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Abstract—This paper presents a decentralized methodology
for detecting and mitigating flapping phenomena in power
systems, primarily caused by the operation of discrete devices.
The proposed approach applies moving-window autocorrelation
to local measurements, enabling each device to autonomously
identify sustained oscillations. Upon detection, a probabilistic,
device-specific mitigation strategy is executed. Flexible demand
resources (DFRs), under-load tap changers (ULTCs), and au-
tomatic voltage regulators (AVRs) are utilised to illustrate the
performance of the proposed approach to both discrete and
continuous-operation devices. Results show that the proposed
method is robust and properly distinguishes damped oscillations
from persistent flapping, allowing devices to independently rec-
ognize problematic operating scenarios and implement corrective
actions accordingly.

Index Terms—Autocorrelation, induced oscillations, flapping,
discrete flexible resources, decentralized control.

I. INTRODUCTION

A. Motivation

The modernization of power systems is characterized by
an increasing proliferation of granular and discrete flexible
resources (DFRs), such as distributed energy resources and
demand response units. These devices are characterized by
their small individual capacities but extensive distribution
throughout the network. Typically, they operate discretely,
switching between predefined operational states according to
local measurement signals, primarily to support frequency or
voltage stability. Other, larger devices such as Under Load
Tap Changers (ULTC) or static reactive power compensators
have a similar operation logic, by following a signal from the
system, and reacting by switching to a different discrete level.

While such control schemes of the above-mentioned de-
vices offer operational flexibility, they can inadvertently in-
troduce undesirable system-wide phenomena, as extensively
documented in the literature [1]. For instance, studies such
as [2] highlight the potential issues arising from numerous
discrete flexible resources (DFRs) responding independently
to frequency deviations, provoking a so-called flapping effect,
characterized by sustained oscillatory behaviour due to fre-
quent switching between operational states. Similarly, the work
presented in [3] illustrates how multiple ULTCs operating
sequentially along the same transmission path can engage in
persistent and counterproductive switching cycles.

Finally, it is well known that certain continuous controllers,
such as the automatic voltage regulators (AVRs) of syn-
chronous machines can lead to limit cycles [4], [5], which

can be interpreted as the continuous counterpart of the flapping
phenomenon.

This work proposes a technique based on the estimation of
the autocorrelation of measured signals to clear the oscillat-
ing phenomena caused by discrete and continuous controller
shortly after their occurrence. This approach allows fully
exploiting the capability of devices equipped with discrete
or continuous control, while limiting the effects of arising
persistent oscillations.

B. Literature Review
The phenomenon of flapping—sustained, undesired oscil-

lations arising from uncoordinated switching of discrete de-
vices—has been extensively documented. Early analyses in
[1] and [6] characterize stability regions for load tap changers
and highlight the risk of limit cycles under certain regulator
deadband settings. Grazing bifurcations in cascaded ULTCs
were studied in [3], while [7] demonstrates how interactions
among DFRs and ULTCs can provoke counter-productive
switching cycles. Boundary-value approaches, as cited in [8],
demonstrate that nonsmooth device dynamics result in com-
plex cyclic behavior, with stability being critically dependent
on system inertia and switching thresholds.

A range of mitigation strategies has been proposed. Dead-
bands and rate limiters reduce device activity at the cost of
responsiveness [2]. Others, such as partial centralization of
control, utilization of deadbands, and adjustments in stochastic
controls, have been proposed to mitigate the cycling effects but
require aspects as communication and continuous adjustments
of parameters [2], [9], [10]. Work on DFRs for ancillary
services has demonstrated their value in frequency regulation
[11]–[13], yet also underscores the persistent risk of induced
oscillations when operating stochastically and independently
[14].

