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RESEARCH MOTIVATIONS 

•  Power Flow (PF) and Optimal Power Flow 
(OPF) are the mathematical backbone of 
many power engineering applications: 
"   State estimation. 
"   Network optimization. 
"   Unit commitment.  
"   Voltage control. 
"   Generation dispatch. 
"   Market studies. 



RESEARCH MOTIVATIONS 

•  Solving PF and OPF problems request in 
considering system uncertainties, which are 
mainly related to: 
"   Variable nature of generation dispatch.  
"   Increasing number of smaller geographically 

dispersed generators. 
"   Difficulties arising for predicting and modeling 

market operator behavior.  
"   High penetration of generation units powered by 

renewable energy sources. 



RESEARCH MOTIVATIONS 

•  Reliable solutions are required to provide 
insight into the level of confidence of PF/OPF 
solutions by: 
"   Estimating the data tolerance (i.e. uncertainty 

characterization).  
"   Computing the solution tolerance (i.e. uncertainty 

propagation assessment).  
"   Performing sensitivity analysis of large parameters 

variations. 



LITERATURE REVIEW 
 

•  Sampling-based methods: 
"   Require several model runs that sample various 

combinations of input values. 
"   Shortcomings: 

•  Need high computational resources. 
•  Some sampling techniques reduce the number of model runs 

at the cost of accepting some risk. 



LITERATURE REVIEW 
 

•  Analytical methods: 
"   Computationally more effective, but require some 

mathematical assumptions in order to: 
•  Simplify the problem. 
•  Obtain an effective characterization of the output random 

variables. 

"   Shortcomings: 
•  Assumes statistical independence of the input data. 
•  Need to identify probability distributions for some input data, 

which is not always possible in PF and OPF. 



LITERATURE REVIEW 
 
•  Approximate methods: 

"   Approximate the statistical proprieties of the 
output random variables. 

"   These overcome some of the main limitations of 
sampling-based and analytical methods. 

"   Shortcomings: 
•  Do not provide acceptable results in the presence of a large 

number of input random variables.  
•  Selection of the number of estimated points is still an open 

problem. 



LITERATURE REVIEW 
 

•  Non-Probabilistic paradigms: 
"   Can be adopted when: 

•  Uncertainty originates from imprecise human knowledge 
about the system. 

•  Only imprecise estimates of values and relations between 
variables are available. 

"   The most advanced models are based on: 
•  Theory of possibility. 
•  Theory of evidence. 
•  Theory of self-validated computing. 

 



LITERATURE REVIEW 
 

•  Self-validated computing: 
"   Keeps track of the accuracy of the computed 

quantities without requiring information about the 
type of uncertainty. 

"   The simplest and most popular of these models is 
Interval Mathematic (IM). 



LITERATURE REVIEW 
 

•  Interval Mathematic: 
"   Each quantity is represented by an interval of 

floating point numbers without a probability 
structure. 

"   Such intervals are processed so that each 
computed interval is guaranteed to contain the 
unknown value of the quantity it represents. 

"   Shortcomings: 
•  Over-‐es;ma;on	  of	  the	  true	  range	  of	  complex	  func;ons	  
(dependency	  problem/wrapping	  effect).	  

•  It	  can	  lead	  to	  an	  unwanted	  expansion	  of	  the	  resul;ng	  intervals	  
(error	  explosion	  problem).	  



ELEMENTS OF IA 
deterministic problems using IA operators. IA is a range-based formalism for numerical

computation, where each real quantity θ is assumed to be “unknown but bounded” in an

interval of real numbers Θ = [θinf , θsup], also known as the tolerance of θ. The key element

of IA based computing is based on the following theorem [40]:

Theorem 1 (Fundamental invariant of range analysis for IA): ∀ Γ : �p → �q, globally

Lipschitz with bounded slope. There exists an interval extension Γ
I
: �p → �q such that:

∀ (θ1, .., θp) ∈ (Θ1, ..,Θp) ⇒ Γ (θ1, .., θp) ∈ Γ
I
(Θ1, ..,Θp)

The implementation of interval extension Γ
I
is generally straightforward for elementary

operations, such as sums, products, square roots, since it requires only the identification of

the maximum and minimum values of Γ(θ1, .., θp), when the corresponding arguments vary

independently over specified intervals. Examples of simple arithmetic operations between

two intervals Θ1 = [θ1,inf , θ2,sup] and Θ2 = [θ2,inf , θ2,sup] are:

Θ1 +Θ2 = [θ1,inf + θ2,inf , θ1,sup + θ2,sup] (2.5)

Θ1 −Θ2 = [θ1,inf − θ2,sup, θ1,sup + θ2,inf ] (2.6)

Θ1 ·Θ2 = [min(θ1,infθ2,inf , θ1,infθ2,sup, θ1,supθ2,inf , θ1,supθ2,sup),

,max(θ1,infθ2,inf , θ1,infθ2,sup, θ1,supθ2,inf , θ1,supθ2,sup)]
(2.7)

Θ1/Θ2 = [θ1,inf , θ1,sup] ·
�

1
θ2,sup

, 1
θ2,inf

�
0 /∈ [θ2,inf , θ2,sup] (2.8)

Computation of interval extensions for more complex functions can be obtained by compos-

ing these primitive operators as illustrated in [40, 39]. Based on Theorem 1, it is possible

to conclude that if a function is evaluated using these IA-based operators, the resulting

interval is guaranteed to enclose the range of function values.

