KTH ROYAL INSTITUTE
OF TECHNOLOGY

Real-Time Simulation @ KTH SmarTS-Lab for

MBSE of Synchrophasor Systems

A journey of 7 years in development of PMU applications and end-to-end testing...

Prof. Luigi Vanfretti
luigiv@kth.se, https://www.kth.se/profile/luigiv/

D iteaz
OpenCPS  fingue March 23, 2017

_I L0 Dublin, Ireland -

This work was supported in part by: SHOP ON ‘-
[gf} =1 SYSTEM
e - LING
-



Smart Grids = Cyber-Physical Power Systems
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A Specific Example - Wide-area control systems (WACS):

WACS include an ICT platform that merges the input measurement data and transforms it to a useful input signal for
controllable devices to perform a given function.

WACS represent a true
cyber-physical system that
requires, at a minimum:
Tools for design,

Tools for simulation and
Tools for hardware and
firmware deployment

WACS consists of: (A) a number of synchronized phasor
measurements units (PMUs — a sort of GPS time-
syncronized distributed sensor) from geographically
spread locations, sending data through (B) a
communication network (C) a computer system termed
phasor data concentrator (aggregates and time-aligns
data from different sensors), (D) a real-time computer
system where control functions are implemented, (E) a
physical component that varies electrical quantities —"
following the control function, and (F) using the GPS —*" v oA A
system for timing.

These kind of tools don’t
really exist today for a
joint “cyber” & “physical”
Sy st ol st system.

Fig. 1. A hypothetical WACS system in the Nordic-Baltic Region




In general, we have two
types of “data” that can be
used to take decisions:
measurements @ and/or
simulations@®

*These tools should aim at

answering critical questions:

»What can be learned from the past?

»What actions can be taken now?
»What actions can be taken in the future?

Deriving actionable information from
measurement and simulation data

21 What technologies will be needed for smart grids?

Core Technologies

Modeling Sensor
and Networks
Simulation (e.g. PMUs)

Tools using both
models and
sensor data

Measurement
-based Tools

Simulation-
based Tools

The development of these tools highly depends on

the evolution of M&S Technologies and Sensor
Networks Data (e.g. PMU)




Future Tools: learning from the past and predicting the future

_ ] . \ Data Mining and
3 | Lelieio ol | Pattern Recognition ")
) : I l o ~
@ I Whv did I Automated Diagnosis e =z
o
g 2 | } I Event reconstruction, ; -%
o = | How could it be I model validation, post-. \ <N
..03_). © § | I mortem optimization 05
udataﬂ E =0
pa ) I i - I S
= -Z 3 | What is happening I Real-Time Monitoring 2 8 GC_,
3 A Ki | | 05
S cll: PR St
© = =
% @ ™ ) 5 + Real-Time Control and ) £
= S | How can it be @ | System Protecton @) 5=
— >z - - )
5 = What will happen (sec. “ © %
5 ° I to min)? I Short-term S &
— g 3 | I measurement-based e ‘_g ic_q
4 L wilithappend) | Preditor 5 3
i | I =
(] -
S c A B | . ! j A 26
S o 0 =i How could it be ? Remedial control < -
o= | “data” o o | I actions ° O
£35 o E ' What in th ' ClE
9 E = I d . inne " | Predictive Analysis C - .£
S 0 g : x min to y hrs to days” - . 8 -g
= Q Probabilistic =S}
L | W\ | . o
5 : DL AR | Forecasting 3
_— S ] |<
' How could it be g2 | Optimization J
\

N

on the evolution of M&S and Sensor Networks

Deriving actionable M L L L L L LR g [ The development of these tools highly depends

information! J




“Smart Grids”

Wl /s our technology in power systems evolving towards a 4™ Industrial revolution?
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* Has the sensor networks evolved sufficiently to enable the fourth industrial revolution?

* Are our Modeling and Simulation (M&S) tools prepared to fulfill the needs of cyber-physical
systems?

Is Model Systems-Based Engineering a framework for this evolution?




Evidence: what can we learn from multiple historical timelines?

