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Time scales

e Typical time scales related to inertia and frequency control
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Time Scales of a Conventional Power System & CIG

e CIG controllers can be fast (is this good?)
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Electro-mechanical Dynamics — |

e Neglecting network topology, a conventional system where generation is attained with
synchronous generation can be represented as

Maw(t) = ps(t) — pi(t) — p;(t)
where
e ] is the total inertia of the synchronous machines
e w(t) is the average frequency of the system
e w(t) is called Rate of Change of Frequency (RoCoF)
® ) is the power of synchronous machines

® p; + p; are load demand and losses respectively.
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Electro-mechanical Dynamics — |l

e A system where generation is attained with synchronous as well as non-synchronous

generation can be represented as

~

Ma(t) = ps(t) + pus(t) — pi(t) — pi(t),

where

e M is the total inertia of the synchronous machines, with M < M or, in certain
periods and certain systems, M << M

® D, is the powers provided by CIG
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Volatility of the inertia
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Acknowledgment: Thanks to A. Ulbig and G. Andersson for data and script to generate figure
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Extreme Case

e In a hypothetical system where there are no synchronous machines at all, M/ ~ 0 and

the frequency is completely decoupled from the power balance of the system:
0= pns(t) —m(t) — pi(t)

e This opertaing condition has never really happened in large networks (only in

microgrids and small islanded systems)

e In this case, is still the frequency meaningful?
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Modelling

e Synchronous Generator
e “Physical’ interaction due to inertia

e Control loops to replace inertial response

e Power Electronics Sources
e Interactions dominated by controls

e Time constants of control loops critical
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Drawbacks of CIG

e Reduce the inertia

e The local frequency must be measured (and properly defined) first!

e Often introduce volatility and uncertainty (e.g., wind and solar power plants)
e Often do not provide primary and/or secondary frequency control

e Since it is based on converter, its control can be potentially very fast
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Advantages of CIG

e Can provide primary and secondary control (if the resources are properly handled

and/or storage is included)
e Quantities other than the frequency can be utilized (voltage?)

e Since it is based on converter, its control can be potentially very fast
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All-Island Irish Grid
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All-Island Irish Transmission System
e 9500 MW of conventional plant

e 4500 MW of windfarms

e Peak 6500 MW; Valley 2500 MW

e Northern Ireland-Scotland 500 MW HVDC (LCC)
e Ireland-Wales 500 MW HVDC (VSC)

e In consideration:

— 700 MW HVDC Ireland-France: “Celtic Intercon-

nector”

— 500 MW HVDC lIreland-Wales: “Greenlink Inter-

connector”
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All-Island Irish Transmission System

e Despite this huge potential, wind intermittency lim- reland and Northern eland:

All-Island Transmission System

400, 275,220 and 110 kV
September 2017

its the capacity credit of wind. o

—— Single 220 kV Line
~ Double 220 kV Line

,‘,J. Belfast

e In 2016, 22% of the total annual energy was gener-  — owune
ated by wind. e

® 400 kV Station
275 kV Station

e In 2017, 26.4% of the total annual energy was gen- . Zuen

® 110 kV Station

erated by wind. froer

Connected to the Muneypoinr a
Transmission Grid X

M Hydro Generation

® The goal for 2020 is that 37% of the total energy is =~ = romcoeer

LA

Vv Pumped Storage
Generation

m  Wind Generation

generated by wind.

e The figures and information of the next slides was

obtained from EriGrid Group.
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Installed Wind in the Irish System
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Wind Targets
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DS3 System Services

To manage
To ensure forecast
system uncertainty
security

Ramping
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Key Operational Milestones

v oo don | 0m0

SNSP 60% -> 65% 65% ->70% 70% -> 75% 75%
RoCoF 0.5 Hz/s 0.5->1Hz/s 1 Hz/s 1 Hz/s
Inertia 23,000 MW.s 20,000 MW.s 17,500 MW.s 17,500 MW.s
Min Sets 8 8 7 7
300 -> 500 MW 500 MW 500 MW 500 MW
Exports (interim) (interim) (interim -> (enduring)
enduring)

System Current providers,
. 11 Services
Services

New providers, 14 Services, increased
volumes to operate at high RES
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Impact of RoCoF Protections

e EirGrid has fixed that 65% of CIG is the stability limit
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Australian Grid
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Australian National Electric Market
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28 September 2016 Event: Impact of the Tesla Battery
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25 August 2018 Event: Pre-contingency Conditions
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25 August 2018 Event: Post-contingency Conditions
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25 August 2018 Event: Regional Frequencies

QNI and Heywood Trips - 25/8/18
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25 August 2018 Event: Regional RoCoFs during the Event

QNI and Heywood Trips - 25/8/18

50.5 QLD RoCoF = 0.40 Hz/s
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25 August 2018 Event: Tesla Battery Response

Hornsdale Battery - 25/8/18
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Pros and Cons of the Battery Dynamic Response

e The battery has a very fast response and is able to recover the frequency drop but ...

e ...there is a catch: fast transfer through interconnectors require headroom and ramp

constraints
e The fast power ramp due to the battery has caused the intervention of the protection

e The tuning of such protection was again based on the assumption of a “slow”

frequency control response by conventional generation.
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Conclusions
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Overall Remarks

e Low-inertia system often show new kinds of instability, that are not well-known to

system operators.
e Stability depends on both system dynamics and topology (see events in Australia)

e Power electronic dynamics (possibly very fast, < 5 ms) might have an important role

and should be modelled accurately.

e There is no satisfactory solution to predicting and arresting cascading collapse; beyond

a certain tipping point the blackout is inevitable, and recovery became the priority.
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Recommendations

e Proper control of CIG is crucial.
e The role of large and fast energy storage systems (batteries) can be key.
e Retuning/rethinking existing protection schemes appears inevitable

® |t might be necessary to fully rethink the entire model of power systems (what if

frequency is not a relevant signal anymore?)
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The Challenge is to Look for Reliable Solutions ...

WHAT
HAFPENS IF
THERE'S NO

FAMN COMES
IN.




Thanks much for your attention!