IA-based computing has been applied for solving mathematical problems under uncer-

tainty such as linear systems of equations [66, 67], non-linear systems of equations [68],

and optimization problems [69, 70]. The application of these algorithms typically yields

to approximate interval solutions, called outer solutions, that are guaranteed to contain

the exact interval solution. However, in many cases, these outer solutions are not always
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EXAMPLE OF THE “WRAPPING” 
EFFECT  

as expected; thus, as shown in [71, 46], the use of IA-based computing in iterative solu-

tion algorithms may easily yield aberrant solutions. This is due to the fact that the IA

formalism is unable to correctly represent the interaction between the problem variables,

due to what is known as the “wrapping problem”, as illustrated in Figure 2.1 [46], which

plots the state space evolution of the harmonic oscillator, θ̇1 = θ2, θ̇2 = −θ1, whose initial

condition (t=0) is represented by the rectangle ABCD with its sides parallel to the axes.

In this case, since the initial rectangle does not evolve into another rectangle parallel to

the coordinate axes, when one represents the uncertain state of the dynamical system at

time t� using the interval notation, the IA solution (rotated rectangle A�B�C �D�) adds a

set of “spurious states” (black regions), which do not correspond to an evolution of points

belonging to ABCD; thus, in a few iterations, the IA solution diverges and covers the entire

phase space. Another example is:

Θ1 · (Θ2 +Θ3) ⊂ (Θ1 ·Θ2 +Θ1 ·Θ3) (2.9)

As a consequence, the interval solutions produced by IA-based solvers are often much wider

than the true range of the corresponding quantities, especially during long computational

chains in which the interval width could diverge. This phenomenon is well known in the

simulation of qualitative systems [45], and requires the adoption of special techniques.

Another well-known issue which could limit the application of IA-based computing in

real world application is the so called “dependency problem”, which derives directly from

the definition of the interval difference operator (2.6):

Θ−Θ = [θinf , θsup]− [θinf , θsup] = [θinf − θsup, θsup + θinf ] �= 0 (2.10)

This aberration is due to intrinsic inability of IA to discriminate the uncertainty sources,

which are assumed to be independent for each interval variable. In particular, if the interval

variables Θ1 = [1, 2] and Θ2 = [1, 2] describe two independent uncertain sources, then the

results computed by applying the IA-based difference operator,Θ1−Θ2 = [−1, 3], is correct.

On the other hand, if these interval variables describe the same uncertain source, then the

corresponding result leads to a large overestimation error.

In [44], we demonstrated that due to the introduction of spurious values in the result

of IA-based PF analysis, there is excessive conservatism in the output intervals, especially
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EXAMPLE OF THE “WRAPPING” EFFECT 
(HARMONIC OSCILLATOR)  

Figure 2.1: IA evolution of the external surface of the region of uncertainty for a 2-nd order

oscillatory system (“wrapping” effect).

when solving large scale problems. To address this limitation, it is proposed here the use

of more advanced paradigms based on AA, which is discussed next, to solve uncertain PF

and OPF problems.

2.4.2 Affine Arithmetic

Affine arithmetic (AA), introduced in [39], is a method for range analysis to manipulate

multiple uncertainty sources such as imprecise data, modeling errors, round off and trun-

cation errors. This paradigm is similar to standard IA, but, in addition, it keeps track

of correlations between the input and the computed quantities, providing much tighter

bounds in the computing process and avoiding the probability for the error explosion

problem observed in IA computations [72].

In AA, a partially unknown quantity χ is represented by an affine form that is a first
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EXAMPLE OF THE DEPENDENCY 
PROBLEM 
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LITERATURE REVIEW 
 •  Affine Arithmetic (AA): 

"   It is an enhanced model for self validated 
numerical analysis.  

"   The quant i t ies are represented as aff ine 
combinations of certain primitive variables, 
that stand for: 

•  Sources of  uncer ta in ty  in  the data.  
•  Approx imat ions made dur ing the computat ion .  

"   Unlike IM, i t  keeps track of correlat ions 
be tween computed and input quant i t ies , 
hence, there is no dependency problems and 
reduce wrapping effects. 

"   We have led its application to PF and OPF. 



LITERATURE REVIEW 
 
•  Although several papers demonstrated the 

important role played by AA in power systems 
analysis, several open problems remain unsolved: 
"   Further explore the application of AA-based techniques to 

uncertain OPF analysis. 
"   Better methodologies are needed for selecting the noise 

symbols of the affine forms.  
"   More efficient techniques needed to reduce overestimation 

errors. 



RESEARCH OBJECTIVES  

1.  Demonstrate with several realistic test systems that 
the use IA in PF and OPF analysis leads to over-
pessimistic estimation of the solution hull, and 
analyze the employment of AA to represent the 
uncertainties of the power systems state variables. 

2.  Present and thoroughly test solution methodologies 
based on AA for PF and OPF studies with data 
uncertainties. 

3.  Conceptualize a unified AA-based computational 
paradigm aimed at solving both PF and OPF 
problems in the presence of data uncertainties.  