Autocorrelation analysis provides a powerful, noise-robust
means to detect periodic or seasonal behavior and has seen
broad application across various engineering fields [15], pitch
extraction in speech processing [16], and multipath error
mitigation in communication systems [17]. In power systems,
exponentially decaying autocorrelation models underpin wind-
speed stochastic differential equations [18]–[20], and recent
work shows that load autocorrelation influences voltage sta-
bility margins [21]. Based on some relevant features of the
autocorrelation, we develop an autocorrelation-based detection
framework, along with complementary self-actions for the
devices to control flapping.
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C. Contributions
This paper makes two main contributions:
• A decentralized detection algorithm based on signal au-

tocorrelation that identifies persistent flapping in discrete
devices using only local measurements.

• Design of adaptive control logic for DFRs, ULTCs, and
continuous elements as AVRs to autonomously mitigate
flapping, preserving device flexibility while enhancing
system stability.

D. Paper Organization
The remainder of the paper is organized as follows. Section

II presents the theoretical foundations and derivation of the
autocorrelation-based flapping detection methodology and the
devices’ models. Section III describes case studies, analyzing
the application of the model to DFRs, ULTCs, and continuous-
nature operation AVRs. Section IV proposes practical consid-
erations, including parameter selection and robustness to noise
and model uncertainty. Finally, Section V concludes the paper
and outlines directions for future research.

II. AUTOCORRELATION-BASED FLAPPING DETECTION

As mentioned in the context of discrete devices, undesired
oscillatory behavior can arise through different mechanisms.
The flapping effect denotes sustained oscillations driven by
uncoordinated or counter-productive switching actions, while
limit cycles refer to self-sustained oscillations inherent to
the system dynamics. For the purposes of this work, the
term flapping effect will be used to describe the sustained
oscillatory patterns of interest, regardless of whether they
originate from control-driven dynamics or hybrid switching
mechanisms.

Autocorrelation analysis provides a principled approach to
quantify repetitive patterns in a time series and to distinguish
persistent flapping from benign transients. In this work, these
characteristics are exploited to develop a method capable
of reliably detecting flapping events directly from device
measurements. In this section, we develop the theoretical
foundations, explain each extension to the autocorrelation
formulation, and justify the design choices that yield a robust,
on-device detection algorithm.

A. Notation
The following notation is utilized:
• fi,k: raw measurement (frequency or voltage) of device

i at sample k.
• ∆t: sampling interval (s).
• Nw, Ns: window length and shift (samples).
• µi,n, σi,n: windowed mean and standard deviation.
• R̂[k], ρ[k]: biased sample autocorrelation and normalized

coefficient.
• Tmin, Tmax: expected flapping period bounds (s).
• kmin, kmax: corresponding lag indices.
• r∗i : flapping detection metric.
• Rth: autocorrelation threshold.
• ε: tolerance on metric decay.
• M : required consecutive detections.
• ci, ϕi: persistence counter and flapping flag.

B. Continuous and Sample Autocorrelation

For a real, wide–sense stationary process X(t), the autocor-
relation function

RX(τ) = E
[
X(t)X(t+ τ)

]
(1)

measures the expected similarity of the signal with itself
delayed by τ . Because of stationarity, RX(τ) depends only
on the lag τ , not on the absolute time t. Thus, for a sequence
x[n], we define the biased sample autocorrelation:

R̂[k] =
1

N

N−k−1∑
n=0

x[n]x[n+k], k = 0, 1, . . . , N −1. (2)

Dividing by N simplifies the statistical bias analysis and
ensures that all lags are comparable. We then normalize:

ρ[k] =
R̂[k]

R̂[0]
, ρ[0] = 1, |ρ[k]| ≤ 1. (3)

The normalized autocorrelation ρ[k] captures only temporal
structure, independent of signal amplitude.

C. Windowing: Time-Local Analysis

Real-world frequency or voltage measurements are nonsta-
tionary: their statistical properties drift over time. To focus on
recent dynamics, we apply a moving window of length Nw

samples (Tw = Nw∆t), shifting by Ns samples (Ts = Ns∆t).
At each analysis step n, device i constructs

f
(w)
i =

[
fi,n−Nw+1, . . . , fi,n

]
.

