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Optimization for the analysis of large scale data sets

Applications from the fields of signal processing, machine learning and
statistics;

Large-scale problems impose restrictions on methods that have been
so far employed;

The new methods have to be:

(a) memory efficient;
(b) ideally, within seconds they should offer noticeable progress towards a

solution.
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Second Order Methods in Optimisation

With Dr. K. Fountoulakis (University of Berkeley, USA) & Professor
J. Gondzio (University of Edinburgh, UK) we are concerned with the
following family of optimisation problems:

minimize fc(x) :=

p∑
i=1

ci‖W ᵀ
i x‖1 +

1

2
‖Ax − b‖2

2. (1)

Where x ∈ Rn, ci ∈ Rp are vectors of weights for the regularizers;

Wi : Rn → E l , where E = R or C;

A : Rn → Rm, m ≤ n, b ∈ Rm are the sampled data;

Very large matrices !!!
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Four major applications

Type p W ϕ(x)

(I) Least-Squares 1 Identity ‖Ax − b‖2
2

(II) `1-analysis 1
Arbitrary matrix
W : Rm → Rl ‖Ax − b‖2

2

(III) Total Variation (TV) 1
W : Rm → Cm−1

(Tridiagonal matrix)
‖Ax − b‖2

2

(IV) TV & `1-analysis 2
W1 : Rm → Cm−1

W2 : Rm → Rl ‖Ax − b‖2
2

Note: Total variation is a process, most often used in digital image
processing, that removes noise;
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The first order method

minimize f (x), x ∈ Rn;

A first order approximation is: Q := f (y) +∇f (y)T (x − y);

The good:

(a) They avoid matrix factorizations;
(b) They have low memory requirements;
(c) They sometimes offer fast progress in the initial stages of optimization.

The bad (as demonstrated by numerical experiments):

(a) They miss essential information;
(b) Slow practical convergence.
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A simple description of Second order methods

minimize f (x), x ∈ Rn;

A second order approximation is:
Q := f (y) +∇f (y)T (x − y) + 1

2 (x − y)T∇2f (y)(x − y);

By setting ∇Q = 0n,1 we get:

∇2f (y)(x − y) = −∇f (y);

Where ∇2f (y) is a matrix n × n, ∇f (y) is a vector n × 1;

Find optimal x .
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Basic Steps

1 Appropriate smoothing of the problem; 1st and 2nd order derivatives
of norm 1 are not defined !!

2 Compute derivatives of complex valued matrix functions;

3 Solve the system that appears via the second order method (Newton
conjugate gradient method). Efficient preconditioning techniques
are for fast iterative solution;

4 Perturbation analysis for optimal solutions;

5 Numerical results & Compare our method with others in the literature.
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Second order methods
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Second order methods
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Second order methods
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Software

The software ”pdNCG: primal-dual Newton Conjugate Gradients” for
the above mentioned problem is available for free online !!!

The solver is memoryless, it requires only matrix-vector product
operations, hence it is appropriate for large-scale instances.
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Numerical results on TV – problems & Comparisons
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Notes – Future Work

Interest in applying our results in Image Processing;

TV – problems: Apply Fractional Operators that can detect the edge
direction and enhance the texture details.
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Fractional Operators
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Open problems on Fractional Derivatives

Total Variation problems – to handle better the texture details of
image;

The hyperbolic heat conduction equation (HHE),

τ
∂2T

∂t2
+
∂T

∂t
=
∂2T

∂x2

breaks down at length and time scales of the order of 1 nm (10−9m)
and 1ps(= 10−12s);

Would a time-fractional heat conduction equation be a suitable
physical model to describe sub-nanometric thermal transport?

τ
∂γT

∂tγ
+
∂T

∂t
=
∂2T

∂x2

Where 1 ≤ γ ≤ 2.
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Nabla Difference Operator

∇Yk = Yk − Yk−1;

∇2Yk = ∇(∇Yk) = Yk − 2Yk−1 + Yk−2;
...

∇nYk = 1
Γ(n+1)

∑n
j=0(−1)j 1

Γ(j+1)Γ(n−j+1)Yk−j , n ∈ N.
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Nabla Fractional Difference Operator

The nabla operator of n-th order, n Natural, applied to a vector of
sequences Yk : Nα → Cm is defined by:

∇nYk =
n∑

j=0

ajYk−j = a0Yk + a1Yk−1 + ...+ anYk−n,

where aj = (−1)j 1
Γ(n+1)Γ(j+1)Γ(n−j+1) .