RESEARCH OBJECTIVES 

4.  Design more effective computing paradigms to 
reduce computational requirements by knowledge 
discovery from historical operating data-sets, and 
use this approach to better identify the noise 
symbols of the affine forms describing the 
uncertain  parameters in the proposed AA-based 
PF and OPF analyses. 



•  In AA a partially unknown quantity  is 
represented by an affine form which is a first 
degree polynomial:                  
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BACKGROUND 

Theorem 2 (Chebyshev approximation theorem for univariate functions): Let Γ be a

bounded and twice differentiable function defined in some interval χI = [χinf ,χsup], whose

second derivative does not change sign inside χ. Let Γa(χ̂) = αχ̂+ξ be its Chebyshev affine

approximation in χI . Then:

α = Γ(χsup)−Γ(χinf )
χsup−χinf

ξ = Γ(u)+r(u)
2 − αu dΓ(u)

dχ = α r(u) = αu+ Γ(χsup)− αχsup

and the maximum absolute error is:

ζp+1 = |Γ(u)−r(u)
2 |

Observe that α is simply the slope of the line interpolating the points (χinf , f(χinf )) and

(χsup, f(χsup)), while the maximum absolute error will occur twice (with the same sign) at

the endpoints χinf and χsup of the range, and once (with the opposite sign) at every interior

point u of χ where dΓ(u)
dχ = α. This important result provides an algorithm for finding the

optimum coefficients α and ξ of the affine approximation function, and the upper bound

ζp+1 of the corresponding approximation error.

The distinguishing propriety of AA compared to other self-validated computation model

providing first-order approximations, such as generalized interval arithmetic, first-order

Taylor arithmetic, and the ellipsoidal calculus, is that the function is expanded not only in

the initial parameters but also in intermediate intervals resulting from the non-linearities.

Hence, AA can be considered as an intermediate between Taylor forms and zonotopes,

as described in detail in [73], presenting several advantages, including a wider range of

applications and a more convenient programming interface [74].

In the next chapter, it will be shown that the adoption of AA-based computing allows

to express the power system equations in a more convenient form, to solve them using

algorithms that do not require the traditional and widely used linearization approach fre-

quently adopted in IA-based solution methods, thus avoiding the need to invert or factorize

matrixes, which introduce significant errors when using intervals to represent uncertain-

ties. This important feature will allow the design of more effective solution techniques for

uncertain PF and OPF problems.
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AA-BASED PF 

• Each power system state variable is expressed by a 
central value and a set of partial deviations. 

• These deviations are associated with noise symbols 
that describe the effect of the various uncertainties 
affecting the system state variables, such as P and Q 
variations. 



•  The affine forms representing the power systems 
state variables are: 

 
 
 
•  The central values of the affine forms are calculated 

by solving a conventional PF problem for a 
“nominal operating point” defined by: 
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the voltage phase of all nodes but the slack, could be expressed by a central value and

a set of partial deviations. These deviations are associated with as many noise variables

as those which describe the effect of the various phenomena affecting the system state

variables. Without loss of generality, the typically source of uncertainties considered here

are those associated with the active and reactive power in loads and the active power in

generators, associated with elastic loads and intermittent sources. Therefore, the affine

forms representing the power system state variables are:

Vi = Vi,0 +
�

j∈NP
V P
i,jεPj +

�
k∈NQ

V Q
i,kεQk

∀i ∈ NQ

δi = δi,0 +
�

j∈NP
δPi,jεPj +

�
k∈NQ

δQi,kεQk
∀i ∈ NP

(3.1)

where εPj is the noise representing the uncertainty of the active power injection at the jth

bus; εQk
is the noise representing the uncertainty of the reactive power injection at the kth

bus; Vi,0 is the central value of the ith bus voltage magnitude; δi,0 is the central value of the

ith bus voltage angle; V P
i,j is the partial deviation of the ith bus voltage magnitude due to

the active power injected at the jth bus; V Q
i,j is the partial deviation of the ith bus voltage

magnitude due to the reactive power injected at the jth bus; δPi,j is the partial deviation of

the ith bus voltage angle due to the active power injected at the jth bus; δQi,j is the partial

deviation of the ith bus voltage angle due to the reactive power injected at the jth bus.

The central values of the affine forms (3.1) are calculated by solving the conventional

PF equations (2.1) for the “nominal” operating point defined by:
�

P SP
i = mid

��
P SP
i,min, P

SP
i,max

��
=

PSP
i,max−PSP

i,min

2 ∀i ∈ NP

QSP
i = mid

��
QSP

i,min, Q
SP
i,max

��
=

QSP
i,max−QSP

i,min

2 ∀i ∈ NQ

(3.2)

and a first estimation of the partial deviations of the affine forms (3.1) can be first ap-

proximated by means of the sensitivities of the desired voltage magnitudes and angles with

respect to the uncertain inputs at the “nominal” operating point, i.e.

