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Abstract—The paper originates from the observation that, due
to the nonlinearity of the power system model, the autocorrelation
of noise impacts on the standard deviations of the trajectories
of the variables of the system in an unpredictable way. A case
study based on the well-known two-area system with inclusion of
stochastic load models is presented. Simulation results show that
an increase of the autocorrelation of load consumption causes
a significant increase of the standard deviation of the active
and reactive powers generated by the synchronous machines.
In some scenarios, the increase of the autocorrelation gives rise
to instability and drives the system to voltage collapse.

Index Terms—Stochastic processes, autocorrelation, standard
deviation, volatility, transient stability.

I. INTRODUCTION

Several studies based on real-world measurements have
analyzed the short-term dynamic behavior of stochastic pro-
cesses such as load consumption and renewable generation
and concluded that such a behavior can be modeled as a set
of stochastic differential equations [1], [2]. It has also been
observed that stochastic processes are characterized by an
exponentially decaying autocorrelation function independent
of the probability distribution of the process [3]. This paper
focuses on evaluating the impact of autocorrelation of stochas-
tic processes on the dynamic behavior and transient stability
of power systems.

Load consumption and renewable energy resources are
sources of uncertainty and volatility. For the long term anal-
ysis, the availability of a large amount of historical data
has led to relatively accurate load and renewable generation
forecasting. In short-term studies, however, the randomness
of stochastic fluctuations cannot be fully anticipated. One of
the most relevant approaches for the modeling of short-term
variations is thus through stochastic processes [1]–[7]. In par-
ticular, continuous fluctuations can be formulated as stochastic
differential equations (SDEs) that contain two terms, namely,
drift and diffusion [8]. The drift term is the deterministic part
of an SDE and defines the autocorrelation of the process,
i.e. its “evolution in time.” Whereas the diffusion term is the
non-deterministic part of an SDE and defines the standard
deviation of the stochastic process in stationary conditions.
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The overall dynamic behavior of a power system subject
to stochastic disturbances can be modeled as a set of SDEs.
Several analytical solutions are available to solve SDE models
and calculate the probability distribution of stability of the
power system. Analytical solutions are formulated on the
bases of the theory of stability of SDEs, which only work
for linear systems [9], [10] and/or highly simplified models
[11], [12]. Since these methods require strong simplifications
and/or linearization of the power system equations, they may
fail to capture the impact of stochastic processes for large
disturbances and the dynamic coupling arising from an in-
creasing size and complexity of the power system model.
More importantly for the study considered in this paper,
existing studies focus on stationary conditions, i.e. consider the
probability distribution and standard deviation of the variables.
However, the autocorrelation of the stochastic processes and
its impact on short-term dynamics is often neglected.

In this paper, no simplification or linearization is applied to
the model. The power system is formulated as a set of non-
linear stochastic differential-algebraic equations (SDAEs) and
provides a detailed model of the transient dynamic behavior of
the power system subject to stochastic disturbances [4], [13],
[14]. Reference [4], in particular, provides a generalized and
systematic modeling approach. Hence, it does not depend on
the size or complexity of the power system to model power
systems subject to stochastic disturbances as a set of non-linear
SDAEs. A byproduct of this modeling approach, however,
is that no analytical solutions, of the resulting SDAEs that
describe the power system model, are available. Hence, we rely
on numerical methods such as trapezoidal integration method
for the deterministic differential-algebraic equations (DAEs),
and Euler-Maruyama method for stochastic differential equa-
tions, are utilized to integrate the non-linear SDAEs [4].

References [15]–[17] employed Monte Carlo time domain
simulation (TDS) to evaluate the probability distribution of
transient stability of power system with inclusion of stochastic
disturbances. In [18], the authors improved the computation
time of the Monte Carlo TDS by utilizing importance sampling
method. In [19], a method was proposed to properly initialize
SDAEs to reduce execution time of Monte Carlo TDS. The
effect of correlation between active and reactive load power
consumption on the voltage stability of the power system



utilizing Monte Carlo TDS was studied in [20]. Similarly,
in this paper, Monte Carlo TDS are carried out to extract
meaningful statistical properties, such as the standard deviation
and the autocorrelation of the trajectories of relevant variables.