Comparing technology development in three different engineering fields

| 1990s-2000s |

... looks like
we are stuck -

in 80s-90s




Evidence: what can we learn from ‘smart grid’ development?

Two Examples Highlighting “unspoken” Truths

The Royal Sea Port’s ‘Active House’ Smart Meters

Structural Weaknesses in the Open Smart Grid Protocol

e

Smart meters: Hacking fear
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the form of software and a PC.
From the technical perspective: Why were these failures not identified and avoided from an early stage?

Two domains, previously loosely related, & release "to the wild’:
* Inadequate understanding of user requirements. * Cyber-security requirements and metering requirements
* Lack of a cohesive approach for ‘system-of-system’ design — should have been jointly defined, designed and assessed.

different suppliers NOT able to speak the same language and * Meter experts perhaps are not security experts
working in the same framework * Both domain experts NOT working in the same framework.

* Product integration and deployment w/o testing and verification. * Lack of joint integration testing, verification and validation

New kind of integration of tech and user needs:

Is it really that hard to develop a “systems-of-systems” /cyber-physical system
requiring experts of two or more domains? )



ﬁ@% Meeting a “system-of-systems” challenge with
FKTHS
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W Model and Slmulatlon Based Systems Engmeermg
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Model and Simulation-Based Systems Engineering

an evolving framework for multi-domain multi-physics system design, manufacturing and operation

Mt

Requirements Integrated Modeling Hubs Requirements Allocation and Design + Integration

Design Space Testin
DB . System Exploration _ V&Vg
Multi- (Tooling)

. Modeling
Domain ’
Transformations

Model
Int i (Meta-
iz rEtiloln Modeling) Implementation

(Code Generation)
Model Updates DB System Components & Models
Multi-Domain Model Integration Abstraction Layers, Behavior and Transformations

1. Structure 84 ABS_ActvationSequence [Sﬂcwwuwgnmu l 2. Behavior

Heterogeneity of Physics o4 Peciae] ishee] 203 B oy ] stm TroT racton Site Diagam) ) | interaction
porrevres porrevres I I prrrevres l - —
Librarys: Anti-Lock Library:: I SstProvenilochup Achity Olopany | state

Conti[ind [Block] Anti-Lock Controler | Basic |]

l - machine

. /
Plant Dynamics Controller Dynamics: B(1) = x,(B, (1),..., B, (1)) n
Models - Models « Properties: stability, safety, performance
« Abstractions: continuous time, functions,
- signals, flows,...
oy Phy
=
&
3. Software Software Software :  B(i) = k.(B, (0)..... B (i)
=3 Architecture K= Component * Properties: dead!ock, invariants, ]
S Models Code ) secur!ty,...‘ Activity Sequence State Machis Use Case
g : . Abst(a_(;bo_rrs: Iogll-tlmg, concurrency, el Disgrem Diagiii i Package Diagram
Theo % atomicity, ideal communication,..
Dynanjll [] sameasumL2
o
00N 2 A System - MResource Systems : B(t,)=&,(B, (t,),... B, (1,)) [ Modified trom umL 2
: rchitecture g t « Properties: timing, power, security, fault o
Physical C(.)mpc Models Models tolerance 2] Newdagram ype
Cha“enge' How §]l§kmla|ﬂm1.n9§jﬂn. « Abstractions: discrete-time, delays,
resources, scheduling, OMG 2010
) ) Cyber-physical comp are modeled using multiple abstraction layers Tr;;elgff
Janos Sztipanovits - Challenge: How to compose abstraction layers in heterogeneous CPS components?
7

Janos Sztipanovits - Vanderbilt Un. 4 Copyright® John S. Baras 2013



"W Beyond System Level Design and Analysis:

FKTHS
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L 8 Model Transformation Advances and Challenges

Challenge: Bottleneck in Model Transformation
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For the reminder of the work, we thus use a the typical Mathworks-based workflow for Modeling-Code Generation and
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Contribution towards the MBSE Foundations in Cyber-Physical Power Systems

9 Research Infrastructure (Lab.) Dev. (1/3)

fKTHY . S r:[‘S I_Jab
Bl 1\ Laboratory for Testing, V&V of PMU Applications ny

e Smart Transmission Systems Labora

2010:

* | started working on the development of a lab. around August/September 2010.