Windowing adapts the detector to evolving operating condi-
tions and bounds computational load, since Nw is chosen to
span the longest expected flapping period.

D. Signal Normalization: Removing Bias and Scale

Within each window, we remove any DC offset and rescale
to unit variance:

µi,n =
1

Nw

Nw∑
m=1

fi,n−Nw+m, (4)

σ2
i,n =

1

Nw

Nw∑
m=1

(
fi,n−Nw+m − µi,n

)2
, (5)

xi,m =
fi,n−Nw+m − µi,n

σi,n
. (6)

Subtracting the mean (µi) removes any DC component,
isolating fluctuations around the typical value. This ensures
zero mean (DC bias removed) and unit variance (dimension-
less comparison). Complementary, dividing by the standard
deviation (σi) standardizes the variance to 1, ensuring that
only the temporal structure of the signal is analyzed, so
the autocorrelation metric is not biased by varying signal
amplitude. This standardization step is critical to apply a single
detection threshold Rth across different devices and operating
scenarios.
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E. Lag-Band Selection: Focusing on Flapping Periods

Flapping oscillations occur within a known period range
[Tmin, Tmax]. We convert these bounds to integer lags:

kmin =
⌈
Tmin/∆t

⌉
, kmax =

⌊
Tmax/∆t

⌋
. (7)

By restricting the autocorrelation analysis to k ∈ [kmin, kmax],
we suppress high-frequency noise (k < kmin) and slow drifts
(k > kmax), effectively creating a data-driven bandpass filter
that isolates candidate flapping periodicities.

F. Detection Metric and Persistence Criterion

Within the selected lag band, the maximum absolute nor-
malized autocorrelation

r∗i = max
∣∣ρ[k]∣∣ (8)

serves as a robust indicator of periodicity strength. To guard
against false alarms from transient spikes or random fluctu-
ations, we require that r∗i exceed the threshold Rth for M
consecutive windows, allowing a small tolerance ε for natural
decay:

ci =

{
ci + 1, r∗i > Rth ∧ r∗i ≥ r∗i−1 − ε,

0, otherwise,
(9)

ϕi =

{
1, ci ≥ M,

0, otherwise.
(10)

Here, ci is a persistence counter, and ϕi = 1 flags confirmed
flapping at device i. The tolerance ε accounts for small vari-
ations in autocorrelation due to window shifts. The threshold
Rth can be chosen empirically or via statistical analysis of
typical responses.

III. MODELS AND RESPONSE ACTIONS OF THE DEVICES

Once flapping is detected, a range of corrective actions can
be taken to restore system stability. The specific response de-
pends on the operating nature of each device. In what follows,
we describe the representative strategies adopted by granular,
cascaded, and non-granular devices, highlighting both direct
interventions and advanced coordination mechanisms.

A. Stochastic Control

Stochastic control has been proposed for granular devices
that form large populations of small, homogeneous units
distributed across the system. These devices act independently,
without communication, but follow similar control logic.

We model each DFR i as injecting power

pi(t) = κi(t) pi,o, (11)

where pi,o is the constant power step size and κi(t) ∈ {0, 1} its
on/off state [22]. Switching follows a decentralized stochastic
policy evaluated every ∆tctrl:

ui(t) =
∆ω(t) + ∆ωthr

2∆ωthr
, (12)

βi(t) =
n

k(t)

m(t)

mref
, (13)

where ∆ω is the local frequency deviation, ∆ωthr a dead-band,
n the total DFR count, k(t) the subset currently available,
and m(t) the estimated inertia with reference mref . Once the
value of ui is determined, each DFR independently generates a
random number between 1 and 0 using a uniform distribution,
say X ∼ U(0, 1).

