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Abstract—This paper discusses the impact of discrete sec-
ondary controllers on the dynamic response of power systems.
The idea of the paper originates from the observation that there
is a range of values, from few tens of seconds to few minutes, of
the execution cycles of conventional automatic generation control
(AGC) that leads to a limit cycle. Below and above this range the
system is stable. This is certainly not a problem in practice as the
AGC updates the power set points of generating units every few
seconds. However, this phenomenon has interesting consequences
if one considers real-time electricity markets with short dispatch
periods (i.e., 5 minutes) as these markets can be modeled as a
sort of AGC. The paper first provides a formal analogy between
conventional AGC and real-time electricity markets. Then it
shows that the discretization-driven instability exists if the system
includes a real-time electricity market modeled as secondary
frequency controller. Finally, the paper discusses the impact of
the combined effect of high wind generation shares and discrete
secondary controllers on power system dynamics.

Index Terms—Power system stability, automatic generation
control, discretization, real-time electricity market.

I. INTRODUCTION
A. Motivation

The Automatic Generation Control (AGC) is a centralized
secondary regulator implemented in the control centers of
Transmission System Operators (TSOs). Its main function is
to adjust the generation of the dispatchable generating units,
e.g. thermal and hydro, to keep frequency deviations and tie-
line interchanges of each TSO control area within specified
values [1]. Consequently, the effectiveness of this control
depends on the characteristics of the controlled generating
units. Typically, AGC dynamics take place in the time scale
of minutes, e.g. 10 minutes [2]. In practice, the AGC is
implemented in a discrete form. That is, the AGC sends power
signals to participating generating units at fixed intervals,
e.g. every 2-6 seconds [3], [4]. This time interval has shown to
be adequate in managing real-time power mismatches and, to
the best of our knowledge, has not caused any power system
instability. In view of the discussion carried out in this paper,
however, it is relevant to investigate the effect of increasing
this time interval.
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The first part of this paper thoroughly discusses this scenario
and shows that there is a range of values, from few tens of
seconds to few minutes, of the execution cycles of conven-
tional AGC that leads to a limit cycle. This result serves as a
motivation to study the same phenomenon when considering
real-time electricity markets with short trading intervals. In
fact, these markets are currently moving to 5 minutes or even
faster trading intervals in order to facilitate the integration of
high shares of renewable energy sources (RES) into power
systems. The Australian energy market operator, for example,
manages a real-time electricity market with 5 minutes dispatch
intervals and is planning to align the dispatch and financial
settlement periods by July 2021 [5]. These time scales are
comparable with those of the AGC. Motivated by this fact and
by the observation that real-time market can be modeled as a
sort of discrete AGC, we make use of a dynamic electricity
market model proposed in [6] and discretize it to represent
different trading intervals. Then, we investigate the impact
of the Market-based Automatic Generation Control (MAGC)
on the power system stability when using different trading
intervals and different shares of renewable generation.

B. Literature Review

The concept of ‘“sample-data system” has been widely
discussed in the literature, and so has the effect of the sampling
period on stability. For example, reference [7] proposes a
linear matrix inequality (LMI)-based delay-dependent stability
criterion that allows calculating the delay margins of multi-
area load frequency control (LFC) schemes and choosing
the upper bound of the sampling period. More recently, [8]
presents a study on the stability of time-delayed cyber-physical
power systems under fully distributed frequency control using
a critical eigenvalue tracking algorithm. However, references
[7] and [8] consider only time delays, not discrete controllers.
Delay-dependent controllers are, in effect, quite different com-
pared to the discrete controllers considered in this work. That
is, the former act continuously but use quantities that are “old,”
while the latter act “now” on the current value of the measured
signal and then do nothing during a given period.

Reference [9] proposes a robust proportional-integral LFC
scheme that takes into account the sampling period and the
transmission delay of the communication network. Reference
[10] designs a robust retarded sampled-data control with
constant delays and proposes a delay-dependent sufficient
criterion in the form of LMISs in order to improve the dynamic
performance of power systems with the inclusion of RES.



