existing highly complex and detailed models
- Integration of real components
- Scalability and flexibility
- → Combine different dedicated simulation tools and domains
- → Analyse different subsystems and their interactions

Co-Simulation Overview

Various types of modelling and simulation:

number of modelers distributed closed simulation simulation re-unification of the distributed separately modeled co-simulation >1 modelling subsystems equations closed "classical" model separation =1 Simulation for simulation modelling =1 >1 number of integrators

Source: M. Geimer, T. Krüger, P. Linsel, Co-Simulation, gekoppelte Simulation oder Simulatorkopplung? Simulation 2006.

6

Co-Simulation (1)

Coupling on model level

Source: M. Geimer, T. Krüger, P. Linsel, *Co-Simulation, gekoppelte Simulation oder Simulatorkopplung?* Simulation 2006.

Co-Simulation (2)

Coupling on integrator level

Source: M. Geimer, T. Krüger, P. Linsel, Co-Simulation, gekoppelte Simulation oder Simulatorkopplung? Simulation 2006.

Simulation challenge: power system and controls

System with controller to fulfill certain functionalities: e.g., voltage control task consists typically of the following parts:

- Power system model
- Component models
- Controller /
- SCADA

Co-Simulation approach

In this simulation coupling, the individual simulators run in real time and parallel, exchanging results and set-points.

- PowerFactory ←→ Matlab / SimPowerSystem
- PowerFactory ←→ 4DIAC (distributed control system)
- 4DIAC ←→ ScadaBR

Simulation challenge: dynamic EV charging

Need for simulation of:

- impact of the electric vehicle energy demand
 → energy depends on trip length, temperature, etc.
- test charging management strategies
 → charging power is **not static**
- → Hybrid system: discontinuity taking place at discrete events
- → Need for simulation of the EV trip to get the energy needed to recharge

→ Combine the power system simulation with the simulation of the discharging

Simulation challenge: dynamic EV charging

Limit Pset

START

Simulation tools

MODELICA

Modelica

- dedicated multi-domain (physics) simulation language
- supports event handling
- acausal simulation (continuous time-based simulation)

PSAT

- Power system analysis toolbox
- Matlab/Simulink and Octave
- continuous time-based simulation

4Diac / Forte

- framework for distributed control systems
- intended for event based controls in real time
- open source IDE and Runtime

GridLAB-D

- multi-agent based power system simulation
- includes various energy-related modules
- discrete event-based simulation

Main challenge

→ coupling discrete event-based simulation with continuous time-based models.

Co-Simulation Interfaces and Mechanisms

Co-Simulation: synchronous, sequentially

- Co-Simulation run sequentially and blocks until the results are available
- simulate same time step twice

simulate at next time step

M. Stifter, R. Schwalbe, F. Andrén, and T. Strasser, "Steady-state co-simulation with PowerFactory," in Modeling and Simulation of Cyber-Physical Energy Systems, Berkeley, California, 2013.

Co-Simulation: asynchronous, parallel

Co-Simulation via external DLL

M. Stifter, R. Schwalbe, F. Andrén, and T. Strasser, "Steady-state co-simulation with PowerFactory," in Modeling and Simulation of Cyber-Physical Energy Systems, Berkeley, California, 2013.

Co-Simulation: real time synchronisation

- Dynamic behaviour
 - C-HIL / Regler
 - Filters
- Synchronisation with system time / scaled time base

Functional Mock-Up Interface for Model Exchange

- FMI: A standarized API for describing models of DAE-based modeling environments (Modelica, Simulink, etc)
- Functional Mock-Up Unit
 - model *interface* (shared library)
 - model description (XML file)
- Executable according to C API
 - low-level approach
 - most fundamental functionalities only
 - tool/platform independent

Enclosing Model

t time
m discrete states (constant between events)
p parameters of type Real, Integer, Boolean, String
u inputs of type Real, Integer, Boolean, String
v all exposed variables
x continuous states (continuous between events)
y outputs of type Real, Integer, Boolean, String
z event indicators

External Model (FMU instance)

- Gaining popularity among tool vendors
 - CATIA, Simulink, OpenModelica, Dymola, JModelica, SimulationX, etc.

Simulation environment for FMI for Model Exchange

- Simulation master algorithm not covered by FMI specification
 - tool independence
- Requirements
 - initialization
 - numerical integration
 - event handling
 - orchestration
- Well suited for simulation tools focusing on continuous time-based modelling
- What about plug-ins for discrete event-driven simulation tools?

The FMI++ library

- High-level access to FMUs
 - model initialization, get/set variable by name, etc.
- High-level FMU functionalities
 - integrators, advanced event handling, rollback mechanism, look-ahead predictions, etc.
- Open-source C++ library
 - tested on Linux and Windows (MinGW/GCC and Visual Studio)
 - available at <u>sourceforge.net</u>

→ synchronous interaction between discrete event-based environment and a continuous equation-based component

Example Application: Controlled Charging

GridLAB-D as co-simulation master

- Discrete event-based simulator as co-simulation master
 - GridLAB-D's core functionalities deployed as master algorithm

EV model:

- agent based behavior over time (individual driving patterns)
- energy demand due to the trip
- charging station handling

Interface

 plugin validated tools and continuous models via standardized interface (FMI & FMI++, etc.)