Then the flexible load will switch on or off if:

κi(t) =

{
1, X ≤ βi(t)ui(t),

0, otherwise.
(14)

Some references, as [2], [23], propose that the coefficient βi is
updated every hour or half an hour and made available by the
system operator, making the system not entirely decentralized.
In the proposed method, we do not require central coordination
that utilizes the number of DFRs or the current inertia of
the system, βi(t). Instead, βi(t) is considered a factor that
modulates the stochastic operation of the DFRs. This model
captures both the inherent randomness of large populations and
the inertia-aware modulation of switching probability, ensuring
that fewer DFRs respond as system inertia decreases.

Upon detection of flapping, the decentralized flexible re-
source (DFR) i updates its modulation factor according to

βi(t) = a βi,init(t), (15)

where a ∈ (0, 1). This reduction lowers the switching prob-
ability and damps the oscillatory cycle. Importantly, residual
flexibility is preserved, enabling rapid restoration of support
once stability is regained. To have a more conservative action
and block the source of oscillation, one can set up a complete
disconnection of the devices, with a = 0.

B. Cascading

Devices connected along the same feeder (cascade), are
particularly prone to inducing flapping by oscillating against
one another. This phenomenon has been observed in particular
for discrete controllers with large steps, such as the case of
ULTCs connected in cascade. In these cases, the most effective
action is to block the operation of one device, thereby breaking
the cycling loop and preserving the ability of the remaining
unit(s) to regulate their target variable. If oscillations persist,
subsequent devices may also activate their blocking logic in
sequence until the cycling is suppressed.

C. Limit Cycles

In contrast to stochastic control, large continuous devices
such as synchronous machines with primary controllers can
give rise to limit cycles due to the dynamic coupling of
their dynamics under specific operating conditions, typically
characterised by weak grid conditions. Due to the large size of
most conventional power plants, they cannot be disconnected.
To avoid limit cycles, the most common solution is to include
power system stabilizers [24]. However, even with proper
tuning, it can never be completely excluded the possibility that
a limit cycle occurs. We propose thus an alternative remedial
action that combines stochastic control and the adjustment
of the internal control parameters of the primary regulation
associated with the oscillatory behaviour.
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To guide this coordination in cases of flapping detection, we
propose the use of the Teager Energy Operator (TEO) [25],
[26], a nonlinear tool that estimates the instantaneous energy
of a signal by combining amplitude and frequency information.
For a discrete-time signal x[n], the operator is defined as

Ψ[x[n]] = x[n]2 − x[n+ 1] · x[n− 1]. (16)

The TEO is particularly effective in detecting and quan-
tifying oscillatory behavior in nonstationary signals. On a
flapping event, the first step is to extract the TEO of a
representative feature that reflects the device’s contribution to
the disturbance. This feature may be defined in different ways,
for example, as the slope of the ray connecting the oscillation’s
starting point to its value after a given time, or as the angle
(αi) of that ray measured from the reference (the X-axis).

Normalization by the maximum possible value yields a
dimensionless metric

α̃i =
αi

αmax
, α̃i ∈ [0, 1], (17)

which provides a comparable measure of relative impact across
devices.

Based on this metric, we propose a stochastic local decision-
making scheme that preserves decentralization. At every con-
trol interval Mctrl, device i updates its parameter that causes
the flapping as

Ka,i =

{
Ksafe

a,i , if X ≤ α̃i,

K init
a,i , otherwise,

(18)

where X ∼ U(0, 1). Devices with greater estimated impact are
thus more likely to switch to a safe mode, contributing pro-
portionally to damping while maintaining full decentralization
and avoiding coordination delays.

IV. CASE STUDIES

The proposed autocorrelation-based detection framework is
implemented in the power system software tool Dome [27]
and tested on the WSCC 9-bus and IEEE 14-bus networks.
We design scenarios that deliberately provoke flapping by
high-activity switching, considering three representative device
classes: Discrete Flexible Resources (DFRs) and Under-Load
Tap Changers (ULTCs) as discrete devices, and Automatic
Voltage Regulators (AVRs) as devices with continuous-nature
operation. These case studies allow us to assess detection ac-
curacy, response latency, and the trade-offs between flexibility
and stability under different loading and inertia conditions.

