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Outline

* Motor control and why modeling is needed

* Modelling and simulation in motor control, at
different levels

* Neurons
 Muscles, kinematics and kinetics

e Overall strategies of motor control
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A fairly complex system

The example of a Reaching Movement

7 DoFs for the arm 23 muscles > 100 MUs per muscle

Billions of possible combinations of activation patterns



A system characterized by variants and
Invariants

* Every movement is unique.
* Strategies are consistent
e Execution is somehow variable

Bernstein, 1957



Motor planning and motor execution
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Two general strategies of motor execution

Feedforward and Feedback Motor Control

A Feedforward control

Desired
_ state
\\-\_

Motor
cormmand \\_
Feedforward > Actuator ,_HH_:::-.__ ﬁ

. controller {muscle)
Desired state

B Feedback control

Desired
. state
l Maotor

ommand

+ ' Error F T
eedforward Actuator —
— . e —
Comparamr_@ controller {muscle)
| Input processing Sensor \
[filtering, e {muscle
Sensed state amplification) spindle)

Kandel, Principles of Neural Science



Evidence of Biological Models
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Biological models as Hardwired circuits
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The Necessity of using Modelling and
Simulations in the Study of Motor Control

* |tis actually what the brain does!

* Impossibility to measure in-vivo pretty much anything of what
happens in the “deep” body during movement planning and
execution

* Estimate quantities (e.g. muscle forces, neuronal activity)

* Reconcile experimental data with compartmental hypotheses
on specific aspects of movement execution

* Predict behaviors

As a result, models in Neuroscience/Motor control are never
fully validable

Functional vs. Biological models



Neuronal Models — from bio to circuits
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* Hodgin-Huxley neuronal
model is the most common
model used to represent
neurons

* Derived from experiments on
neurons of the Giant Squid

* The electrical behavior of the
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Neuronal Models are, of course, more

complex

Complex models can be derived
from the knowledge (or estimation)
of the physiology of each single
neuron

The accuracy of such models is
critically dependent on the
physiological information available
to the researcher

The simulation of small, complex
networks, can have interesting
applications in the field of motor
control and neurorehabilitation

Also in this case, validation is
extremely “volatile”
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One example — Deep Brain Stimulation

* A therapeutic approach used in
the most complex cases of 87
Parkinson’s disease (but also in ST »saec s
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Neuron — A Simulation tool

* Neuron is the most commonly used open-source
simulation tool for the study of Neuronal Activity

* Different neuronal models, different complexities
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Muscular Models

Hill’s muscle model is the most common representation of muscle functioning
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Muscle tension is a function of velocity, active force and muscular properties. The
dampening parameter b is hyperbolic (force vs velocity), but is often approximated as
linear (Linear Hill's model)



...but how does a muscle actually work?

Muscles are actually composed
by hundreds of contractile A
. . pinal cor
elements all activated in a co- s “Recruitment”
dependent way (Motor Units). Motor 4 et
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A fairly more complex model

Such model include components of different nature such as:

- Compartment models that describe the concentration of metabolites in the motor
units

- Single motor neuron model that translate an electrical drive to a spiking behavior
- Force models that translate the spiking behavior to force
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Kinematics and Kinetics Models

Empirical models that connect physical B
measurement (e.g. Motion Capture System) ) " o5 i
with the movement of anatomical landmarks ' iy A

Not 100% precise, but good enough
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Simulation tools in the study of motor
control — OpenSim

ankles #:

78 kg, 1.78 m

Adapted from OpenSim website
19 DOF, 92 Muscles (Delp, 1990)



OpenSim workflow
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OpenSim workflow
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5 Optimization Forward Dynamics

Step 1: Compute Desired Accelerations (PD Control)

Step 2: Solve for Muscle Excitations (static optimization)

Step 3: Integrate fromtto t+T



Modelling and Simulation for the
development of Theoretical Behavioural

Models

Control is achieved as the
minimization of a cost
function (e.g. precision,
energy efficiency), through
the estimation of an
optimal state and the
adjustment of feedback
gains using a

“minimum intervention
principle”

This is the key problem!
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Optimal Feedback Control

Cost function J
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Optimal Feedback Control — evidences

Correction depend on task dependent cost functions and on the cost-to-go

Optimal Feedback Control Model
Large Perturb Medium Perturb Small Perturb Unperturbed Small Perturb




Optimal Feedback Control — an example

A practical example -> Bidimensional perturbed reaching (Todorov et al. 2007)

dp(t) = v(t)dt
mdv(t) = (al(t) — bv(t))dt

rda(t) = (u(t) — a(0)dt + M(u(t))dwl(t). x(t) = [ple)vie)alt)sp*(e)],
dx(t) = (Ax(t) + Bul(t))de + Clul(t))dwii),

Cost function: encourages endpoint accuracy, stopping at the target and
energy consumption

2+ |lsalt)|*) + Wenergy [rae)|Pdt.

0
Control law, with time variant gains and estimates of velocity and
actuation (from noisy sensory feedback and efferent copy) can be

reduced to
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Optimal Feedback Control — results
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Optimal Feedback Control — taking things
further — MulJoCo, a simulation tool

Contact-Invariant optimization:
adding the cost of point of contact
in the mix, given a pre-defined
physical plant

Discovery of complex behaviors through

Simulation environment MuloCo : Dbl
Contact-Invariant Optimization

developed at WSU

Igor Mordatch, Emo Todorov and Zoran Popovic

Movement Control Laboratory and GRAIL
University of Washington

SIGGRAPH 2012

Emo Todorov’s lab, University of Washington




Take home messages

* Modeling and simulation are paramount in the study of
motor control and are applicable at different (in every
sense) levels.

* We cannot cut people and measure!

* Our model are never fully exact neither fully validable,
but, in the better cases, allow for reliable estimation of
neuronal/muscular/behavioral dynamics

* Open software is becoming now the trend, and several
new software have been developed in the past years.



Thank You for Your Attention!