* Not a lot of people where doing this back then (for power systems), it was also seen as “unnecessary” or “useless” by many of the ‘experts’.

* | prepared a white paper for negotiations internally in the university on the potential use of RT-HIL technology:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-63372

* Procurement process for the simulator was carried out in 2010 / RT Target arrived somewhere in March/April 2011.

2011 -2012 - L. Vanfretti, et al, "SmarTS Lab — A laboratory for developing
. . S . applications for WAMPAC Systems," 2012 IEEE Power and Enersy

We carried out the first |mplementat|on of the lab t.hrough 2011, mostly by MSc Society General Meeting, San Diego, CA, 2012, pp. 1-8.

student (Almas), myself and a little help from technicians. doi: 10.1109/PESGM.2012.6344839
* First implementation was fully operational around Dec. 2011.
* A paper with the implementation done in 2011 was presented in the IEEE PES - M.dChenine, L. Xal}fzgtti, :;G al, "IfmpéemelntatiOIItOffan eXE;PH}leIétal

a . . . o wilde-area monitorl platiorm Ior development ol syncnronize

General Meeting 2> Experlgnce a.s bas.ls for next |mplement.at|on. - A [ Y Rl
* A proof of concept application built using openPDC - Experience was basis for Society General Meeting, San Diego, CA, 2011, pp. 1-8.

defining the needs for the environment to develop prototype apps. doi: 10.1109/PES.2011.6039672
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(a) Conceptual Architecture of SmarTS Lab. Measurement and data streams are indicated, non-exclusively, as follows: blue for WAMS, red for
WAPS, and green for WACS applications. Solid lines indicate measurement streams, while dotted lines indicate digital data streams over IP.

(b) Hardware Implementation of SmarTS Lab as of Dec. 2011.



Contribution towards the MBSE Foundations in Cyber-Physical Power Systems

" Research Infrastructure (Lab.) Dev. (2/3)
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M. S. Almas, M. Baudette, L. Vanfretti, S. L2vlund and J. O. Gjerde, "Synchrophasor network, laboratory and software applications

developed in the STRONg2rid project," 2014 IEEE PES General Meeting | Conference & Exposition, National Harbor, MD, 2014, pp.
1-5. doi: 10.1109/PESGM.2014.6938835
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Contribution towards the MBSE Foundations in Cyber-Physical Power Systems

Modeling for Real-Time Simulation

O This repository
SmarTS-Lab / FP7-IDE4L-KTHSmarTSLab-ADN-RTModel

<> Code

Sl for Synchrophasor Applications

Q+ &

Pull requests Issues Gist

@ Unwatch~ 3 % Unstar 2 YFork 1

Issues 0 Pull requests 0 Wiki Pulse Graphs Settings
Active Distribution Network Power System Model developed in the FP7 IDE4L Project by KTH SmarTS Lab — Edit
(D 10 commits U 1 branch 1 release 42 1 contributor
Branch: master v New pull request Create new file  Upload files  Find file

I Ivanfretti committed on GitHub Add DOI from Zenodo

Latest commit 2516633 4 days ago

. v2 Uploading the two versions of the model 6 days ago
. V6 Add files via upload 6 days ago
[E) LICENSE Initial commit 6 days ago
[E) README.md Add DOI from Zenodo 4 days ago
EE README.md

FP7-IDE4L-KTHSmarTSLab-ADN-RTModel

This project contains an Active Distribution Network Power System Model developed in the FP7 IDE4L Project by KTH
SmarTS Lab. The model was developed for use with the Opal-RT eMegaSim real-time power system simulator.

Model Versions

Two versions of the model are provided in this repository, along with a model description and a self-contained
documentation (i.e. help file).