The vast majority of literature on SDEs or SDAEs evaluates
the probability distribution of the stability of power systems
subject to stochastic disturbances based on the probability dis-
tribution of the input stochastic processes. Some exceptions are
[2] and [3], which propose methods to synthesize SDEs with
given autocorrelation and probability distribution. However,
the question of what is the effect of the autocorrelation of a
stochastic process on the stability of the power system still
remains unanswered.

This paper focuses on the dynamic effect of the autocor-
relation, which is a property of stochastic processes, on the
transient stability of power systems.

Specific contributions are as follows.

• The paper shows the coupled effect of the drift and
diffusion terms of the stochastic processes. In particular,
the paper shows that, in the short term, increasing the au-
tocorrelation of a stochastic process leads to reach faster
stationary conditions, e.g., constant standard deviation.

• A byproduct of the observation above is that processes
with same standard deviation but different autocorrela-
tions have a different dynamic impact on the system. The
paper shows that this impact is ultimately affecting the
standard deviation of the variables of the system. In other
words, due to nonlinearity, the dynamics of the drifts of
the stochastic processes plays an important role on the
stationary conditions of the overall system.

• Finally, the paper shows that processes with low standard
deviation but high autocorrelation can drive the system to
instability.

The remainder of the paper is organized as follows. Section
II introduces the non-linear stochastic differential-algebraic
equations, which are utilized to model power system. Section
III introduces and explains the volatility model, which is
an Ornstein-Uhlenbeck’s process. Section IV presents the
simulation results obtained by simulating the dynamic model
of a 2-area system as a set of non-linear SDAEs and analyzes
different results obtained for different autocorrelation of the
stochastic processes. Finally, Section V draws conclusions.

II. MODELING

The dynamic behavior of the power system is conventionally
modeled as a set of non-linear DAEs [21], as follows:

ẋ = f(x,y) ,

0 = g(x,y) ,
(1)

where f : Rl+m+n 7→Rm are the differential equations; g :
Rl+m+n 7→Rl are the algebraic equations; x ∈ Rl is a vector
of state variables; y ∈ Rm is a vector of algebraic variables.

The effect of randomness volatility is modeled by introduc-
ing SDEs into deterministic DAEs [4], [13], [14], as follows:

ẋ = f(x,y,κ) ,

0 = g(x,y,κ) ,

κ̇ = a(κ) + b(κ) ◦ ξ ,
(2)

where κ ∈ Rn represents the vector of uncorrelated stochastic
processes; a : Rn 7→ Rn and b : Rn 7→ Rn are the drift, and
diffusion terms, respectively. If the drift is a vector of linear
functions, e.g. a(κ) = α◦κ, the elements of the vector α are
called autocorrelation coefficients. ◦ represents the Hadamard
product, i.e. the element-by-element product of two vectors.
Finally, ξ ∈ Rn is a vector of n-dimensional independent
Gaussian white noise, which is the formal representation of
time derivative of the Wiener process.

A Wiener process Wi is a time continuous stochastic process
with Gaussian distribution and the following properties:

1) Wi(0) ≡ 0.
2) Wi(t) is a continuous function of t.
3) Increments of Wi(t) follow Gaussian distribution, i.e.
∀t ≥ 0, dWi = Wi(t + h) − Wi(t) ∼ N (0, h) where
N (µ, σ2) represents Gaussian distribution with mean µ
and standard deviation σ.

4) Wi(t) has independent increments, i.e. cov[dWi, dWj ] =
0, where i 6= j, and dWi is the ith increment of Wi(t).