The nabla fractional operator of n-th order, n Fractional, applied to
a vector of sequences Yk : Nα → Cm is defined by

∇n
αYk =

k∑
j=α

bjYj = bkYk + bk−1Yk−1 + ...+ bαYα,

where bj = 1
Γ(−n) (k − j + 1)−n−1;

A tool for time scale analysis and storage.
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Systems of Fractional Nabla Difference Equations

(a) Generalized non-autonomous system of fractional nabla difference
equations:

F∇n
αYk = G

(k)
k Yk + G

(k−1)
k Yk−1 + ...+ G

(α)
k Yα + Vk .

(b) Generalized non-autonomous system of fractional nabla difference
equations of multiple orders:

F∇N
AYk =

k∑
i=α

GiYi + Vk .

Where Yk =
[
y

(1)
k y

(2)
k · · · y

(m)
k

]T
&

∇N
AYk =

[
∇n1
α1
y

(1)
k ∇n2

α2
y

(2)
k · · · ∇nm

αm
y

(m)
k

]T
.
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Matrix pencils

Good Knowledge of Matrix Pencil Theory is required !!
1 If the coefficients are square matrices and the leading coefficient is

singular then:
I The matrix pencil has finite and infinite eigenvalues, or,
I The determinant of the pencil is identically zero;

2 Coefficients can be non-square matrices; Characteristic polynomial is
not defined via the determinant of the pencil.

We need a good Matrix Decomposition & an appropriate Transformation
to split the initial system into subsystems.
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Singular linear system of fractional nabla difference
equations

Consider the singular fractional discrete time system of the form

F∇n
0Yk = GYk + Vk , k = 1, 2, ...

with known initial conditions
Y0

where F ,G ∈ Cr×m, Vk ∈ Cm.

The matrices F and G can be non square (when r 6= m) or

square (r = m) and F singular (detF=0).
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Matrix pencils

For the pencil sF − G : when F = Im, G is square, the zeros of
det(sF − G ) are the eigenvalues of G .

Generalized eigenvalue problem

sFX = GX .

(a) If F , G square, det(sF − G ) ≡ p(s) and F is singular, the pencil has
infinite eigenvalues.

FX = s−1GX .

If F is singular with a null vector X , then FX = 0m,1, so that X is an
eigenvector of the reciprocal problem corresponding to eigenvalue
s−1 = 0; i.e., s =∞.

(b) Moreover even with F , G square, it is possible det(sF − G ) ≡ 0,
independent of s;

(c) F , G can be non-square matrices.
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Matrix pencils

Definition

The matrix pencil sF − G is called:
A. Regular when r = m and det(sF − G ) ≡ p(s)
B. Singular when r 6= m or r = m and det(sF − G ) ≡ 0
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Regular Pencil

A singular pencil has invariants of the following type:

finite elementary divisors of the type (s − aj)
pj ;

infinite elementary divisors of the type ŝq = 1
sq .
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Regular pencil

From the regularity of sF − G , there exist nonsingular matrices
P ∈ Rm×m, Q ∈ Rm×m such that

PFQ = FW , PGQ = GW

FW = blockdiag{Ip,Hq},
GW = blockdiag{Jp, Iq}.

Hq is a nilpotent matrix with index q∗ and Jp a Jordan matrix, the
rest of the matrices are sparse and except zeros they have only the
number 1.
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Regular pencil

By considering the transformation

Yk = Q

[
Zp
k

Zq
k .

]
and

P =

[
P1

P2

]
, Q =

[
Qp Qq

]
,
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Regular pencil

We arrive easily at the subsystems

∇n
0Z

p
k = JpZ

p
k + P1Vk ;

Hq∇n
0Z

q
k = Zq

k + P2Vk .
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Singular Pencil

A regular pencil has invariants of the following type:

finite elementary divisors of the type (s − aj)
pj ;

infinite elementary divisors of the type ŝq = 1
sq ;

column minimal indices of the type
ε1 = ε2 = ... = εg = 0 < εg+1 ≤ ... ≤ εd ;

row minimal indices of the type
ζ1 = ζ2 = ... = ζh = 0 < ζh+1 ≤ ... ≤ ζt .
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Singular pencil

From the regularity of sF − G , there exist nonsingular matrices
P ∈ Rr×r , Q ∈ Rm×m such that

PFQ = FK , PGQ = GK

FK = blockdiag{Ip,Hq,Fε,Fζ , 0h,g},
GK = blockdiag{Jp, Iq,Gε,Gζ , 0h,g}.

