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Co-Simulation Motivation 

 Multi-domain problems not covered in one tool 

 Electrical power system 

 Communication system 

 Controls / SCADA 

 Different simulation time steps 

 Different concepts: continuous time and discrete event time systems 

 Use existing highly complex and detailed models 

 Integration of real components 

 Scalability and flexibility 

 

 Combine different dedicated simulation tools and domains 

 Analyse different subsystems and their interactions 
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Co-Simulation Overview 

 Various types of modelling and simulation: 
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Source: M. Geimer, T. Krüger, P. Linsel, Co-Simulation, gekoppelte Simulation oder 

Simulatorkopplung? Simulation 2006. 



Co-Simulation (1) 

 Coupling on model level 
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Source: M. Geimer, T. Krüger, P. Linsel, Co-Simulation, gekoppelte Simulation oder 

Simulatorkopplung? Simulation 2006. 
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Co-Simulation (2) 

 Coupling on integrator level 
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Source: M. Geimer, T. Krüger, P. Linsel, Co-Simulation, gekoppelte Simulation oder 

Simulatorkopplung? Simulation 2006. 
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Integrator evaluation
(distributed simulation)



Simulation challenge: power system and controls 

System with controller to fulfilll certain functionalities: e.g., voltage control task 

consists typically of the following parts: 

 

 Power system model 

 Component models 

 Controller /  

 SCADA 
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Co-Simulation approach 

In this simulation coupling, the individual simulators run in real time and parallel, 

exchanging results and set-points. 

 PowerFactory  Matlab / SimPowerSystem 

 PowerFactory  4DIAC (distributed control system) 

 4DIAC  ScadaBR 
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Simulation challenge: dynamic EV charging 

Need for simulation of : 

 impact of the electric vehicle energy demand  

 energy depends on trip length, temperature, etc. 

 test charging management strategies  

 charging power is not static 

 

 Hybrid system: discontinuity  

taking place at discrete events 

 

 Need for simulation of the EV trip  

to get the energy needed to recharge  

 

 

 Combine the power system simulation with the simulation of the discharging 
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Simulation challenge: dynamic EV charging 

11 20 May 2013 

small scale distribution grid 

medium/low voltage network with consumers 

 

realistic battery model household load profiles 

taken from measurement 

campaign 

charging control algorithm 

distributed charging power 

regulation 

stochastic driving patterns 

derived from real data 



Simulation tools 

12 08.10.2013 

PSAT 
 Power system analysis toolbox 

 Matlab/Simulink and Octave 

 continuous time-based 

simulation 

GridLAB-D 
 multi-agent based power system 

simulation 

 includes various energy-related 

modules 

 discrete event-based simulation 

4Diac / Forte 
 framework for distributed 

control systems 

 intended for event based 

controls in real time 

 open source IDE and Runtime 

Modelica 
 dedicated multi-domain (physics) 

simulation language 

 supports event handling 

 acausal simulation (continuous 

time-based simulation) 

Main challenge 

 coupling discrete event-based simulation with continuous time-based models. 



Co-Simulation Interfaces and Mechanisms 
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Co-Simulation: synchronous, sequentially 

 Co-Simulation run sequentially and blocks until the results are available 

 

 simulate same time step twice 

 

 

 

 

 

 

 

 

 

 simulate at next time step 
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M. Stifter, R. Schwalbe, F. Andrén, and T. Strasser, “Steady-state co-simulation with PowerFactory,”  

in Modeling and Simulation of Cyber-Physical Energy Systems, Berkeley, California, 2013. 



Co-Simulation: asynchronous, parallel 

 Co-Simulation via external DLL 
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M. Stifter, R. Schwalbe, F. Andrén, and T. Strasser, “Steady-state co-simulation with PowerFactory,”  

in Modeling and Simulation of Cyber-Physical Energy Systems, Berkeley, California, 2013. 



Co-Simulation: real time synchronisation 

 Dynamic behaviour 

 C-HIL / Regler 

 Filters 

 Synchronisation with system time / scaled time base 
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Functional Mock-Up Interface for Model Exchange 

 FMI: A standarized API for describing 

models of DAE-based modeling 

environments (Modelica, Simulink, etc) 
 

 Functional Mock-Up Unit 

 model interface (shared library) 

 model description (XML file) 
 

 Executable according to C API 

 low-level approach 

 most fundamental functionalities 

only 

 tool/platform independent 
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 Gaining popularity among tool vendors 

 CATIA, Simulink, OpenModelica, Dymola, JModelica, SimulationX, etc. 



Simulation environment for FMI for Model Exchange 

 Simulation master algorithm not 

covered by FMI specification 

 tool independence 

 Requirements 

 initialization 

 numerical integration 

 event handling 

 orchestration 

 Well suited for simulation tools 

focusing on continuous time-based 

modelling 

 What about plug-ins for discrete 

event-driven simulation tools? 

18 08.10.2013 



The FMI++ library 

 High-level access to FMUs 

 model initialization, get/set 

variable by name, etc. 
 

 High-level FMU functionalities 

 integrators, advanced event 

handling, rollback mechanism, 

look-ahead predictions, etc. 
 

 Open-source C++ library 

 tested on Linux and Windows 

(MinGW/GCC and Visual Studio) 

 available at sourceforge.net 
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 synchronous interaction between discrete event-based environment and 

a continuous equation-based component 

http://sourceforge.net/p/fmipp/


Example Application: Controlled Charging 
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GridLAB-D as co-simulation master 

 Discrete event-based simulator as 

co-simulation master 

 GridLAB-D’s core functionalities 

deployed as master algorithm 
 

 EV model: 

 agent based behavior over time  

(individual driving patterns) 

 energy demand due to the trip 

 charging station handling 
 

 Interface 

 plugin validated tools and 

continuous models via 

standardized interface (FMI & 

FMI++, etc.) 