PSAT (Octave)

Power system analysis

power flow to determine bus voltages

Network model:

- medium voltage network with low voltage networks
- load presenting household and charging station

Interface:

- Connect to GridLAB-D via Octave API
- + thin wrapper to access C arrays instead of data types

4Diac / FORTE

Distributed control system

 IEC 61499 reference model for distributed automation

- Model / control
 - Local voltage control (anxilliary service) → keep voltage limits
- Interface:
 - TCP/IP socket communication (ASN.1 format)
 - suitable for embedded system environments

OpenModelica

- multi-domain (physics) simulation language
 - supports event handling
 - acausal simulation (continuous time-based simulation)

Model

- Industry proofed library for a detailed Li-Ion battery model
- constant current / constant voltage charger

plug-in continuous time-based models via FMI++

Co-Sim Power System, EVs, Components and Controls

Open source based approach of electric vehicle energy management for voltage control

Results

Voltage during charging process

Simulation time step varies with time due to updates of control algorithm

Results

 Reduced charging power has impact on battery's SOC

Increased number of updates controller notifies the simulation core more frequently, thus increasing the simulation step resolution.

→ Investigate interesting dynamic effects more precisely.

Co-Sim Power System and Control

Electric Vehicle charge management for voltage control

P. Palensky, E. Widl, A. Elsheikh, and M. Stifter, "Modeling intelligent energy systems: Lessons learned from a flexible-demand EV charging management," Smart Grids, IEEE Transactions on (accepted), 2013.

10.10.2013 28

Co-Sim Power System, Components and Control System

- Detailed battery model based on chemical equations + Energy management
- Power Flow for every time step

Co-Sim Power System with Electrical Energy Storage

- Detailed battery model based on chemical equations + Energy management
- Power Flow for every time step

F. Andrén, M. Stifter, T. Strasser, and D. Burnier de Castro, "Framework for co-ordinated simulation of power networks and components in smart grids using common communication protocols," in IECON 2011 - 37th

Co-Sim Power System, Communication and Control

Co-Simulation with PowerFactory API: Loose Coupling via Message Bus

M. Ralf, K. Friederich, F. Mario, and S. Matthias, "Loose coupling architecture for co-simulation of heterogeneous components – support of controller prototyping for smart grid applications," in *submitted to IECON 2013 - 39th Annual Conference on IEEE Industrial Electronics Society*, Vienna, Austria, 2013.

Electric Vehicle Simulation Environment

EV Simulation Environment

EVSim - Architecture

Architecture

Specification for the simulation scenario

- EV + battery, plug types including efficiency (temperature, losses)
- locations and charging points
- distributed generation (location based)

EVSim - Functionality

Configuration

- simulation time: start / stop / step-size / loop / real-time
- temperature dependency / performance of the battery
- Output (csv)
 - SOC, power
- Interfacing / co-simulation
 - OPC
 - OCPP (Open Charge Point Protocol)

Behaviour

- connection / disconnection handling, authorisation
- time to plug / unplug
- charging noise

Charging algorithm

G2V, V2G, matching with local generation

EVSim – Parameters and Interface

Internal variables and parameters

37

Validation of charging management

Real and simulated EVs for charging management validation

Tolerance range, P_{set} and P_{act} during simulation and deviation

Simulation of EVs and power system

Impact of unbalanced charging in low voltage networks

Voltages a the charging point for symmetrical loaded phases (3 times 3.68kW). Note the voltage rise due to PV generation

Voltages for unsymmetrical loaded phase (red: 11.04kW). Note the rise in the other phase (green) due to neutral point displacement.

Temperature dependency

Region Lungau (Upper Austria) – approx. 6000 EVs

Simulation of EVs, control and power system

Local supply - demand match in medium voltage networks

time [hh:mm]

Uncontrolled and controlled charging of 306 EVs with 11 kW during two sumer days.

Note: wind is accumulated on top of PV generation

Two days simulation in summer

Charging Mode	empty EVs	P- peak [kW]	Charged Energy [kWh]	DER Energy [kWh]	DER Coverage [%]
uncontrolled 11kW	15	751	9964	8079	54%
controlled 11kW/SOC50	55	366	6832	8079	89%
controlled 11kW/SOC25	66	324	6229	8079	99%

Two days simulation in winter

Charging Mode	empty Evs	P- peak [kW]	Charged Energy [kWh]	DER Energy [kWh]	DER Coverage [%]
uncontrolled 11kW	135	883	12613	3971	26%
controlled 11kW/SOC50	197	552	7267	3971	50%
controlled 11kW/SOC25	218	353	5051	3971	71%

Summary

- Multi-agent based simulation tool, time-continuous multi-physics simulation, controls and power system simulation, e.g.: GridLAB-D, OpenModelica, PSAT, 4Diac, PowerFactory
 - → Open source software can be used for co-simulation environments
- A number of interfaces possibilities exist to couple simulation tools.
 - → Model and integrator based coupling can be realised.
- Proprietary interfaces are light-weighted but not very general, not usable for other tools, no simulation time step synchronisation
 - → Functional Mockup Interface for model exchange + co-simulation.