Hq is a nilpotent matrix with index q∗ and Jp a Jordan matrix, the
rest of the matrices are sparse and except zeros they have only the
number 1.
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Singular pencil

By considering the transformation

Yk = Q


Zp
k

Zq
k

Z εk
Z ζk
Z g
k .


and

P =


P1

P2

P3

P4

P5

 , Q =
[
Qp Qq Qε Qζ Qg

]
,
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We arrive easily at the subsystems

∇n
0Z

p
k = JpZ

p
k + P1Vk ;

Hq∇n
0Z

q
k = Zq

k + P2Vk ;

Fε∇n
0Z

ε
k = GεZ

ε
k + P3Vk ;

Fζ∇n
0Z

ζ
k = GζZ

ζ
k + P4Vk ;

0h,g · ∇n
0Z

g
k+1 = 0h,g · Z g

k + P5Vk .
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Results

1 Theorem for existence of solutions for both regular and singular case;

2 Theorem for uniqueness of solutions for given initial or boundary
condition;

3 Formulas for the case of unique solutions.

4 Optimal Solutions for the case of non-consistent initial and boundary
conditions;

5 Reformulated version of the Kalman filter, in order to produce an
algorithm and gain an optimal solution;

6 Stability;

7 Robustness;

8 Duality: The analysis of the prime system provides all information we
need for its Dual system and Transpose Dual system.

Ioannis K. Dassios (UL) ioannis.dassios@ul.ie 23-24 March 2017 36 / 59



References

Dassios I., Optimal solutions for non-consistent singular linear systems
of fractional nabla difference. Circuits, Systems and Signal
Processing, Springer, Volume 34, Issue 6, pp. 1769-1797 (2015).

Dassios I., Baleanu D., Kalogeropoulos, G., On non-homogeneous
singular systems of fractional nabla difference equations, Applied
Mathematics and Computation, Elsevier, Volume 227, pp. 112-131
(2014).

Dassios I., Baleanu D., On a singular system of fractional nabla
difference equations with boundary conditions, Boundary Value
Problems, Springer, 2013:148 (2013).

Ioannis K. Dassios (UL) ioannis.dassios@ul.ie 23-24 March 2017 37 / 59



References

Dassios I., Stability and robustness of singular systems of fractional
nabla difference equations. Circuits, Systems and Signal
Processing, Springer. Accepted (2016).

Dassios I., Geometric relation between two different types of initial
conditions of singular nabla fractional discrete time systems.
Mathematical Methods in the Applied Sciences, Willey.
Accepted (2016).

Dassios I., Baleanu D., Duality of singular linear systems of fractional
nabla difference equations. Applied Mathematical Modeling,
Elsevier, Volume 39, Issue 14, pp. 4180-4195 (2015).

Ioannis K. Dassios (UL) ioannis.dassios@ul.ie 23-24 March 2017 38 / 59



A mathematical model for elasticity, plasticity and damage

Collaboration with AMEC Foster Wheeler, UK and Prof Andrey
Jivkov (University of Manchester, UK);

Dr. Peter James (AMEC Foster Wheeler, UK) provides specific
isotropic materials;

The task is: When Forces are applied to random parts of the material
to simulate the

(a) elastic;
(b) plastic;
(c) and failure behavior of the material.

We propose a discrete lattice model.
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Discrete lattice model

Figure: Truncated octahedron (left), representing an average single grain.
Assembly of cells, filling compactly a 3D region (right), representing topologically
averaged polycrystal.
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Discrete lattice model

Figure: Illustration of 3-complex (left), 2-complex (centre), and 1-complex (right),
embedded in R3. Illustration based on the topologically averaged polycrystal.
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Discrete lattice model

Figure: Illustration of site-bond model construction as a reduction of 3-complex to
1- complex (graph). Left figure shows a 3-cell with two neighboring 3-cells which
goes into 3 sites (0-cells, graph nodes) connected by bonds (1-cells, graph edges).
Right figure shows a single 3-cell with the 14 bonds (1-cells, graph edges) in the
substituting site-bond topology.
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Discrete lattice model
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Steps – A simple description of the problem