Details of the first version (V2) can be found in the open access publication in the following link:

« Ref. 1: H. Hooshyar, F. Mahmood, L. Vanfretti, M. Baudette, Specification, implementation, and hardware-in-the-loop
real-time simulation of an active distribution grid, Sustainable Energy, Grids and Networks, Volume 3, September
2015, Pages 36-51, ISSN 2352-4677, http://dx.doi.org/10.1016/].segan.2015.06.002

The second version of the model was developed to overcome several of the limitations in accuracy of the “stub-line®
modeling used to decouple the model into different cores. Hence, V6 partitions each subsystem into state-space-nodal
(SSN) groups so that parallel computations can be carried out with the ARTEMiS-SSN solver. More information about the
model can be found on the "“ReadMe.pdf" included in the V6 folder, and in the following paper:

« Ref. 2: H. Hooshyar, L. Vanfretti, C. Dufour, “Delay-free parallelization for real-time simulation of a large active
distribution grid model”, in Proc. IEEE IECON, Florence, Italy, October 23-27, 2016.

User

‘Specifications

~
‘ Design \ Verification
CB  svorws
No. of EMTP nodes | No. of SSN nodes =%t S G
HV 70 3 _ses)
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inciple a
: = i 154106
| Ideal sevondary winding. SN Group 2
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- 810
| Subline (inchales transformer 28]
SSNGroup |

| secondary winding impedance)
[ 1

@]

SSN Group |

22 SNGrowp 3

| SNGrowp s

725 706720 07224

First Version published in SEGAN:

H. Hooshyar, F. Mahmood, L. Vanfretti, M. Baudette, Specification,
implementation, and hardware-in-the-loop real-time simulation of
an active distribution grid, Sustainable Energy, Grids and Networks,
Volume 3, September 2015, Pages 36-51, ISSN 2352-

4677, http://dx.doi.org/10.1016/j.segan.2015.06.002

Second version published in IECON:

H. Hooshyar, L. Vanfretti, C. Dufour, “Delay-free parallelization for real-
time simulation of a large active distribution grid model”, in Proc. IEEE
IECON, Florence, Italy, October 23-27, 2016.

Soon in release of RT-Lab and ARTEMIS (ask Christian
Dufour @Opal-RT).
All source files available in Github!

https://github.com/SmarTS-Lab/FP7-IDE4L-KTHSmarTSLab-
ADN-RTModel




Contribution towards the MBSE Foundations in Cyber-Physical Power Systems

= Testing, V&V: Experimental Work in the

Development, Implementation and Testing of PMU Apps using RT-HIL Simulation

(5) During development,
implementation and testing,
the application is fine-tuned
through multiple HIL
experiments.

Implemented on 11 cores of OPAL RT real tlme simulator
=== m &

LabVIEW interface

(4) A computer with & = N oG P
development tools - E N s
within the LabVIEW o e DG Steam T =
enVlronment data mediator SEL 421 Voltage amplifier

receives the PMU

data. ‘
All data acquisition

is carried out using

X (3) PMU data is streamed into a PDC, and the
the corresponding

concentrated output stream is forwarded to an

standards (i.e. IEEE application development computer
C37, IEC 61850).
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PMU-Based Real-Time Monitoring
w2 Applications

(1) Monitoring & Visualization

KTH_Freq_Iphone

(4) Forced Oscillation (5) Real-Time Voltage Stability
Detection Assessment

08103025
31128

Crithoad Frequency (] Critheat Damping (] ———a—

(1)-(2) M. S. Almas, et al, "Synchrophasor network, laboratory and software applications developed in the STRONg2rid project," 2014 IEEE PES General Meeting | Conference &
Exposition, National Harbor, MD, 2014, pp. 1-5. doi: 10.1109/PESGM.2014.6938835

(3) V. S. Peri¢, M. Baudette, L. Vanfretti, J. O. Gjerde and S. Lgvlund, "Implementation and testing of a real-time mode estimation algorithm using ambient PMU data,"Power
Systems Conference (PSC), 2014 Clemson University, Clemson, SC, 2014, pp. 1-5.