A. Discrete Flexible Resources

Flexible loads can provide fast frequency support but may
also induce flapping when many units switch in an uncoordi-
nated manner. Each DFR i is modelled as in Section III and
their switching logic follows a decentralized stochastic policy
evaluated every ∆tctrl, as described by (14).

The WSCC 9-Bus Test System considers three PQ loads of
2.0, 0.9, and 1.0 pu at buses 5, 6, and 8. The 2.0 pu load at
bus 5 is subdivided into three groups (1.1, 0.6, and 0.3 pu) and
partially represented by n = 20 DFRs of 0.01 pu each (≈ 6%

of the total load). Each DFR measures its local frequency ωi(t)
every ∆tdet = 0.1 s using PLL-filtered data.

To detect flapping in DFRs, we employ the algorithm
presented in Section II with parameters selected to resolve
the characteristic cycling period, while ensuring robustness to
noise and real-time operation. The sampling interval is set to
∆tdet = 0.1 s, providing ten samples per period. A moving
window of Tw = 12 s (Nw = ⌈Tw/∆tdet⌉ = 120) captures
multiple oscillation periods, and a shift of Ts = 3 s (Ns =
30) balances detection latency against computational load.
Lag bounds corresponding to flapping periods Tmin = 0.9 s
and Tmax = 1.1 s are converted to kmin = 9, kmax = 11
as per (7). The detection threshold Rth = 0.90, tolerance
ε = 10−3, and persistence count M = 4 are selected based on
noise-level analysis and desired false-alarm rate. At each shift,
the normalized autocorrelation ρi[k] is computed via (2) and
(3), and the metric r∗i from (8) is evaluated. The persistence
counter ci and flapping flag ϕi are then updated following (9)
and (10).

At t = 5 s, the tripping of the 1.1 pu load initiates a
frequency excursion. Figure 1 shows three scenarios: (i) no
control to detect flapping is implemented; (ii) a decaying
oscillation occurs, so DFR’s flapping flag ϕi correctly remains
zero because it is not a sustained oscillation; and (iii) the flap-
ping controller remains inactive during the damped transient
(105–150 s) and switches to one under sustained oscillations
(≈180 s).

100 120 140 160 180 200 220 240
Time [s]

0.94

0.96

0.98

1.00

1.02

1.04

ω
[p

u
]

No Flapping Detection

Decaying − No Detection

Flapping Detection

Fig. 1. DFR flapping detection and flag ϕi.

Once flapping is detected, DFRs autonomously reduce their
switching probability. Figure 2 illustrates that the aggregate
power remains steady during benign oscillations but decreases
after detection, restoring system frequency without centralized
coordination.

Robustness is tested under reduced system inertia (40%
lower synchronous-machine inertia). Despite faster and larger
oscillations, Fig. 3 shows that the same detector settings
successfully identify flapping and trigger mitigation. This
confirms that detection is relative to oscillatory patterns rather
than absolute thresholds.

Finally, Fig. 4 compares the decentralized scheme against
a conservatively tuned centralized controller (only 50% of the
DFRs are operating at the same time). The centralized strategy
suppresses flapping but limits the frequency response, espe-
cially at the initial oscillations of the frequency. In contrast,
the decentralized method allows stronger early support while
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Fig. 2. Aggregate DFR power injection.
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Fig. 3. Flapping detection under reduced inertia.

preventing sustained oscillations, at the cost of having more
oscillations due to the operation of the DFRs.
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Fig. 4. Frequency response: decentralized vs. centralized tuning.

B. Under-Load Tap Changer

1) Base Model of the ULTC: The second case study fo-
cuses on analyzing the Under Load Tap Changer Transformer
(ULTC), which operates in discrete steps to control the voltage
of the downstream bus to which it is connected.

The analysis scenario is a system explained in [28], in which
two ULTCs are connected in series, as in Fig. 5, and when
seeking to control the voltage of their respective buses, they
have a complementary and sustained operation in time, which
causes a phenomenon named “limit cycle” or “cycling.”