Initial Positions of n nodes and m edges

D =


D1

D2
...
Dn

 ∈ Rn×3, b =


b1

b2
...
bm

 ∈ Rm×3

Dj = (D j
1,D

j
2,D

j
3), j = 1, 2, ..., n

bi = (bi1, b
i
2, b

i
3), i = 1, 2, ...,m

Then:
AD = b,

A is the incidence matrix (Laplacian) of the graph, describes the
connectivity;
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Steps – A simple description of the problem

New Positions after Forces are applied to the material

AX = y ,

X , y new position of nodes and edges;

New Positions of n nodes and m edges

X =


X1

X2
...
Xn

 ∈ Rn×3, y =


y1

y2
...
ym

 ∈ Rm×3

Xj = (X j
1,X

j
2,X

j
3), j = 1, 2, ..., n

yi = (y i1, y
i
2, y

i
3), i = 1, 2, ...,m.
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Steps – A simple description of the problem

Relation between Forces and new positions of edges.

F = K (y)y ;

where

F =


F1

F2
...
Fm

 ∈ Rm×3, K (y) = diag

{
|F1|
|y1|

,
|F2|
|y2|

, . . . .
|Fm|
|ym|

}
∈ Rm×m.
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Steps – A simple description of the problem

Figure: Example of Conceptual edge forces-displacement relation.
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Steps – A simple description of the problem

Relation between Forces and reaction Forces on the edges

ATF = B;

We conclude to the Non-linear system

ATK (AX )AX = B.
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Results

1 By using the facilities (laboratories) of the University of Manchester
we can have graphs (plots) between the magnitude of the forces and
the difference between initial & new lengths of the edges;

2 We solve numerically the non-linear system;

3 We built a Software which predicts the elasticity, plasticity and
cracking for the material provided.
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The software implementing the above results is in the use of ”AMEC
Wheeler Foster”.
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A Partial Differential Equation’s geometric evolution
problem

Networks of curves in bounded planar domains formed by triple
junctions:

Figure: Polycrystalline camphor-ethanol mixture, soap bubbles, honeycomb
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A Partial Differential Equation’s geometric evolution
problem

Figure: Evolution of a network

Ioannis K. Dassios (UL) ioannis.dassios@ul.ie 23-24 March 2017 52 / 59



Problem formulation

The evolution of Gi (s, t) is described by

∂Gi

∂t
=
∂2Gi

∂s2
, i = 1, 2, ...,m, (2)

Where
Gi (·, t) : [0, Li (t)]→ Ω,

be smooth functions such that Gi (·, t) |(0,Li (t)) is an embedding and
‖∂sGi (s, t)‖ = 1;

Li : [0,+∞)→ [0,+∞),

satisfying Li (0) = 0. For each t ≥ 0 Li (t) is the length of the curve
Gi ; t ≥ 0 is time, s, 0 ≤ s ≤ Li (t), arc length parameter and Gi (s, t),
contained in Ω.
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Subject to four conditions

1 Incidence at the point at which the curves intersect:

Gi (Li (t), t) = Gp(Lp(t), t) = Gr (Lr (t), t),

2 Angle conditions at the point at which the curves intersect:

Gis(Li (t), t) · Gps(Lp(t), t) = cos 2π
3 ;

3 Incidence at ∂Ω:
b(Gi (Li (t), t) = 0;

4 Angle conditions at ∂Ω:

< Gis(Li (t), t),

(
0 1
−1 0

)
∇b(Gi ) >= 0.

Gis = ∂Gi
∂s , Giss = ∂2Gi

∂s2 , Git = ∂Gi
∂t , ∂Ω is the boundary of Ω, b(·, ·) is a C 1

real function of two variables that describes locally the boundary ∂Ω and
< ·, · > is Euclidean inner product.
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Steps

We formulate the problem in a way that the arc length parameter s
takes its values in a domain independent from time t
(parametrisation);

With an appropriate transformation s = s(x) we arrive at the
non-linear PDEs:

∂Γi

∂t
=

1

|∂Γi/∂x |2
∂2Γi

∂x2
− ∂Γi

∂x

1

(ds/dx)3

d2s

dx2

and will be defined in the set D=[0, li ]× [0,+∞).

Define the Linearized Operator;

Find the Eigenvalues & Eigenfunctions of this operator;

Results on the stability of the steady states in terms of the geometry
of the boundary.
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Notes – Future Work

Identifying the problem in 3D;

Research on Grain growth: The increase in size of grains (crystallites)
in a material at high temperature. This occurs when recovery and
recrystallisation are complete and further reduction in the internal
energy can only be achieved by reducing the total area of grain
boundary;
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