While [9] and [10] consider sampling periods along with
communication delays, these references do not discuss the
phenomenon of the limit cycles that arise for large sampling
periods. A detailed discussion on the birth of these limit cycles
is included in this paper. Moreover, [9] and [10] consider time
periods up to a maximum of 14 seconds, which, as shown in
this paper, are hardly an issue for secondary controllers.

It is also relevant to note that all four references above,
namely, [7]-[10], utilize a linear state-space representation of
the system and, in general, very simplified models (e.g., 2nd
order classical model of synchronous machines). On the other
hand, the analysis that carried out in the remainder of this
paper is based on a set of fully-fledged nonlinear differential-
algebraic equations for transient stability analysis. This is a
crucial difference of our approach with respect to existing
literature.

Other relevant examples are [11] and [12] that focus on
short-term dynamics of linear systems. Existing literature,
thus, has not yet thoroughly discussed the impact of discrete
controllers on the long-term dynamics of nonlinear hybrid
systems. On the other hand, research works that have uti-
lized the market model in [6] to study its impact on power
system dynamics, are based on small-signal stability analysis,
e.g. [13]. In [14], the authors utilize the market model in [6]
to study the impact of grid-connected microgrids, but do not
provide a formal analogy between AGC and MAGC. Finally,
among the works that have used the model proposed in [6] to
study the stability of electricity markets, we cite, for example,
[15] and [16].

C. Contributions

The main contributions of this paper are as follows:

o Provide a systematic study on the impact of discrete
secondary controllers on power system dynamics.

o Present a formal analogy between AGC and MAGC.

o Show that the time periods of discrete AGC and MAGC
may give raise to limit cycles.

o Investigate the impact of discrete AGC on systems with
high shares of wind power generation.

D. Paper Organization

The rest of the paper is organized as follows. Section II
describes the hybrid model of power systems used for dynamic
studies. Section III discusses the model of the AGC as well
as the impact of its time interval. Section IV presents a
formal analogy between AGC and MAGC, and provides a
thorough analysis on the impact of the time period on both
controllers. Section V focuses on the impact of wind power
penetration on the performance of both AGC controllers as
well as power system dynamic response. Finally, Section VI
draws conclusions and outlines future work directions.

II. HYBRID POWER SYSTEM MODEL
Power systems can be modeled as a set of nonlinear Hybrid
Differential-Algebraic Equations (HDAESs) [17], as follows:
3'3 = f(w7y7u7z)7

(1
Ony,l = g(m, Y, u, z) )

where f are the differential equations, g are the algebraic
equations, x, * € R™~ are the state variables, e.g. generator
rotor speeds, and y, y € R™v, are the algebraic variables,
e.g. bus voltage angles; u, u € R™«, are the inputs, e.g. load
forecast, generator bids; and z, z € N™z, are the discrete
variables, e.g. status of the machines. The functions f,g are
at least O

The set of nonlinear HDAEs (1) is a special case of a
singular system of nonlinear hybrid differential equations in
the following form:

E¢ =F(¢u,2), )
where
E= |: Ony,nz Ony,ny :| ’ E a |: y(t) :| ’
and
_ | f(=y,u,2)
F(¢ u,z) = { 9wy . 2) ] .

An hybrid system is a set of systems of differential equa-
tions where transition conditions from one system to another
in that set of systems play an important role. This can be
easily seen from the following example. Let =z € {z1, 22},
21, z9 constant vectors in N™=; zq, zo can then be considered
as two different modes and (2) can be split into two systems:

E¢=F(& u,z1), E¢=F (& u,z9).

In this case, there will be two systems of singular non-linear
differential equations. However, the index set of the mode
transitions as well as the transition conditions should be taken
into account and defined. In general, (2) can be rewritten as
E¢ = F(& u,z;),i=0,1,2,...,N, z; constant. Then each
singular nonlinear system is only defined in a certain interval
te [ti, ti-‘,—l), 1=0,1,2,...,N.