V P
i,j =

∂Vi
∂Pj

���
0
∆Pj V Q

i,k =
∂Vi
∂Qk

���
0
∆Qk ∀j ∈ NP , ∀k, i ∈ NQ

δPi,j =
∂δi
∂Pj

���
0
∆Pj δQi,k =

∂δi
∂Qk

���
0
∆Qk ∀i, j ∈ NP , ∀k ∈ NQ

(3.3)

Observe that if the PF equations would contain only affine expressions, i.e. be a linear

system of equations, the obtained affine forms would be the exact solution. However, these
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partial deviations. These deviations are associated with as many noise variables as those
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∆Qk ∀j ∈ NP , ∀�, � ∈ NQ

δPi,j =
∂δi
∂Pj

���
0
∆Pj δQi,k =

∂δi
∂Qk

���
0
∆Qk ∀i, j ∈ NP , ∀� ∈ NQ

(3.3)

Observe that if the PF equations would contain only affine expressions, i.e. be a linear

system of equations, the obtained affine forms would be the exact solution. However, these
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•  Starting from this initial affine solution, a “domain 
contraction” method for narrowing its bounds is 
used. 

equations are nonlinear expressions, and hence the obtained affine forms are usually an

underestimation of the exact result [81]. Thus, to guarantee the inclusion of the solution

domain, each partial deviation is multiplied by an amplification coefficient [81]. Starting

from this initial affine solution, a “domain contraction” based method for narrowing its

bounds is used. Hence, the algorithm first starts by plugging (3.1), with the initial partial

deviation approximations defined in (3.3), in the right-hand side of the PF equations (2.1)

to compute the following AA form of the injected powers:

Q̂i = Qi,0 +
�

j∈NP
QP

i,jεj +
�

k∈NQ
QQ

i,kεk +
�

h∈NN
Qi,hεh ∀i ∈ NQ

P̂i = Pi,0 +
�

j∈NP
P P
i,jεj +

�
k∈NQ

PQ
i,kεk +

�
h∈NN

Pi,hεh ∀i ∈ NP
(3.4)

where P̂i and Q̂i are the affine forms of the calculated active and reactive power injections

in the ith bus; εh are new noise variables introduced in the computational process due to the

presence of non affine operations (NN denotes the set of these new noise variables); Qi,0,

QP
i,j, Q

Q
i,k, Pi,0, P P

i,j, and PQ
i,k are the computed central values and the partial deviations of

the affine forms of the calculated active and reactive powers injected in the ith node; and

Qi,h and Pi,h are the coefficients of the noise symbols εh, associated with the approximation

errors due to non-affine operations.

The AA operators (2.16)-(2.18) and affine approximations of the sinusoidal functions

described in [39] are used to obtain QP
i,j, Q

Q
i,k, Qi,h,P P

i,j,P
Q
i,k, and Pi,h. The obtained affine

forms (3.4) can then be arranged in the following matrix form:
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Q̂1

...

Q̂NQ

P̂1

...

P̂NP





=





Q1,0

...

QNQ,0

P1,0

...

PNP ,0





+

+





QP
1,1 ... QP

1,NP
QQ

1,1 ... QQ
1,NQ

... ... ... ... ... ...

QP
NQ,1 ... QP

NQ,NP
QQ

NQ,1 ... QQ
NQ,NQ

P P
1,1 ... P P

1,NP
PQ
1,1 ... PQ

1,NQ

... ... ... ... ... ...

P P
NP ,1 ... P P

NP ,NP
PQ
NP ,1 ... PQ

NP ,NQ









ε1
...

εNP

εNP+1

...

εNP+NQ





+

+





Q1,1 ... Q1,NN

... ... ...

QNQ,1 ... QNQ,NN

P1,1 ... P1,NN

... ... ...

PNP ,1 ... PNP ,NN









εNP+NQ+1

...

...

...

...

εNP+NQ+NN





(3.5)

where NP and NQ represent the number of PV buses and PQ buses and NN is the number

of the noise symbols. In a more general form, (3.5) can be written as:

F(X) = AX+B (3.6)

where

A =





QP
1,1 ... QP

1,NP
QQ

1,1 ... QQ
1,NQ

... ... ... ... ... ...

QP
NQ,1 ... QP

NQ,NP
QQ

NQ,1 ... QQ
NQ,NQ

P P
1,1 ... P P

1,NP
PQ
1,1 ... PQ

1,NQ

... ... ... ... ... ...

P P
NP ,1 ... P P

NP ,NP
PQ
NP ,1 ... PQ

NP ,NQ





(3.7)
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X =





ε1
...

εNP

εNp+1

...

εNP+NQ





(3.8)

B =





Q1,0

...

QNQ,0

P1,0

...

PNP ,0





+





Q1,1 ... Q1,NN

... ... ...

QNQ,1 ... QNQ,NN

P1,1 ... P1,NN

... ... ...

PNP ,1 ... PNP ,NN









εNP+NQ+1

...

...

...

...

εNP+NQ+NN





(3.9)

Note that, A is a matrix of computed real coefficients; X is the vector that needs to be

contracted, with initial values for each of its components set at [-1,1]; and B is an interval

vector, since the new noise variables vary in the interval [-1,1] and hence it is not possible to

contract them, because these represent internal noise introduced by the AA computational

process. The PF solution can then be obtained by contracting the vector X so that:

AX+B = FSP (3.10)

where FSP is the following interval vector defining the specified range of the active and

reactive powers:

FSP =





�
QSP

1,min, Q
SP
1,max

�

...

[QSP
NQ,min, Q

SP
NQ,max]

[P SP
1,min, P

SP
1,max]

...