A. Stochastic Load Model

For simplicity but without loss of generality, this paper
focuses on the stochastic disturbances introduced into the
power system by stochastic loads. With this regard, we use
a well-known stochastic load model [4], [12]–[14], which has
been derived from a voltage dependent load model, as follows:

pL(t) = (pL0 + κp(t))(v(t)/v0)γ ,

qL(t) = (qL0 + κq(t))(v(t)/v0)γ ,

κ̇p(t) = ap(κp(t)) + bp(κp(t)) ξp(t) ,

κ̇q(t) = aq(κq(t)) + bq(κq(t)) ξq(t) .

(3)

where pL0 and qL0 are the mean values (for the duration of
TDS) of active and reactive power consumption, respectively;
v(t) is the magnitude of the bus voltage at the load bus; v0
is the initial value of this voltage magnitude at the start of
TDS; and γ classifies load as constant power load for γ = 0
and constant impedance load for γ = 2; and a, b, and ξ have
the same meaning as in (2). The terms a and b depend on the
type of stochastic process being used to model volatility. In
this paper we choose an Ornstein-Uhlenbeck’s process (OUP)
to model volatility.

III. ORNSTEIN-UHLENBECK’S PROCESS

An OUP is a linear implementation of the SDE introduced
in (2). Hence, both drift and diffusion terms can independently
modify the dynamic behavior of an OUP.

The OUP is mean-reverting, i.e. it always tends to its mean
value and it shows constant standard deviation in stationary
conditions. These features make the OUP adequate to model



the volatility in physical processes such as stochastic load
dynamics [1], [5], [6] and short-term wind fluctuations [2],
[22], [23]. An OUP is defined as:

κ̇ = −α(κ− µ) + βξ , (4)

where α is the autocorrelation coefficient; β is the coefficient
of the diffusion term; µ is the mean value; and ξ is the
white noise. The process resulting from (4) is a real-valued
process that follows a Gaussian probability distribution given
by N (µ, σ2), and β = σ

√
2α.

An OUP defined in (4) is a linear combination of two
terms: drift and diffusion. Hence, the drift and diffusion of
an OUP can be adjusted independently. As a result, OUPs
with different values of autocorrelation and, hence, different
dynamic behavior, can have same probability distribution
in stationary conditions. In fact, the probability distribution
function of (4) is:

P (κ) =
1

σ
√

2π
e−

1
2 (κ−µσ )

2

, (5)

which does not depend on α.

A. Illustrative Example

In this paper, the goal is to analyze the impact of autocor-
relation of a stochastic process on the stability of the power
systems utilizing numerical TDS. With this aim, this section
considers an illustrative example.

Table I shows a set of parameters of OUPs. Figure 1 illus-
trates the time series of OUPs generated from the parameters
in Table I. It is important to note that the processes shown
in Fig. 1 (top panel) have the same probability distribution
in stationary conditions. However, their transient behavior is
significantly different because of the different value of α and,
hence, of their autocorrelation. On the other hand, the bottom
panel of Fig. 1 shows OUPs generated with different values
of σ but same values of α. Comparing the upper and lower
panel, it is evident that, from the dynamic point of view, a
process with high autocorrelation and low standard deviation
has a similar effect as a process with low autocorrelation and
high standard deviation.

Formally, the autocorrelation of a stochastic process is
defined as the measure of correlation of the present value to
the past and future values:

R(τ) =
E[(κt − µ)(κt+τ − µ)]

σ2
, (6)

where E is the expectation operator; κt is the value of the
process at time t; and τ is the time lag.

Figure 2 illustrates the autocorrelations of the OUPs shown
in Fig. 1. The autocorrelation is always equal to 1 for τ = 0,
by definition. As τ increases the correlation of the OUPs

TABLE I: Parameters of Ornstein-Uhlenbeck’s processes.