Equations (1) and (2) are utilized to emulate the transient be-
havior of power systems. These equations include the dynamic
models of synchronous machines, turbine governors (TGs),
automatic voltage regulators, power system stabilizers and the
discrete model of the AGC and MAGC. In addition to the
AGC and MAGGC, a brief description of the model of the TGs
is given below. The interested reader is referred to [17] for a
detailed description of all others models.

It is important to note that tools for the stability analysis
of nonlinear hybrid dynamical systems are quite limited. The
nonlinearity prevents the use of methods that require a linear
set of equations and this eliminates the vast majority of
available techniques. The Lyapunov stability theory has been
widely utilized for the analysis of nonlinear systems, including
power systems. However, due to the dissipative nature of
power systems, even assuming that a Lyapunov function can
be found, the Lyapunov theory would not provide sufficient
and necessary conditions and is thus of limited practical use.
The only fully general approach to study the stability of power
systems that does not requires shortcuts or simplifications is
the time-domain simulation. This is the approach utilized in
this work.



III. CONVENTIONAL AGC

The main function of the AGC controller is to maintain the
balance between the total electricity supply and demand. This
action is achieved through continuously monitoring the MW
output of the controllable generating units. Figure 1 shows a
standard control scheme of an AGC. The input of the controller
is the difference between the reference frequency w* and the
measured frequency wcor, that is, the Center of Inertia (Col).
Note that in practice TSOs use the frequency of a pilot bus of
the system as an input for the AGC. Next, the main controller
of the AGC is an integral control with gain K, as follows:

Ap = Ko(w™ — weor) 3)

where Ap is the output of the integrator. The integral term is
needed to perfect tracking the reference frequency and nullify
the steady-state frequency error introduced by the primary
control. In general, TSOs use AGC based on proportional
integral controller that includes other functionalities, among
others, filtering and heuristics in order to reduce the area
control error [18]. However, the fact that wcer is used as an
input for the controller represents actually a sort of filter (i.e., it
filters local frequency oscillations due to its weighted nature).
The output of the continuous integrator is discretized at given
fixed-time intervals and sent to each TG.
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Fig. 1: AGC control diagram.

These signals (Ap;) are proportional to the capacity of the
machines and the TG droops ([;) and normalized with respect
to the total droop of the system:

Rit =Y Ri. “)
=1

The model of the TG considered in this work is depicted
in Fig. 2. It is composed of a droop R; and a lead lag
transfer function. 77, and 75 ; represent the transient gain
and governor time constant, respectively. porq,; represent the
power order set-point as obtained by the electricity market
(see section IV). This model is suitable for transient stability
analysis [17].
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Fig. 2: Turbine governor control diagram.

In practice, the output of the AGC is limited by the
secondary regulation reserve [4]. Therefore, the active power
output of the integrator block of the AGC (see Ap in Fig. 1) is
limited [19], in this case, through an anti-windup (AW) limiter,
as follows:

if Ap > Ap™* & Ap>0: Ap=Ap™™* & Ap=0,

if Ap < Ap™ & Ap<0:Ap=Ap™™ & Ap=0, (5

otherwise : Ap = Ko(wref — Weol) -

The AW limiter is needed to limit the windup phenomenon of
the integrator state variable (Ap).

A. Ilustrative Example on the AGC

In this section we present an illustrative example on the
impact of discrete AGC on power system stability. The IEEE
WSCC 9-bus system (see Fig. 3) is used to show the effect
of different AGC time intervals. The base case data of this
network can be found in [20].
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Fig. 3: Single line diagram of the IEEE WSCC 9-bus system.

Since the original benchmark system does not include an
AGC, we have included in the model the AGC described
in the previous section. In the simulation results below, the
disturbance consists in the disconnection of the load at bus 6
at t = 1 s. All simulations in this paper are performed using
the power system analysis software tool Dome [21].