This behavior has been the subject of several analyses and
publications, but none of them has achieved a mathematical
approach to model the instability conditions.

b

x0

T1 T2 Dyn. Load
Feeder

0 1 2 3

Fig. 5. Two ULTC distribution system.

The equation that describes the operation of the ULTC,
considering the tap position mk as the state variable, is:

mk+1 = mk +∆m (19)

where:

∆m =



+∆m if v > vmax,

−∆m if v < vmin,

0 if vmin ≤ v ≤ vmax

0 if mk ≥ mmax

0 if mk ≤ mmin

(20)

The load is a dynamic exponential recovery load, following:

Tpẋp = ps(v)− pt(v)− xp(t) (21)
Tqẋq = qs(v)− qt(v)− xq(t) (22)

p3 = pt(v)− xp(t) (23)
q3 = qt(v)− xq(t), (24)

As the initial parameters of the system, we have x0 =
0.1 pu, b = 3.33 pu, ∆m1 = 0.02 pu, ∆m2 = 0.05 pu, v0
= 1.0 pu. Initial tap ratios: mT1

0 = mT2
0 = 1. Delay of the

ULTCs: T 1
tap = 53, T 2

tap = 19; vmax =1.01 pu, vmin=0.99
pu. And regarding the dynamic load, Tp = 10 s, Tq = 5 s,
ps = p0 = 2 pu, qs = q0 = 0.5 pu, pt = p0v

2, and qt = q0v.

As observed in Fig. 6, the responses of each ULTC corre-
spond to an undesirable condition.
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Fig. 6. Time response of the two ULTC

Then, we apply the detection algorithm with:

∆tdet = 1 s, Tw = 300 s (Nw = 300), Ts = 30 s (Ns = 30).

Oscillation periods in [Tmin, Tmax] = [80, 120] s yield lag
bounds kmin = 80, kmax = 120. We maintain a circular
buffer of length Nw+kmax for the controlled voltage vcon[n].
Detection parameters are set as Rth = 0.35, ε = 10−3. At
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each shift, we compute ρ[k] evaluate r∗, and update c, ϕ. This
configuration reliably flags slow limit-cycle oscillations while
rejecting faster voltage transients.

The detector uses ∆tdet = 1 s, Tw = 300 s, Ts = 30 s, lag
bounds kmin = 80, kmax = 120, and threshold Rth = 0.35.

Figure 7 shows the tap ratio of the ULTCs. After four
consecutive windows of high normalized autocorrelation (r∗ >
Rth) flapping is detected, and triggers the blocking action.

In our coordinated scheme, the upstream ULTC is assigned
a lower persistence count M = 4, reflecting its larger tap
step size and greater influence on voltage stability, while
the downstream ULTC uses a higher M to tolerate benign
fluctuations. When the upstream device’s flag ϕ transitions
to 1 at around t = 550 s, its tap change ∆m is set to zero,
effectively freezing its operation and allowing the downstream
transformer to re-establish voltage control without flapping.
If residual oscillations persist beyond a subsequent detection
window, the downstream ULTC also freezes, as seen at t ≈
800 s.
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Fig. 7. Upstream ULTC flapping flag ϕ and blocking action.

Figure 8 compares the terminal voltages of the upstream
and downstream ULTCs before and after mitigation. Prior to
detection, both transformers cycle between their tap limits,
producing voltage oscillations of approximately ±5% around
the 1.0 pu setpoint.
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Fig. 8. Controlled voltages at transformer terminals before and after flapping
mitigation.

As shown in Fig. 8, once the upstream ULTC is blocked, the
downstream transformer reduces voltage deviations to within
±0.2% of the nominal value. After the downstream freeze at
t ≈ 800 s, the voltages remain steady and within an acceptable
boundary.

This case confirms that our decentralized, autocorrelation-
based method reliably identifies and stops ULTC cycling
without compromising its objective of voltage regulation.