[P SP
NP ,min, P

SP
NP ,max]





(3.11)

The problem is thus reduced to solving the IA problem:

AX = C (3.12)
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AA_BASED PF where C = FSP−B, andA is a real matrix. The linear IA problem (3.12) can be effectively

solved using the following NP +NQ constrained linear optimization problems:

min (εk, εj) ∀k ∈ NQ, ∀j ∈ NP

s.t. − 1 ≤ εk ≤ 1, −1 ≤ εj ≤ 1

inf(C) ≤ AX ≤ sup(C)

(3.13)

max (εk, εj) ∀k ∈ NQ, ∀j ∈ NP

s.t. − 1 ≤ εk ≤ 1, −1 ≤ εj ≤ 1

inf(C) ≤ AX ≤ sup(C)

(3.14)

These are standard linear programming (LP) problems which can be readily and efficiently

solved by using an LP solver such as CPLEX [82]. The desired PF solution is then obtained

as:

Vi = Vi,0 +
�

j∈NP
V P
i,j [εj,min, εj,max] +

�
k∈NQ

V Q
i,k[εk,min, εk,max] ∀i ∈ NQ

δi = δi,0 +
�

j∈NP
δPi,j[εj,min, εj,max] +

�
k∈NQ

δQi,k[εk,min, εk,max] ∀i ∈ NP
(3.15)

Observe that the proposed solution procedure represents an alternative to the tradi-

tional and widely used linearization formalism adopted in IA approaches, which is based

on the Interval Newton method and consist on solving the following IA problem:

F(x0 +∆x) ∈ F(x) + J(x0)∆x ∀x ∈ x0 (3.16)

where x0 is a vector of intervals, the Jacobian matrix J(x0) is an interval matrix, and F(x)

is a real vector defined by x, which is typically the midpoint of x0. Solving (3.16) requires

the “inversion” of the interval matrix J(x0), which is a nontrivial problem [83, 84], and, as

pointed out in [48, 47], this is the main impediment in the application of IA to PF studies.

On the other hand, the solution of (3.12) does not require an interval matrix inversion,

making it computationally efficient and hence readily applicable to real size systems.

The described AA-based solution methodology can be improved to account for reactive

power limits and properly model the generators voltage regulators. This is done here by

using the standard PV- and PQ-bus switching as described in Section 2.2.
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•  The main idea was to conceptualize a theoretical 
framework aimed at effectively solving 
constrained optimizations problems based on an 
unified AA-based formalism:  

1. The conceptualization of more effective AA-based OPF framework aimed at reducing

overestimation errors.

2. The design of more effective computing paradigms aimed at reducing the computa-

tional requirements.

3. The development of formal methods aimed at rigorously identifying the noise symbols

of the affine forms describing the uncertain parameters.

Therefore, the future directions of this research will be oriented towards solving these

challenging issues, as discussed in detail in the following sections.

4.2.1 Novel AA-based OPF Formulations

The first research activity will be oriented at developing a theoretical framework aimed at

effectively solving linear and nonlinear systems of equations for constrained optimizations

problems, under multiple and heterogeneous source of data uncertainty, based on an unified

AA-based formalism. Thus, the main aim is to solve the following non-linear constrained

optimization problem in the presence of data uncertainty described by affine forms:

min
(x̂,û)

f(x̂, û)

s.t. gj(x̂, û) = 0 j = 1, .., n

hk(x̂, û) < 0 k = 1, ..,m

(4.1)

where:

• x̂ and û are the unknown affine forms describing the dependent and independent

variables respectively;

• f is the scalar function describing the problem objectives;

• and gj and hk are the functions describing the jth equality and kth inequality con-

straints respectively.
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DEFINITION OF AA OPERATORS 

Definition 1 (Equality operator for affine forms
A
=) Two affine forms χ̂ = χ0+

�pχ
k=1 χkε

χ
k

and ψ̂ = ψ0 +
�pψ

k=1 ψkε
ψ
k are equal, i.e. χ̂

A
= ψ̂, if and only if:

χ̂− ψ̂ = χ0 − ψ0 +

pχ�

k=1

χiε
χ
k −

pψ�

k=1

ψkε
ψ
k = 0 (5.2)

That is, two affine forms are equal if they have the same central value and share the same

noise symbols with the same partial deviations, namely:

χ̂
A
= ψ̂ ⇔






χ0 = ψ0

εχk = εψk ∀k ∈ [1, p]

χk = ψk ∀k ∈ [1, p]

p = pχ = pψ

(5.3)

These rigorous equality conditions can be rarely satisfied when solving (5.1), due to the

presence of non-affine operations, which introduce approximation and computational er-

rors. For example, consider the following equality constraint:

(χ0 + χ1ε1)
2 A
= 1 + 0.1ε1 (5.4)

Hence, there is no way to satisfy this constraint, since the square function is a non-affine

operation, which introduces a new and distinct noise symbol ε2 as follows:

χ2
0 + 2χ0χ1ε1 + χ2ε2

A
= 1 + 0.1ε1 (5.5)

This issue affects the handling of the equality constraints in the OPF analysis, which are

typically described by non-linear equations of the form:

gi(ẑ) = P̂i(ẑ)− P̂ SP
i ∀i ∈ NP

gj(ẑ) = Q̂j(ẑ)− Q̂SP
j ∀j ∈ NQ

(5.6)

where ẑ = (x̂, û) = (z10 +
�p

k=1 z
1
kεk, ..., z

Nx+Nu
0 +

�p
k=1 z

Nx+Nu
k εk) is the affine state vector;

while P SP
i = P SP

i,0 +
�p

k=1 P
SP
i,k εk and QSP

j = QSP
j,0 +

�p
k=1 Q

SP
j,k εk are fixed affine forms.