1) Sensitivity analysis with respect to K,: We first consider
the effect of K, with a continuous AGC model. It is well-
known that a high gain of the AGC may lead to power system
instability due to the coupling between the dynamics of the pri-
mary frequency control and AGC. Figure 4 shows the transient
behavior of weer for K, = {5,20,50} without considering
the AW limiter; and for K, = 100 with inclusion of the
AW limiter on Ap (40% of the total generation capacity). As
expected, the system is unstable for high values of K, in this
case, for K, > 20. On the other hand, low gain values keep
the system stable (see Fig. 5). However, the dynamic response
with this small value of K, is very slow, and consequently the
controller is not effective. Finally, imposing a limiter on Ap
leads to a limit cycle.

2) Impact of different AGC time intervals: First we show
qualitatively that the impact of different values of K, of
continuous AGC is equivalent to different time intervals of
a discrete AGC. Let us discretize the first-order differential
equation (3) using the forward Euler method. The k-th inte-
gration step is:

ApFHY) = K, At(w™ — weor) + Ap®) (6)



where Ap*+1) and Ap(*) are the next and present value of
Ap, respectively; At is the integration time interval. From (6),
it is apparent that increasing At is equivalent to increasing K,,.
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Fig. 4: Transient response of wcer of the WSCC 9-bus system for different
AGC gains.
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Fig. 5: Transient response of wcoy of the WSCC 9-bus system for different
AGC gains.

Figures 6 and 7 depict the transient response of the wc,r for
different AGC time intervals. Observe that using a continuous
AGC and a discrete AGC with a time interval of 5 and 20 s, the
system is stable as the controller is fast enough to bring back
the frequency to the nominal value. On the other hand, the
results without an AGC show a stable transient response with
a steady state-frequency error. For AGC time intervals equal
or greater than 40 s, the system enters into a limit cycle. As
expected from the discussion above, large discretization time
intervals lead to unstable system dynamics. For this reason,
in practice, the AGC time interval is in the range of (2,6) s,
which is small enough not to originate any limit cycle.

Figure 8 shows the transient behavior of the state variable of
the AGC (Ap) for some relevant AGC time intervals. The limit
cycle occurs whenever the AGC time interval is big enough
(e.g. 120 s) to allow Ap to go to the other extreme value
(limit) and saturate. Other factors that determine the period of
the limit cycle are related to how fast is the AGC controller
as well as the type of the contingency. Note that for very
long-time intervals, e.g. > 10 minutes, the AGC controller
is not effective anymore and other mechanisms are in place
to compensate the power unbalance e.g. short-term optimal
power flow.

1.06
1.05
1.04
103 [ :f
S [
) 1
T 1.02
3 I TR
1014 P
E : —! Discrlete 5,
3 Lo )
DIscrete 208
| P seerete 40k
0.994 L Discrete .1(}
=<+ Continudus
OR 4
0.98 = \\'i”l()ll‘
0.97 . ! . .
0 100 200 300 400 500

Time [s]

Fig. 6: Transient response of wc,er for different AGC time intervals.
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Fig. 7: Transient response of wc,er for different AGC time intervals.
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Fig. 8: Transient response of Ap for different AGC time intervals.

3) RoCoF dead-band: A way to remove the bang-bang
phenomena shown in the previous section is to consider a
dead-band on the Rate of Change of Frequency (RoCoF).
In this work, the RoCoF is calculated using the following
expression:

ol ol
RoCoF = —=2 oL 7
oCo Al (7)
where w(k_l) and w(k) correspond f
Col Col pond to the values of wcor at

the previous interval (e.g., 5 seconds) and the current time,
respectively. While At represents the AGC time interval. Note
that controlling the frequency of the Col is not viable in
practice. One can, however, implement RoCoF dead-bands in
the primary frequency controllers of the power plants. These



will affect the variation of the rotor speeds of the synchronous
machines and, in turn, of the frequency of the Col. The model
considered in the paper is thus an approximation but it is
sufficient to show the effect of this dead-band.

Figure 9 depicts the transient behavior of the wgor with
RoCoF dead-band of 0.0002 pu(Hz/s). The RoCoF dead-band
successfully removes the limit cycle, however, it leads to
a frequency steady-state error. Clearly, this is not desirable
because the AGC cannot serve its main purpose.
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Fig. 9: Transient response of wcor for different AGC time intervals and with
RoCoF dead-band.