   

 

21 08.10.2013 

Traffic Pattern / Electric Vehicles (GridLAB-D)

Charging 
Station

EV

Charging 
Station

EV

EV
EV

EV Pset

Pcharge

Pset

Pcharge

+ -

+ -
+ -

Charge Control

Charge Control



PSAT (Octave) 

 Power system analysis 

 power flow to determine bus 

voltages 

 

 Network model:  

 medium voltage network with 

low voltage networks 

 load presenting household and 

charging station 

 

 Interface:  

 Connect to GridLAB-D via 

Octave API  

 + thin wrapper to access C 

arrays instead of data types 
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4Diac / FORTE 
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 Distributed control system 

 IEC 61499 reference model for 

distributed automation 

 

 Model / control 

 Local voltage control (anxilliary 

service)  keep voltage limits 

 

 Interface: 

 TCP/IP socket communication 

(ASN.1 format) 

 suitable for embedded system 

environments 



OpenModelica 

 multi-domain (physics) simulation 

language 

 supports event handling 

 acausal simulation (continuous 

time-based simulation) 

 

 Model 

 Industry proofed library for a 

detailed Li-Ion battery model 

 constant current / constant 

voltage charger 

 

 Interface 

 plug-in continuous time-based 

models via FMI++ 
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Co-Sim Power System, EVs, Components and Controls 

 Open source based approach of electric vehicle energy management for 

voltage control  
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Results 

 Voltage during charging process  
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Simulation time step varies with time due to updates of control algorithm 



Results 

 Reduced charging power has 

impact on battery’s SOC 

 

Increased number of updates 

controller notifies the simulation 

core more frequently, thus 

increasing the simulation step 

resolution.  

 

 Investigate interesting dynamic 

effects more precisely. 
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Co-Sim Power System and Control 

 Electric Vehicle charge management for voltage control  
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P. Palensky, E. Widl, A. Elsheikh, and M. Stifter, “Modeling intelligent energy systems: Lessons learned from a flexible-demand EV charging management,” 

Smart Grids, IEEE Transactions on (accepted), 2013. 



Co-Sim Power System, Components and Control System 

 Detailed battery model based on chemical equations + Energy management 

 Power Flow for every time step 
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Co-Sim Power System with Electrical Energy Storage 

 Detailed battery model based on chemical equations + Energy management 

 Power Flow for every time step 
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F. Andrén, M. Stifter, T. Strasser, and D. Burnier de Castro, “Framework for co-ordinated simulation of power networks and components in smart grids using 

common communication protocols,” in IECON 2011 - 37th 



Co-Sim Power System, Communication and Control 

 Co-Simulation with PowerFactory API: Loose Coupling via Message Bus 
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M. Ralf, K. Friederich, F. Mario, and S. Matthias, “Loose coupling architecture for co-simulation of heterogeneous components – support of controller 

prototyping for smart grid applications,” in submitted to IECON 2013 - 39th Annual Conference on IEEE Industrial Electronics Society, Vienna, Austria, 2013. 



Electric Vehicle Simulation Environment 
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EVSim - Architecture 

Architecture 

 

 

 

 

 

 

 

 

 

Specification for the simulation scenario 

 EV + battery, plug types including efficiency (temperature, losses) 

 locations and charging points 

 distributed generation (location based) 
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EVSim - Functionality 

 Configuration 

 simulation time: start / stop / step-size / loop / real-time 

 temperature dependency / performance of the battery 

 Output (csv) 

 SOC, power  

 Interfacing / co-simulation 

 OPC 

 OCPP (Open Charge Point Protocol) 

 Behaviour 

 connection / disconnection handling, authorisation  

 time to plug / unplug 

 charging noise 

 Charging algorithm 

 G2V, V2G, matching with local generation 
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EVSim – Parameters and Interface 

Internal variables and parameters 
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Validation of charging management 

 Real and simulated EVs for charging management validation 
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Simulation of EVs and power system 

 Impact of unbalanced charging in low voltage networks 
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Voltages a the charging point for symmetrical 

loaded phases (3 times 3.68kW). Note the 

voltage rise due to PV generation 
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11.04kW). Note the rise in the other phase 

(green) due to neutral point displacement. 



Temperature dependency 

 Region Lungau (Upper Austria) – approx. 6000 EVs 

39 10.10.2013 
Charging power for opportunity charging on a winter and summer day 

Micro-simulation of region 

Lungau, generating trip data 



Simulation of EVs, control and power system 

 Local supply - demand match in medium voltage networks 
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Uncontrolled and controlled charging of 306 EVs 

with 11 kW during two sumer days.  

Note: wind is accumulated on top of PV generation 
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Summary 

 Multi-agent based simulation tool, time-continuous multi-physics 

simulation, controls and power system simulation, e.g.:  

GridLAB-D, OpenModelica, PSAT, 4Diac, PowerFactory 

 

 Open source software can be used for co-simulation environments 

 

 A number of interfaces possibilities exist to couple simulation tools.  

 

 Model and integrator based coupling can be realised. 

 

 Proprietary interfaces are light-weighted but not very general, not usable 

for other tools, no simulation time step synchronisation 

 

 Functional Mockup Interface for model exchange + co-simulation. 

 

41 08.10.2013 