67

Definition 1 (Equality operator for affine forms
A
=) Two affine forms χ̂ = χ0+

�pχ
k=1 χkε

χ
k

and ψ̂ = ψ0 +
�pψ

k=1 ψkε
ψ
k are equal, i.e. χ̂

A
= ψ̂, if and only if:

χ̂− ψ̂ = χ0 − ψ0 +

pχ�

k=1

χiε
χ
k −

pψ�

k=1

ψkε
ψ
k = 0 (5.2)

That is, two affine forms are equal if they have the same central value and share the same

noise symbols with the same partial deviations, namely:

χ̂
A
= ψ̂ ⇔






χ0 = ψ0

εχk = εψk ∀k ∈ [1, p]

χk = ψk ∀k ∈ [1, p]

p = pχ = pψ

(5.3)

These rigorous equality conditions can be rarely satisfied when solving (5.1), due to the

presence of non-affine operations, which introduce approximation and computational er-

rors. For example, consider the following equality constraint:

(χ0 + χ1ε1)
2 A
= 1 + 0.1ε1 (5.4)

Hence, there is no way to satisfy this constraint, since the square function is a non-affine

operation, which introduces a new and distinct noise symbol ε2 as follows:

χ2
0 + 2χ0χ1ε1 + χ2ε2

A
= 1 + 0.1ε1 (5.5)

This issue affects the handling of the equality constraints in the OPF analysis, which are

typically described by non-linear equations of the form:
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There	  is	  no	  way	  to	  sa;sfy	  this	  constraint,	  since	  the	  square	  
func;on	  is	  a	  non-‐affine	  opera;on,	  which	  introduces	  a	  new	  
and	  dis;nct	  noise	  symbol	  ε2	  as	  follows:	  



Since P̂i(ẑ) and Q̂j(ẑ) are non-linear functions of the affine vector ẑ, from (2.1) it follows

that:

P̂i(ẑ) = Pi,0 +
�p

k=1 Pi,kεk +
�p+pna

k=p+1 Pi,kεk ∀i ∈ NP

Q̂j(ẑ) = Qi,0 +
�p

k=1 Qj,kεk +
�p+pna

i=p+1 Qj,kεk ∀j ∈ NQ
(5.7)

where the presence of the additional pna noise symbols deriving by the approximation of

non-affine operations, makes the application of the rigorous equality operator
A
= infeasi-

ble. Consequently, alternative operators aimed at assessing the similarity, rather than the

equality, between affine forms should be defined.

To address the aforementioned issue, a similarity criteria, which is based on the equality

of the partial deviations of the “primitive” noise symbols, denoted here as εk ∀k ∈ [1, p],

and on the definition of an approximation degree based on the radius of the uncertainties

generated by the approximation of the non-affine operations, denoted here as εk ∀k ∈
[p+ 1, p+ pna], is defined:

Definition 2 (Similarity operator for affine forms
A≈) Two affine forms χ̂ = χ0+

�p+pna

k=1 χkεk

and ψ̂ = ψ0 +
�p+pna

k=1 ψkεk are similar with an approximation degree �Lχ,ψ , i.e. χ̂
A≈ ψ̂, if

and only if:
�
χk = ψk ∀k ∈ [0, p]

�
∧
�
�Lχ,ψ =

p+pna�

k=p+1

(|χk|+ |ψk|)
�

(5.8)

The adoption of this operator is particularly useful in solving OPF problems in the presence

of interval uncertainties, where the bounds of the uncertain variables are the only available

information. In this case, the equality constraints between the affine forms describing the

computed and the fixed quantities can be formalized as follows:

P̂i(ẑ)
A≈ P̂ SP

i ∀i ∈ NP

Q̂j(ẑ)
A≈ Q̂SP

j ∀j ∈ NQ
(5.9)

and the corresponding approximation degrees depend on the non-affine operations needed

to compute P̂i(ẑ) and Q̂j(ẑ).

By following the same approach, it is possible to define an inequality operator for affine

forms as follows:
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Definition 3 (Inequality operator for affine forms
A
<) Given two affine forms χ̂ = χ0 +

�pχ
k=1 χkε

χ
k and ψ̂ = ψ0 +

�pψ
k=1 ψkε

ψ
k , then χ̂

A
< ψ̂ if and only if:

χ0 +

pχ�

k=1

|χk| < ψ0 −
pψ�

k=1

|ψk| (5.10)

This definition directly follows from the basic theory of interval analysis, since this stats

that the upper bound of χ̂ is less than the lower bound of ψ̂.