4) Sensitivity analysis with respect to Ap: Another solution
to prevent the bang-bang phenomena is to limit the variation of
the internal state variable of the AGC, namely, Ap. The limit
case, of course, is when the limit of Ap™a* = Ap™in = (,
which basically opens the control loop. Figure 10 depicts the
transient behavior of the wgo; for a variation of Ap from
40% up to 1% and for an AGC time interval of 60 seconds.
As expected, limiting Ap makes the AGC controller less
effective. For example, allowing Ap to vary just 1% of the
total generation capacity, is almost equivalent to disabling the
AGC.
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Fig. 10: Transient response of wger for different Ap limits.

Based on the simulation results above, we conclude that
the only effective solution to avoid the limit cycle phenomena
caused by the discretization of the AGC is to impose a
sufficiently small Af.

IV. MARKET-BASED AGC

In this section, we provide a formal analogy between
secondary controllers and the dynamic electricity market pro-

posed by Alvarado in [6]. Moreover, this section discusses the
impact of this discrete controller on the dynamic response of
the system.

A. Dynamic Electricity Market Model

Alvarado started to study the dynamics of electricity markets
after similar works were performed by economists in their
respective fields [22]. The main idea behind his studies on this
topic was to be able to manage the real-time balance between
power demand and supply through a continuous price signal
sent to both loads and generators.

In this model, it is assumed that when a generator sees
that the electricity price, say, A, is higher/lower than the
corresponding marginal cost, then the generator will in-
crease/decrease its production until the cost matches the price.
These assumptions lead to the following dynamic electricity
market model [6]:

Ty = Kg(w'™ —woor) — Da, (8)
i=1,....,n,, (9)

where Ap, ; represent the active power order set points (pord,;)
of the TGs (see Fig. 2); ¢, ; and b, ; are the parameters of the
marginal benefit of the generators. T and Ty ; are the time
constants; and K is the feedback gain. D) is the deviation
with respect to a perfect tracking integrator and for a low-pass
filter is Dy = 1. Finally, the mismatch w'f — weor is utilized
as an indirect estimation of the real-time energy imbalance in
the system.

In [6], loads responds similarly to generators with respect
to the electricity price A but with opposite strategy, i.e. load
bids increase as the electricity price decreases. In this pa-
per, however, loads are assumed to be inelastic and do not
participate in the MAGC. Such an assumption is consistent
with the current situation in most of the electricity markets
where loads (effectively) do not respond to changes in the
wholesale electricity prices. In fact, it has been shown in
the literature that making loads price responsive as well will
further deteriorate the stability of the system [15].

Note that the use of this electricity market model (8)-(9) is
considered adequate for real-time markets with short dispatch
periods [6]. As mentioned earlier in the paper, some systems
already use these markets and they will be more common in
the future power systems.

Tg,iApg,i =A- Cg,iApg,i - bg,i s

B. Analogy between AGC and MAGC

The structure of the equations (8)-(9) is formally similar to
the structure of the AGC shown in Fig. 1. For comparison, the
“control” diagram of (8)-(9) is depicted in Fig. 11. The AGC
and the MAGC have exactly the same structure for D) =
bgs = Ty,; = 0. The MAGC can be thus seen as a generalized
secondary frequency controller.

A substantial difference between the two controllers con-
cerns the meaning of the state variables, namely Ap and A. In
the MAGC, ) is a price, which does not carry any information
on the energy involved in the system, as opposed to Ap, which
is a power reserve. Nevertheless, the market model (8)-(9)
makes A a “physical quantity” of the system.
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Fig. 11: MAGC control diagram.

C. Anti-Windup Limiter on A

Similar to the AW limiter on Ap, one can limit the state
variable of the MAGC, namely, A in Fig. 11. Enforcing a limit
on A might be desirable in order to limit the electricity price
spikes. This happens, for example, in most of the European
electricity markets [23]. The AW limiter on A is as follows:

FA> A" & A>0: A= A" & =0,
FA<SAM A< A= A" & A=0,
otherwise : equation (8) .