C. Limit Cycle induced by AVR-Weak Grid Coupling
While the previous cases focus primarily on discrete ele-

ments such as DFRs and ULTCs, devices with continuous-
nature operation, including excitation systems and Automatic
Voltage Regulators (AVRs), can also induce sustained oscilla-
tory behaviour. Such conditions, frequently referred to as limit
cycles, exhibit analogous harmful behaviour to flapping. This
section explores the application of the autocorrelation-based
detection methodology to continuous-operation devices.

The IEEE 14-bus system consists of 14 buses, 5 syn-
chronous generators, and 11 loads. Each generator is equipped
with an AVR of Type-1 as described in [29].

First, as proposed in the Section II, we establish the de-
tection method based on the tracking of the voltages of the
buses of the system. To induce sustained voltage oscillations,
the AVR amplifier gains, Ka,i, are increased within a range
of 240 to 300, intentionally destabilizing their feedback loops.
The only reason why Ka,i differs between AVRs is to have a
better visual perception when observing their status over time.

We need that each AVR autonomously assess its contri-
bution to the detected oscillations and react accordingly. For
this coordination, as explained in Section III, we identify
the variable that causes the major impact on the controller
compared to the interest value. From the model of the AVRs,
we can state that relevant variables as the excitation field of the
synchronous machine, the feedback signal of the AVR, among
others, have a direct impact on the observed value (voltage).
For having access to the measurement of the controller, we use
the signal related to the feedback signal of the AVR. Then, we
calculate the cumulative Teager Operator of this variable.

Figure 9 illustrates the TEO’s trajectories, highlighting
AV R1 as the primary contributor, followed by AV R4 and
AV R5. Conversely, AV R2 and AV R3 exhibit negligible
impact. This distinction is crucial for prioritizing mitigation
actions.

1

Fig. 9. Teager Operator of the transient feedback state

From the TEO’s representation, the contribution to the
disturbance is calculated as the angle αi, normalized by
αmax = 90◦ applying (17). This normalized value is used as a
probabilistic modulation factor: AVRs with a larger estimated
impact on the oscillation are more likely to switch.
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In principle, if a suitable communication infrastructure were
available, a centralized operator could compare the impact
metrics from all AVRs, coordinate their responses, and pre-
scribe the optimal corrective actions. However, to preserve
decentralization and avoid the delays and complexity of cen-
tral control, we propose a stochastic local decision-making
scheme, ruled by (18). Under this scheme, each AVR evaluates
its operation logic at every control interval Mctrl defining
Ka,i. The value Ksafe

a,i denotes a reduced AVR gain, chosen to
be sufficient for maintaining stability while preserving basic
voltage regulation capability, whereas K init

a,i corresponds to the
original operating gain.

Applying the method in the IEEE 14-Bus Test System
by injecting a perturbation at t = 1s, which triggers the
oscillatory behaviour of the voltage. An increasing amplitude
of the oscillations is observed in the first seconds, but then it
stays as a sustained oscillation.

Following the logic of the method, while the controllers to
detect flapping are running, in parallel, the cumulative TEO is
being calculated, and the limits of (17). Once it is the moment
to operate (the flapping is detected), the random number is
generated, and will define if the ith AVR will move its gain
Ka, according to (18), as can be tracked in Fig.11. Figure 10
shows that AVR1, which has the highest α̃i, indeed operates
first; however, its operation is insufficient to control the voltage
oscillations. Therefore, the other AVRs continue to generate
random values and evaluate their operation. Around t = 30s,
AVR5 reacts and changes its gain. With this second action,
the system has accomplished enough actions to solve the
oscillations of the voltages, so no more AVRs should respond.
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Finally, Fig. 12 shows the synchronous generator frequen-
cies, where it can be observed how the machines react to the
voltage oscillations of the system. At this point, it is essential
to emphasize the importance of identifying and utilizing the
correct variable to calculate the TEO and calibrate the actions
of the controllers. Because, despite the influence of other
variables on the system’s voltage, such as reactive power
injection, it can cause undesired results.
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V. REMARKS AND PRACTICAL CONSIDERATIONS