doi: 10.1109/PSC.2014.6808116

(4) M. Baudette et al., "Validating a real-time PMU-based application for monitoring of sub-synchronous wind farm oscillations," Innovative Smart Grid Technologies Conference
(ISGT), 2014 IEEE PES, Washington, DC, 2014, pp. 1-5.

doi: 10.1109/1SGT.2014.6816444

(5) J. Lavenius and L. Vanfretti, “Real-Time Voltage Stability Monitoring using PMUs”, Workshop on Resiliency for Power Networks of the Future, May 8t 2015. Online:
http://www.eps.ee.kth.se/personal/vanfretti/events/stint-capes-resiliency-2015/07 Janlav_Statnett.pdf
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pre Decoupled Voltage Stability

Nk

{ETs Assessment of Distribution & Transmission Networks

A. Bidadfar, H. Hooshyar, M. Monadi, L. Vanfretti, Decoupled Voltage Stability Assessment of Distribution
Networks using Synchrophasors,” IEEE PES General Meeting 2016, Boston, MA, USA. Pre-print: link.
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Component Design g

sl 8 for Wide-Area Control Systems
==

(1) RT-HIL Assessment of ECS
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E. Rebello, M. S. Almas and L. Vanfretti, "An experimental setup for testing synchrophasor-based Damping control systems," Environment and Electrical Engineering (EEEIC), 2015 IEEE 15th International Conference on, Rome, 2015, pp. 1945-1950. doi: 10.1109/EEEIC.2015.7165470
E. Rebello, L. Vanfretti and M. Shoaib Almas, "Software architecture development and implementation of a synchrophasor-based real-time oscillation damping control system," PowerTech, 2015 IEEE Eindhoven, Eindhoven, 2015, pp. 1-6. doi: 10.1109/PTC.2015.7232288
E. Rebello, L. Vanfretti and M. Shoaib Almas, "PMU-based real-time damping control system software and hardware architecture synthesis and evaluation," 2015 IEEE Power & Energy Society General Meeting, Denver, CO, 2015, pp. 1-5. doi: 10.1109/PESGM.2015.7285812
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G. M. Jonsdottir, M. S. Almas, M. Baudette, M. P. Palsson and L. Vanfretti, "RT-SIL performance analysis of synchrophasor-and-active load-based power system damping controllers," 2015

IEEE Power & Energy Society General Meeting, Denver, CO, 2015, pp. 1-5.
doi: 10.1109/PESGM.2015.7286372

G. M. Jonsdottir, M. S. Almas, M. Baudette, L. Vanfretti, and M. P. Palsson, “Hardware Prototyping of Synchrophasor and Active Load-Based Oscillation Damping Controllers using RT-HIL

Approach”, IEEE PES GM 2016, July 17-21, Boston, Massachusetts, USA
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38 Networking Protocol Tools and Source Code
£XTHY
G, v &

for Synchrophasor Applications — Real-Time Control Example
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P28 Networking Protocol Tools and Source Code
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for Synchrophasor Applications — Real-Time Control Example

S3DK is executed on a PC with a non real-time
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Phasor SVC
POD Control signal

Analog
Output

Ra

synchrggasd “

€37.118 Input Signal
i Selection

ST . Phasor | Load Control |  Load Analog

3 : etwor i odulation utpu

SDK 20ms | publis hared Variables 20ms POD Algorithm | Modulat Output
Remotely run VI Real-Time Software VI Core FPGA Software VI

e RunsonaPC. * Runs on the real-time processor * Runs on the FPGA

e S3DK used to unwrap PDC of the cRIO. * The load control and SVC

stream. * Manages the signal selection control implemented.
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38 Networking Protocol Tools and Source Code
£XTHY
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for Synchrophasor Applications — Real-Time Control Example

Khorjin

The hardware prototype controller design

NI-cRIO

Phasor e
POD Control signal

Analog
Output

C37.118

Khorjin

Load Control |  Load
Algorithm Modulation

Phasor
POD

Analog
Output

Real-Time Software VI Core FPGA Software VI

* Runs on the real-time processor of the cRIO. R [sENe]gRda [N €A

e Khorjin used to unwrap PDC stream. * The load control and SVC control
* Input signal selected implemented.
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o Networking Protocol Tools and Source Code
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d for Synchrophasor Applications — Real-Time Control Example
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SmarTS Lab OSS Tools Evolution 155&1
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$KTHE

i%e1d Repositories Currently Available at GitHub

L

S3DK: https://github.com/SmarTS-Lab-Parapluie/S3DK
BabelFish: https://github.com/SmarTS-Lab-Parapluie/BabelFish
Audur: https://github.com/SmarTS-Lab-Parapluie/Audur
Khorjin: Will be available at GitHub...