(10)

D. Illustrative Example on the MAGC

The analogy discussed in Section IV-B allows us simulating
real-time electricity markets as an equivalent AGC. In this
case, however, the time interval matters because in practice
electricity markets use dispatch periods of the order of min-
utes, not seconds as in the conventional AGC.

For a fair comparison between the AGC and MAGC, we
use again the IEEE WSCC 9-bus system and we assume
that the three generators have the same market data as the
first three generators in the IEEE 39-bus system [6]. Unless
stated otherwise, for simulation purposes, the maximum and
minimum limit of A is set to 4,000 and 0 $/MWh, respectively.
The contingency is the outage of the load at bus 6 at ¢t = 1 s.

1) Systems with MAGC only: In this first scenario, it is
assumed that the system includes only the MAGC controller,
i.e. there is no AGC. This scenario corresponds to power
systems that do not include an AGC, but instead use some
sort of offline and/or “manual” generation control [18]. The
goal is to investigate whether the idea of controlling power
systems exclusively based on market mechanism is feasible.

Figures 12 and 13 show the transient behavior of wcer
and ), respectively. The discrete MAGC leads to limit cycles
similar to the case of the AGC. Specifically, the limit cycle
appears for a MAGC time interval equal or above 120 s.
Compared to the AGC, this phenomenon appears for longer
time intervals, i.e. double in this case. This is due to the
parameters of the MAGC control scheme. It is important
to note, however, that the limit cycles always appear for a
certain range of At, independently from the parameters of the
secondary controller.

There are two ways to avoid the limit cycles. One is to use
“short” time periods, for example, 5 s in Fig. 12. The other
one is to use “long” time periods, for example, 10 minutes
[24]. In this case, the MAGC approximation does not hold
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Fig. 12: Transient response of wcer for different MAGC time intervals.
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Fig. 13: Transient response of the electricity price A for different MAGC time
intervals.

and is effectively decoupled from the dynamics of the system,
and thus it does not cause the occurrence of instability. Figure
12 also suggests that real-time electricity markets with very
short periods, e.g. 5 s, can, in principle, substitute the AGC
provided that they have the same features.

2) Sensitivity analysis with respect to A: As discussed
earlier in the paper, a solution to remove the limit cycle
is to limit the variation of the state variable of the AGC
controller, in this case, that of MAGC controller. In this
context, Fig. 14 shows the transient response of the system for
different A limits. As expected, limiting the variation of the
state variable removes the limit cycle. For example, allowing
A to vary just 0.25% from its nominal value (40 $/MWh)
appears to be able to remove the instability, however, it leads
to a steady state frequency error. Further limiting the variation
of A, e.g. 0.125%, makes the controller even less effective,
i.e. almost an open loop. The interested reader is referred to
[25] for such an example. As for the case of the AGC, the best
solution appears to be that of using short dispatch intervals.

3) Systems with AGC and MAGC: This scenario considers
a common scenario, i.e. power systems equipped with both an
AGC and a real-time electricity market. The AGC considered
here has a time interval of 4 s. Simulations are solved
considering the same load outage as in the previous section.

The transient response of the system following the con-
tingency is depicted in Fig. 15. The inclusion of the AGC
removes the limit cycle. It appears that, if the system includes
an AGC, then the discretization of the real-time market does
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Fig. 14: Transient response of wcer for different A limits.

not cause instability issues. It is also interesting to note that
using a continuous MAGC leads to a lower frequency nadir.
This is due to the dynamic coupling between the dynamics
of the MAGC and the AGC. Depending on the severity of
the frequency variations, the system operator may have to
implement corrective actions, e.g., load shedding. However,
a discussion on corrective actions is outside the scope of this

paper.
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Fig. 15: Transient response of wcer using the AGC and MAGC.