κ1 κ2 κ3 κ4 κ5 κ6

α 1 0.1 0.01 0.01 0.01 0.01

σ 0.1 0.1 0.1 0.4 0.3 0.2
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Fig. 1: Time domain profile of Ornstein-Uhlenbeck’s processes; the values of
parameters can be found in Table I.
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Fig. 2: Exponentially decaying autocorrelation of Ornstein-Uhlenbeck’s pro-
cesses; the values of parameters can be found in Table I.

between current and future values decreases exponentially
and decreases the faster the higher the value of α. This
exponentially decaying autocorrelation is observed in several
physical processes such as stochastic load dynamics [1], [5]
and wind fluctuations [2], [22]. Note, however, that processes
with different σ and same α show similar time evolution of
the autocorrelation (see bottom panel of Fig. 2).

It is interesting to note that, taken alone, neither the time
series of the OUPS shown in Fig. 1 nor the dynamic behavior
of the autocorrelation shown in Fig. 2 allow to distinguish
between the OUPs. A more effective way to visualize the
behavior of stochastic processes is through a Monte Carlo TDS
analysis. With this aim, 1000 trajectories of each process of
Table I, with initial condition κi(0) = 0, and a time step
h = 0.01 s for the increments of the Wiener process are
simulated. The standard deviation of all the trajectories for
each process is calculated at every time step and plotted against
time in Fig. 3. The results shown in Fig. 3 indicate that the time
at which a stochastic process becomes stationary, i.e. constant
standard deviation, depends only on the autocorrelation of the
process. On the other hand, the spread of the trajectories in
stationary conditions depends only on the value of the standard
deviation.

So far, we have considered independent OUPs. In the SDAE
model (2), however, the OUPs are dynamically coupled with
the rest of the system. Common sense would suggest that the
autocorrelation of the OUPs affects exclusively the transient,
while the standard deviation affects only the stationary condi-
tions. However, since the variables κ appear in the nonlinear
DAEs, this intuition is not correct. The remainder of this paper
shows that the autocorrelation of the OUPs also impacts on
the stationary conditions of the system.
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Fig. 3: Standard deviation of realizations of Ornstein-Uhlenbeck’s processes;
the values of parameters can be found in Table I.

IV. CASE STUDY

This section presents the simulation results of Monte Carlo
TDS of the non-linear SDAEs using a dynamic model of the
well-known two-area system [21], which consists of 11 buses,
12 lines/transformers, and 4 synchronous generators that are
modeled through a VI-order model and are equipped with
IEEE ST1a exciters, turbine governors, and an AGC to ensure
a secure operation of the grid. The system base is 100 MVA.
Stochastic disturbances are included in the load models as
discussed in Section II-A.

The impact of the autocorrelation of stochastic processes
on the dynamic behavior of the power system is evaluated by
considering the evolution in time of the standard deviation of
some relevant variables of the system. With this aim, Table II
defines six cases with various combinations of α and σ of the
OUPs that describe the loads.

The simulations are performed utilizing Monte Carlo TDS.
1000 trajectories are simulated for each case in Table II. The
non-deterministic part of non-linear SDAEs is solved by Euler
scheme utilizing a time step of h = 0.01 s, whereas the
deterministic part is solved by employing implicit-trapezoidal
integration scheme with a step size of ∆t = 0.01 s. The
total simulated time for each trajectory is t = 150 s. The
results presented in this section have been verified with other
numerical schemes. This allow concluding that the instabilities
observed for some scenarios are in effect due to the actual
behavior of the system and are not due to numerical issues.

Figures 4 and 5 show the evolution of the standard deviation
of active power generation pg for cases 2a, 2b, and 2c. It is
important to note that active powers pg belong to the vector
of algebraic variable y of (2), i.e. their stochastic behavior
is the result of the inclusion in f and g of the stochastic
variable κ. Figures 4 and 5 show that the standard deviation of
the variables increases as the autocorrelation of the stochastic
processes increases. This occurs despite the fact that the
processes have the same probability distribution in stationary
conditions, as shown from Fig. 3. Note also that all the cases
presented in Figs. 4 and 5 reach the same mean value.