L. Vanfretti, V. H. Aarstrand, M. S. Almas, V. S. Peri¢ and J. O. Gjerde, "A software development toolkit for real-time synchrophasor
applications," PowerTech (POWERTECH), 2013 IEEE Grenoble, Grenoble, 2013, pp. 1-6.
doi: 10.1109/PTC.2013.6652191

L. Vanfretti, I. A. Khatib and M. S. Aimas, "Real-time data mediation for synchrophasor application development compliant with IEEE
C37.118.2," Innovative Smart Grid Technologies Conference (ISGT), 2015 IEEE Power & Energy Society, Washington, DC, 2015, pp. 1-5.
doi: 10.1109/ISGT.2015.7131910

L. Vanfretti, M.S. Almas and M. Baudette, “BabelFish — Tools for IEEE C37.118.2-compliant Real-Time Synchrophasor Data Mediation,”
SoftwareX, submitted, June 2016.

S.R. Firouzi, L. Vanfretti, A. Ruiz-Alvarez, F. Mahmood, H. Hooshyar, |. Cairo, “An IEC 61850-90-5 Gateway for IEEE C37.118.2
Synchrophasor Data Transfer,” IEEE PES General Meeting 2016, Boston, MA, USA. Pre-print: link.

S.R. Firouzi, L. Vanfretti, A. Ruiz-Alvarez, H. Hooshyar and F. Mahmood, “Interpretation and Implementation of IEC 61850-90-5 Routed-
Sampled Value and Routed-GOOSE Protocols for IEEE C37.118.2 Compliant Wide-Area Synchrophasor Data Transfer,” Electric Power
Systems Research. March 2016. Submitted. August 2016. First Revision.

L. Vanfretti, G.M. Jonsdottir, M.S. Almas, E. Rebello, S.R. Firouzi and M. Baudette, "Audur — A platform for Synchrophasor-Based Power
System Wide-Area Control System Implementation," submitted for review, Software X, February 28, 2017.
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Challenge: Joint (integrated) modeling of networking, IT and power grid physics through
the whole Model & Simulation - Based Systems Engineering Framework.

Through SGAM, but need to
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Verification and Validation
& verensiar 8

L%l for Timing System-Dependent Applications

Challenge: Joint (integrated) modeling, simulation and TV&V including Timing Systems
through the whole Model & Simulation - Based Systems Engineering Framework.

Case Study: GPS Vulnerability and Impact on Synchrophasor Applications
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M.S. Almas and L. Vanfretti, “Impact of Time-Synchronization Signal Loss on PMU-based WAMPAC Applications,” IEEE PES General Meeting 2016,
Boston, MA, USA. Pre-print: link.



H Conclusions: The Cyber-Physical Future

We need to spend significant efforts to face the challenges
of the cyber-physical future of power systems!

Model & Simulation-Based Systems Engineering (MBSE)
gives a proven foundation for developing complex cyber-
physical systems from design to manufacturing to operation.

We need to focus in the development of
— Tools for multi-domain and multi-physics modeling
— Tools and models for design,
— Tools for simulation and

— Tools for hardware implementation

Capable of taking into account interactions (ICT, cyber and
physical security, etc) from different parts of the “cyber-
physical” system while managing the basic functions of the
grid.

We have only began to develop these foundations — we
can’t do it alone: Systems View is key.

We also need to think about the
socio/economical/phylosophical implications of software
pervasiveness.

The cyborg-world is upon us! Let’s be prepared!

-

... Isin our hands!
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