4) Economic impact of systems with and without an AGC:
This scenario discusses the differences with respect to the
profit of the generating units that are part of systems that
include only MAGC controller, and both AGC and MAGC.
We assume that both MAGC controllers utilizes a time interval
of 60 s, whereas the AGC utilizes a time interval of 4 seconds.
Figure 16 shows the outputs of the controllers for the generator
at bus 1, for the scenarios with MAGC only, and with both
AGC and MAGC.

It is interesting to see that the MAGC only controller
contributes more (by decreasing more its output in response
to the contingency) compared to the same controller when the
system includes both MAGC and AGC. This is due to the fact
that in the scenario that includes both controllers, the AGC is
the dominant controller (being faster) and takes care of power
mismatches. For this reason, the profit of generating units that
participate in the MAGC only is less compared to the profit of
the same generating units that are part of power systems with
MAGC and AGC (the other way round is true if a generator
is lost). This is better shown in Fig. 17 where the income of
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Fig. 16: Secondary frequency controller signals for the scenarios with MAGC
only and with both MAGC and AGC.
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Fig. 17: Profit of generator 1 for the scenarios with MAGC only and with
both MAGC and AGC.

the first generator is depicted for both scenarios considered in
this section.

V. INCLUSION OF NON-SYNCHRONOUS DEVICES

So far we have studied the impact of discrete AGC and
MAGC using conventional power systems. However, it is also
relevant to study such an impact on power systems with high
shares of non-synchronous devices. The impact of wind power
penetration is considered. With this aim, the New England
IEEE 39-bus system [26] is utilized along with the market
data taken from [6]. The contingency is the outage att =1 s
of the load located at bus 3. For simulation purposes a MAGC
with a time interval of 120 s (chosen on purpose as it is the
worse case scenario) and gain Kp = 15 are used. Whereas
for the AGC a time interval of 4 s and gain K, = 2 is used.
The focus is on the transient response of the center of inertia
following the contingency. Three scenarios are considered: (i)
base case with conventional generation; (ii) 25% penetration of
wind generation; and (iii) 50% penetration of wind generation.
For a fair comparison, all scenarios have same loading level,
control and network topology.

A. Wind Power Modeling in Real-Time Electricity Markets

Nowadays, in most electricity markets worldwide, wind
power producers bid in the same way and follow same rules
as conventional power plants. For instance, wind power plants
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Fig. 18: Transient response of wcer for different wind power shares.

are responsible for power deviations with respect to the values
scheduled in day-ahead market. In this context, following the
structure of the original dynamic market model in (8)-(9), one
can write the equation that models Wind Power Plants (WPPs)
behavior with respect to their marginal cost and the price A,
as follows:

h=1,... (11)

where puy hy Tw.h> Cw,hs bw,n have same meaning as in (9).
1) Marginal cost of wind power equal to zero: In general,
the marginal cost of wind is assumed to be zero, i.e.:

Tw,h p’w,h =\- Cw,h Pw,h — bw,h ) y Naw

Cw,hPw,h — bw,h = Oa
and, from (11), we have:

Tw,h Pwh = A 12)

Equation (12) is a pure integrator. This means that the WPPs
will try to dynamically integrate and set the price A = 0.
As shown earlier in the paper, a pure integrator tends to
be unstable. Thus, the WPPs will integrate until their output
reaches a maximum power limit. In the same vein, if:

Cw,th,h + bw,h < Oa

i.e. the WPPs bid negative prices, then from the dynamic point
of view their market secondary control is unstable. However,
this does not mean that WPPs drives the system to instability,
but just that they are going to generate their maximum power
all the time.

To simulate this case, we assume that the system includes
both AGC and MAGC and show the transient behavior of
weor in Fig. 18. The scenarios with non-synchronous devices,
i.e., the scenarios with inclusion of wind generation, worsen
the performance of both AGC/MAGC controllers, and conse-
quently the dynamic performance of the system. These results
indicate that future power systems with high shares of wind
power will require much shorter dispatch periods compared to,
for example, conventional power systems (see Section IV-D1),
in order to avoid possible instabilities.