Once the aforementioned relational operators are introduced, the problem of the mini-

mization of a scalar and non-linear affine function could be effectively addressed by defining

the following operator:

Definition 4 (Minimization operator for functions of affine forms) Given a non-linear

function f : � → �, and the affine form χ̂ = χ0+
�p

k=1 χkεk, then the following AA-based

minimization problem:

min
A
χ̂

f(χ̂) = f0(χ̂) +
p�

k=1

fk(χ̂)εk +
p+pna�

k=p+1

fk(χ̂)εk (5.11)

is equivalent to the following deterministic multi-objective programming problem:

min
(χ0,χ1,...,χp)

{f0(χ0,χ1, ...,χp),
p+pna�

k=1

|fk(χ0,χ1, ...,χp)|} (5.12)

This definition follows from the AA-based robust circuit design approach proposed in [93],

and with the principles of risk-based programming theory, since the minimization of the

affine central value aims at identifying the most effective solutions, without considering the

uncertainty represented by the noise symbols, while the minimization of the affine radius

aims at identifying the most reliable solutions that exhibit the lowest tolerance to data

uncertainty. The tradeoff between these two conflicting objectives basically represents the
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•  Starting from the definition of these novel 
operators, it has been shown that the overall 
problem can be recasted as the following dual 
deterministic problem: 

A UNIFIED PARADIGM FOR PF AND OPF 
ANALYSIS 

risk. Based on this, the minimization of a scalar affine function should be equivalent to

finding an affine form which minimizes both its central value and its radius.

From (4.12), the problem (4.1) can be solved by solving to the following deterministic

multi-objective constrained optimization problem:

min
ẑ

{f0(ẑ),
nz+nN�

i=1

|f i(ẑ)|}

s.t. gj(ẑ)
A≈ 0 j = 1, .., n

hk(ẑ)
A
< 0 k = 1, ..,m

(4.13)

To solve this problem, a two stage solution algorithm is proposed here. In the first stage, the

main idea is to identify the central values of the unknown state vector by first considering

the system operating at its nominal condition, namely, all the uncertain parameters assume

their central values. In this case, referred here as the “nominal state”, no uncertainty

affect the system and the corresponding solution can be computed by solving the following

deterministic optimization problem:

min
(z10 ,...,z

nx+nu
0 )

f0(z
1
0 , ..., z

nx+nu
0 )

s.t. gj(z
1
0 , ..., z

nx+nu
0 ) = 0 ∀j ∈ [1, n]

hk(z
1
0 , ..., z

nx+nu
0 ) < 0 ∀k ∈ [1,m]

(4.14)

In the second stage, referred here as the “perturbed state”, the effect of data uncertainty

is considered, computing the partial deviations of the unknown state vector by solving the

following deterministic optimization problem:

min
(z11 ,..,z

nx+nu
1 ,..,z1nz ,..,z

nx+nu
nz )

nz+nN�

i=1

|f i(z
1
1 , ..., z

nx+nu
1 , ..., z1nz

, ..., znx+nu
nz

)|

s.t. gj(z
1
1 , ..., z

nx+nu
1 , ..., z1nz

, ..., znx+nu
nz

)
A≈ 0 ∀j ∈ [1, n]

hk(z
1
1 , ..., z

nx+nu
1 , ..., z1nz

, ..., znx+nu
nz

)
A
< 0 ∀k ∈ [1,m]

(4.15)

It will be shown that the application of this paradigm in OPF analysis would allow

the analyst to effectively address simultaneously both the uncertain short-/medium-term
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"   In the second stage, or “perturbed state”, the effect of 
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deviations of the unknown state vector by solving the 
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To clarify the aforementioned approach consider the following example:

min
(χ̂,ψ̂)

f(χ̂, ψ̂) = χ̂2 + 4ψ̂2 − (3 + 0.1�1 + 0.1�2)

s.t. g(χ̂, ψ̂) = 4χ̂2 − 16χ̂+ ψ̂2 A≈ −12 + 0.2�1

(5.16)

where the central values and the partial deviations of the unknown affine forms χ̂ =

χ0 + χ1�1 + χ2�2 and ψ̂ = ψ0 + ψ1�1 + ψ2�2 can be identified by solving the optimization

problem in the “nominal” and “perturbed” state, namely:

min
(χ0,ψ0)

χ2
0 + 4ψ2

0 − 3

s.t. 4χ2
0 − 16χ0 + ψ2

0 + 12 = 0
(5.17)

min
(χ1,χ2,ψ1,ψ2)

|(2χ0χ1 + 8ψ0ψ1 − 0.1)|+ |2χ0χ2 + 8ψ0ψ2 − 0.1|+ (|χ1|+ |χ2|)2 + 4(|ψ1|+ |ψ2|)2

s.t. 8χ0χ1 − 16χ1 + 2ψ0ψ1 = 0.2

8χ0χ2 − 16χ2 + 2ψ0ψ2 = 0
(5.18)

The solution of these problems leads to the following results:

χ̂s = 1− 0.026�1 = [0.9750, 1.0259]

ψ̂s = 0

f(χ̂s, ψ̂s) = −2− 0.15�1 − 0.1�2 + 0.00062�3 = [−2.25,−1.75]

g(χ̂s, ψ̂s) = −12 + 0.2�1 + 0.0025�3 = [−12.2025,−11.7975]

(5.19)

To check the consistency of these results, the same problem has been solved by a Monte

Carlo-based simulation, obtaining the following results:

χs = [0.9753, 1.0253]

ψs = 0;

f(χs,ψs) = [−2.2443,−1.7535]

(5.20)

Observe that the adoption of the proposed AA-based computing paradigm allows obtaining

accurate intervals. Hence, thanks to the definition of rigorous relational and minimization

operators, it is possible to obtain more precise solution bounds compared to those obtained
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•  Compared to the previous proposed AA-based PF and 
range-arithmetic based OPF, this computing paradigm is 
expected to improve the solution accuracy. 