The effectiveness of the proposed autocorrelation-based
detection critically depends on both signal quality and appro-
priate parameter tuning. In practical implementations, prepro-
cessing techniques, such as low-pass filtering or spike removal,
can improve the reliability of the autocorrelation coefficients
ρ[k] in noisy environments. Care must be taken, however,
to preserve the characteristic frequency content of flapping
phenomena, since excessive filtering may hide oscillations or
misclassify them as slow drifts.

Parameter tuning should reflect the dynamic characteristics
of the targeted devices. For DFRs, characterized by rapid
switching on the order of seconds, short analysis windows
(e.g., Tw ∼ 10 s) and narrow lag bands (Tmin ≈ 1 s)
are effective. Conversely, ULTCs, which operate over longer
periods, benefit from extended windows (e.g., Tw ∼ 300 s)
and wider lag intervals (e.g., Tmin ≈ 80 s). Operators should
estimate expected oscillation periods in advance and calibrate
parameters such as Tw, kmin, kmax, Rth, and the persistence
threshold M accordingly.

While simpler detection approaches exist, such as counting
discrete device operations, these can lead to false positive
detection in case of poorly damped oscillations, stochastic
switching, or changes in the device population. False positive
detections unnecessarily degrade the dynamic performance of
the system. By relying instead on continuous system-level
measurements, the proposed autocorrelation-based method
provides robust detection that is less sensitive to such vari-
ations. The methodology can also be extended to continuous-
operation devices, such as AVRs, as discussed in Section IV-C,
enabling a unified approach to oscillation detection across
device types.
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VI. CONCLUSION

This work presents a decentralized methodology based
on autocorrelation analysis to identify and address flapping
phenomena in power systems. In the proposed approach,
individual devices detect sustained oscillations by means of
local measurements, and respond autonomously, without re-
liance on centralized coordination or extensive communication
infrastructure.

The proposed framework supports diverse device types,
including DFRs, ULTCs, and continuous-operation AVRs,
through parameter sets tailored to their specific dynamic
characteristics. This ensures reliable discrimination between
harmful persistent oscillations and benign transients, even
under variable operating conditions. The method’s scalability
and robustness have been validated through simulations, show-
ing consistent improvements in system stability and control
effectiveness.

Future work will explore adaptive threshold tuning, inte-
gration with hybrid centralized–decentralized control architec-
tures, and broader application of the methodology to other
stability phenomena in low-inertia systems.
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[22] J. McMahon, T. Kërçi, and F. Milano, “Combining flexible loads with
energy storage systems to provide frequency control,” in IEEE PES
Innovative Smart Grid Technologies - Asia (ISGT Asia), 2021.

[23] “Operation handbook: Load-frequency control and performance,” 2004.
[24] E. V. Larsen and D. A. Swann, “Applying power system stabilizers

part i: General concepts,” IEEE Transactions on Power Apparatus and
Systems, vol. PAS-100, no. 6, pp. 3017–3024, 1981.

[25] B. Chen et al., “Forced oscillation location in power systems using
improved teager energy operator,” in IEEE International Conference on
Energy Systems and Electrical Power, Wuhan, China, 2024.

[26] I. Kamwa, A. Pradhan, and G. Joos, “Robust detection and analysis
of power system oscillations using the Teager-Kaiser energy operator,”
IEEE Transactions on Power Systems, 2011.

[27] F. Milano, “A Python-based software tool for power system analysis,”
in Proceedings of the IEEE PES General Meeting, 2013.

[28] I. Hiskens, “Power system modeling for inverse problems,” IEEE
Transactions on Circuits and Systems, 2004.

[29] F. Milano, Power System Modelling and Scripting. Springer, 2010,
iSSN: 1612-1287, 1860-4676.