2) Marginal cost of wind power different from zero: If the
share of WPPs in the electricity market increases, WPPs may
consider acting strategically (i.e., price maker) in order to
increase their own profits through intentionally altering the
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Fig. 19: Transient response of the wco1 for WPPs included and not included
in to the MAGC, respectively.

market clearing price. This scenario has been well discussed
in the literature, e.g. in reference [27]. In order to become a
price maker, WPPs will have to be sufficiently big (otherwise
they will be limited), and with a marginal cost that is in
the same range as that of other conventional generators. In
this scenario, WPPs will participate in the real-time electricity
market according to (11), i.e. will be part of the MAGC shown
in Fig. 11.

Note that, if they are not coupled with energy storage
systems or include some mechanism to provide power reserve,
the WPPs can only provide down regulating service, that is,
will only decrease their power production. To simulate this
scenario, we consider a 25% wind power penetration, i.e. re-
place 3 conventional generators with WPPs. Furthermore, we
assume that the WPPs have the same bids and market data as
the conventional power plants. The Spanish electricity market
is a real-world example where RESs and conventional power
plants bid together [28]. We also assume that the systems
includes both AGC and MAGC.

Figure 19 shows the results for this scenario. It appears
that the participation of WPPs in real-time electricity markets
does not make a huge difference with respect to the transient
response of the system. This is due to the fact that the AGC
is the dominant secondary controller, as it is faster than the
MAGC and thus contributes more after the occurrence of
the contingency (see Fig. 16). We can conclude that, in this
scenario, the participation of WPPs in real-time electricity
markets does not make a significant contribution to long-term
power system dynamics.

VI. CONCLUDING REMARKS

This paper studies the impact of discrete secondary fre-
quency controllers on power system stability. The paper
considers two secondary frequency controllers, namely, AGC
and MAGC. The former is a controller installed in most
of the control centers of TSOs, while the latter is a model
that reproduces the behavior of real-time electricity markets
with short dispatch periods. The findings of the paper are
summarized below.

1) AGC: The illustrative example on the impact of discrete
AGC on power system stability suggests that increasing too
much the execution cycles of the AGC leads to a limit



cycle or bang-bang phenomena. The example also shows that
increasing the execution cycles of the AGC is comparable to
increasing its control gain. Moreover, it is shown that the only
effective solution to remove this issue is to keep as short
as possible the AGC execution cycles. This is not a major
constraint as, in practice, the AGC installed in the control
centers of TSOs uses execution cycles that vary in the range
of 2 to 6 s, which do not create instability issues.

2) MAGC: The formal analogy between the AGC and real-
time electricity markets and the results of the illustrative
example indicate that if future real-time electricity markets
will be based on the power imbalance in order to update
the electricity price and use dispatch periods that range from
some tens of seconds up to few minutes then these markets
might lead to some sort of limit-cycles and/or power system
instability. There are two relevant scenarios, as follows.

o Power systems that do not have installed an AGC and/or
have some sort of not-perfect-tracking AGC. In these
systems, the real-time electricity markets should use very
short dispatch periods, i.e. similar to the ones utilized
with the AGC, or should not be based on the power
imbalance (open-loop electricity market).

o Power systems with an AGC. In this case, real-time
electricity markets can be based on power imbalance as
a criterion to update the electricity price and use long
dispatch periods. In this scenario, however, the profit
of generators that participate in systems with MAGC
vary considerably depending on the disturbance and the
dynamic of the conventional AGC.

3) Impact of wind power penetration: Section V shows
that integrating more wind power generation into power
systems worsen the performance of both AGC controllers,
and consequently the power system dynamic performance.
Simulation results show that power systems that are based
on real-time electricity markets should use shorter dispatch
periods compared to the case without wind power. Regarding
the differences with respect to the participation of WPPs in
real-time electricity markets, the case study shows that this
participation does not necessarily mean an improvement in
the dynamic performance of the system.

Finally, future works will focus on the impact of other
relevant discrete secondary controllers of power systems, e.g.,
the secondary voltage control and hierarchical controllers of
microgrids.
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