The values of standard deviation of pg as well as of the
reactive power qg of all generators at stationary conditions are
shown in Tables III and IV. The results in both tables indicate
that the value of σpg and σqg increases from 85% to 330%,
as α is increased from 0.01 to 1 s−1.

TABLE II: Autocorrelation α and standard deviation σ of stochastic load
consumption for different cases.

cases α [s−1] σp [% of pL0] σq [% of qL0]
case 1a 0.01 0.4 0.4
case 1b 0.1 0.4 0.4
case 1c 1 0.4 0.4
case 2a 0.01 0.6 0.6
case 2b 0.1 0.6 0.6
case 2c 1 0.6 0.6
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Fig. 4: Standard deviation of pgG1 and pgG2 for cases 2a, 2b, and 2c.
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Fig. 5: Standard deviation of pgG3 and pgG4 for cases 2a, 2b, and 2c.
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Fig. 6: Voltage profile at bus 8 for a few unstable trajectories taken from
case 2c.

It is also interesting to note that 197 simulations are unstable
for case 2c. For illustration, a selection of the trajectories of
the voltage magnitude at Bus 8 for case 2c are shown in Fig. 6.
On the other hand, no instability occurs for cases 2a and 2b.
These results indicate that the autocorrelations of stochastic
processes, not the standard deviations and probability distribu-
tions alone, are crucial parameters for the stability analysis of
power systems. In fact, high standard deviations might not be
dangerous for the system if the autocorrelation is sufficiently
low. On the other hand, if the autocorrelations of the processes
are sufficiently high, even if their standard deviations are low,
instability can occur.



TABLE III: Standard deviation of active and reactive power generation of
synchronous generators for the three scenarios simulating stochastic loads for
cases 1a, 1b, and 1c.

Standard case 1a case 1b case 1c

deviation absolute [pu] % increasea % increasea

pgG1 0.022211 19.01 120.69
pgG2 0.022017 13.4 88.13
pgG3 0.022033 11.73 84.69
pgG4 0.022031 12.55 89.27
qgG1 0.030829 70.12 331.42
qgG2 0.048432 45.05 238.81
qgG3 0.032359 52.77 256.9
qgG4 0.053047 31.85 178.36

aNote: % increase is calculated based on case 1a.

TABLE IV: Standard deviation of active and reactive power generation of
synchronous generators for the three scenarios simulating stochastic loads for
cases 2a, 2b, and 2c.

Standard case 2a case 2b case 2c

deviation absolute [pu] % increasea % increasea

pgG1 0.03343 20.44 126.88
pgG2 0.03313 14.9 92.77
pgG3 0.03313 13.23 92.8
pgG4 0.03313 14.03 94.33
qgG1 0.04608 74.8 353.61
qgG2 0.07215 49.79 257.51
qgG3 0.04834 57.42 277.62
qgG4 0.07903 36.38 194.92

aNote: % increase is calculated based on case 2a.

V. CONCLUSIONS

This work evaluates the impact of the autocorrelation of
stochastic load consumption on the transient stability of the
power system and on the standard deviation of the trajectories
of system variables such as the output powers of synchronous
generators.

The case study shows that the autocorrelation of the stochas-
tic processes impacts significantly on the standard deviation of
the system variables. In fact, a high value of the autocorrelation
of a stochastic process, even if its standard deviations is
small and acceptable in stationary conditions, can lead to
high variations the system variables and, in some cases, to
instability. This non-intuitive result is due to the dynamic
coupling of the autocorrelation of stochastic processes with
the nonlinearity of the SDAEs that define the power system
model. We believe that this is an important result that system
operators should take into account when carrying out the
stability analysis of their grids.

Future work will focus on the impact of the autocorrelation
of stochastic renewable energy sources as well as on the
definition of techniques able to reduce the impact and/or the
coupling of autocorrelation on the dynamic behavior of the
power system.
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