•  Anyway, it resulted in higher computational costs, mainly 
due to the large number of control variables required to 
solve the “perturbed state" problem.  

•  This could pose some computational difficulties for large 
scale power system applications.  

•  To address this problem, PCA-based paradigms for 
knowledge discovery from historical operation data-sets 
has been proposed. 

A UNIFIED PARADIGM FOR PF AND OPF 
ANALYSIS 



KNOWLEDGE DISCOVERY FROM 
POWER SYSTEMS OPERATION DATA 
•  PCA-based knowledge discovery paradigms:  

"   Extract actionable information to determine potential 
patterns and complex features potentially describing 
regularities in the PF and OPF results. 

"   Simplify the computational burden of the proposed 
optimization frameworks, thus reducing the 
complexity of the AA-based PF and OPF. 

"   Better identify the noise symbols of the affine forms 
by exploring the connections between the principal 
components and the primitive variables of the affine 
forms. 



PCA-BASED IDENTIFICATION OF 
THE NOISE SYMBOLS 
•  The main idea is to exploit the capacity of 

PCA in describing the evolution of 
statistically correlated variables by a linear 
combination of a limited number of “primitive" 
variables.  

•  To discover the potential patterns among 
these data, the following set of historical 
observations should be analyzed: 



PCA-BASED IDENTIFICATION OF 
THE NOISE SYMBOLS 
•  The application of PCA to this data set allows 

to represent the injected active and reactive 
powers as follows: 



PCA-BASED IDENTIFICATION OF 
THE NOISE SYMBOLS 
•  Hence, the number of noise symbols 

describing the injected power uncertainties 
can be set to      , and the corresponding 
affine forms can be defined as follows: 

•  where the noise symbols represent the 
uncertainty affecting the principal 
components.  

PCn



PCA-BASED IDENTIFICATION OF 
THE NOISE SYMBOLS 
•  The unknown parameters of the affine forms defined 

can be identified by solving the following system of 
linear interval equations: 

•  Which yield to the following relations: 



SIMULATION STUDIES 

•  Detailed simulation studies were obtained for 
the several IEEE Node Test Feeders and for 
a large scale power system.  

•  The PF and OPF solution tolerances 
obtained by the proposed AA-based 
methodologies have been compared to those 
calculated by a Monte Carlo simulation. 

•  The input data uncertainties assumed to 
have a tolerance of ±20% on loads demand 
and power generated. 
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SIMULATION STUDIES – PCA-BASED 
IDENTIFICATION OF THE AFFINE FORMS 



•  This	  Tutorial	  analyzed	  the	  use	  of	  AA-‐based	  
compu;ng	  paradigms	  for	  solving	  uncertain	  PF	  and	  
OPF	  problems	  

•  A	  methodology	  for	  AA-‐based	  PF	  analysis	  that	  
allows	  to	  beVer	  handle	  uncertainty	  compared	  to	  
the	  tradi;onal	  and	  widely	  used	  IA	  approaches	  was	  
described	  

•  A	  domain	  contrac;on	  technique	  based	  on	  range	  
arithme;c	  was	  then	  analyzed	  for	  uncertain	  OPF	  
analysis	  

CONCLUSIVE REMARKS 



•  To	  reduce	  the	  approxima;on	  errors	  of	  uncertain	  
PF	  and	  OPF	  analyses	  a	  novel	  AA-‐based	  compu;ng	  
paradigm	  was	  defined	  

•  A	  PCA-‐based	  paradigm	  for	  knowledge	  discovery	  
from	  historical	  opera;on	  data-‐sets	  was	  proposed	  
to	  lower	  the	  cardinality	  of	  PF	  and	  OPF	  problems,	  
and	  to	  iden;fy	  the	  op;mal	  affine	  forms	  

CONCLUSIVE REMARKS 



•  On	  the	  basis	  of	  the	  obtained	  results,	  it	  could	  be	  
argued	  that	  a	  power	  engineer	  aiming	  at	  using	  AA-‐
based	  techniques	  is	  confronted	  with	  an	  accuracy/
complexity	  trade-‐off.	  	  

•  AA	  techniques	  based	  on	  domain	  contrac;on	  can	  
be	  used	  to	  obtain	  a	  rough	  qualita;ve	  insight	  of	  the	  
solu;on	  in	  a	  very	  short	  ;me	  

•  Solu;on	  methods	  based	  on	  the	  defini;on	  of	  
formal	  AA	  operators	  can	  be	  used	  to	  obtain	  more	  
accurate	  solu;on	  enclosures	  at	  the	  cost	  of	  higher	  
simula;on	  ;mes	  
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•  In	  both	  cases,	  the	  use	  of	  PCA	  can	  contribute	  to	  
sensibly	  reduce	  the	  problem	  cardinality,	  and	  to	  
beVer	  iden;fy	  the	  affine	  forms	  describing	  the	  data	  
uncertainty.	  
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