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Abstract—This paper proposes a general-purpose model of an
anti-windup proportional and integral (PI) controller based on
Filippov theory and discuss the performance of the proposed PI
model for the dynamic analysis of power systems. The proposed
model accurately captures non-smooth dynamics according to
the IEEE standard 421.5-2016 and effectively removes trajectory
deadlock and chattering. The validation of the model is per-
formed considering an automatic voltage regulator and a static
synchronous compensator in a single-machine infinite-bus system
and the WSCC 9-bus system, respectively.

Index Terms—Anti-windup, chattering, Filippov theory, slid-
ing, hybrid dynamical systems, trajectory deadlock, PI control.

I. INTRODUCTION

Electro-mechanical dynamics of power systems are con-
veniently modelled through a phasor-based model consisting
of a set of continuous nonlinear stiff Differential Algebraic
Equations (DAEs). However, large disturbances, controller
saturation, generator over-excitation limit and transformer tap
changer controllers introduce discontinuities and lead to a
formulation of power systems as a set of Hybrid Differential
Algebraic Equations (HDAEs), i.e., a set of equations the mix
continuous and discrete variables.

In the power system literature, there exists and hand-
ful of proposed modelling and implementation methods to
HDAEs [1], [2]. However, existing methods cannot handle
the chattering-Zeno-type deadlock issue, which consists of in-
finitely many instantaneous switches of the discrete variables.
This phenomenon is often observed in anti-windup (AW)
proportional and integral (PI) controllers modelled according
to the IEEE Std. 421.5-2016 [3], [4], [5]. Until now, only ad
hoc approaches have been proposed to handle the deadlock
issue. For example, a technique based on a dead-band has
been proposed in [3]. In this work, we adopt a trajectory
continuation based on the mathematical theory developed by
Filippov [6].

Filippov theory (FT) generalizes the discontinuities on the
first-order ordinary differential equations and provides proper
switching conditions. Moreover, if the solution enters into
a constrained subset of the state space, typically known as
sliding, the formalism given by Filippov [6] allows defin-
ing a vector field on the sliding surface to properly handle
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discontinuities. In fact the FT formalism effectively removes
the deadlock by smoothing the trajectory is proved in our
preliminary results [7].

While effective, the FT-based approach poses several chal-
lenges, especially with respect to the numerical integration of
DAEs. The main challenge is the definition of the analytical
conditions and, thereafter, the implementation of a robust algo-
rithm to automatically switch between different discontinuous
states through capturing accurate non smooth dynamics. This
paper fills this gap and duly present a general chatter-free
model of the IEEE AW PI controller based on FT.

The contribution of this paper is the design of a general-
purpose hybrid model of the AW PI controller based on
Filippov theory. This approach allows integrating the equations
along the deadlock region and removes the chattering and other
numerical issues that are shown by existing techniques based
on dead-band and semi-implicit formulation presented in [2]
and [3].

The remainder of the paper is organized as follows. Section
II presents the model of the IEEE model of the AW PI
controller and describes the numerical issues that such a
model can originate. This section also outlines the techniques
proposed in the literature to overcome the numerical issues
of the IEEE AW PI model. Section III briefly discusses
Filippov theory and Section IV presents the generalized FT
based model. Section V presents numerical validations of the
proposed model based on the Modelica language [8] as well as
on the power system software tool DOME [9]. Finally, Section
VI draws conclusions and outlines future work.

II. FORMULATION

A. IEEE Anti-Windup PI Model
The IEEE Std. 421.5-2016 recommends a conditional inte-

gration method to avoid windup effects when the output of
the controller exceeds its limits, depicted in Fig. 1. The model
consists of the following rules [10]:

If y ≥ wmax : w = wmax and ẋ = 0 ,

If y ≤ wmin : w = wmin and ẋ = 0 ,

Otherwise : w = y = kpu+ x and ẋ = kiu ,

(1)

where u, y, w and x are the input, output without limit,
limited output and integrator state variable, respectively; and
kp, ki, wmax and wmin are the proportional gain, integral
gain, maximum and minimum limits, respectively. The state
transitions above are illustrated in Fig. 2.
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Fig. 1: The anti-windup PI controller block in accordance with
the IEEE Std. 421.5-2016 [10].
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Fig. 2: State transitions of the anti-windup PI controller model.

B. Deadlock

This section describes the numerical issues intrinsic of the
IEEE AW PI model. Let us assume that at the beginning of
the simulation, the input to the PI controller has an initial
integrating state (INT) that is within the controller limits (see
Fig. 2) and that such an input the output reaches its maximum
limit at t1. Then, at t1, one has:

xt1 + kput1 = wmax , (2)

where xt1 and ut1 are the values of the integrator state variable
and input, respectively, at t1. Now, let us assume that the
condition to switch back to the INT state are satisfied at t2,
as follows:

y < wmax . (3)

While the state is in the maximum state (MAX), the value
xt1 is constant and ut2 in the input at t2. Thus re-writing (3):

xt1 + kput2 < wmax ⇒ ut2 <
wmax − xt1

kp
= ut1 , (4)

considering kp > 0, if the input ut2 becomes lower than ut1
i.e. condition (4) is full-filled then a transition from the MAX
state to the INT state will happen. Assuming at t2 the input ut2
decreases from ut1 at an integration step and ∆u = ut2−ut1 <
0. Depending on the integration method, and the step size h,
the change in state variable ∆x = xt2 − xt1 , can be obtained
as:
• Backward Euler: ∆x = hẋt2 = kihut2 ,
• Forward Euler: ∆x = hẋt2−1 = kihut1 ,
• Trapezoidal: ∆x = h

2 (ẋt2−1
+ ẋt2) = ki

h
2 (ut1 + ut2).

Assuming ki > 0 and ut2 > 0, then ∆x > 0. For a feasible
transition from the MAX to the INT state at the end of the
integration step, y < wmax must hold i.e.

∆x+ kp∆u < 0 , (5)

using the values of ∆x and ∆u into (5) for the Backward
Euler integration method, one has:

kihut2 + kp(ut2 − ut1) < 0 ,

⇒ ut2
ut1

<
1

1 + kih
kp

. (6)

ẋ = 0

y ≥ wa

max

y < (wmax − db)a

INT

ẋ = kiu

MAX

kput + xt−1 ≥ wb
max

kput + xt−1 < wb

max

Fig. 3: State transitions of the anti-windup PI controller for
existing solutions considering: superscripts a and b indicate
the deadband- and time delay-based techniques, respectively.

Similarly for the Forward Euler and Trapezoidal method,
one has:

ut2
ut1

< 1− kih

kp
,
ut2
ut1

<
kp − h

2ki

kp + h
2ki

. (7)

The conditions (6)-(7) need to be satisfied to switch from
the MAX to the INT region. Otherwise a deadlock situation
arises. The deadlock consists in an infinite loop where the
state variables switches between the MAX and INT states.
For implicit integration schemes the deadlock also prevents
the solver to converge at a given time step and thus the
simulation gets stuck. Note that the conditions (6)-(7) depend
on the integration step-size h, gain values and current value
of the input. It is also important to observe that the deadlock
originates due to the time discretization of the numerical
integration scheme. For h → 0, in fact, the conditions (6)-
(7) are always satisfied and the deadlock does not occur.

It is also important to note that there exist AW implemen-
tations other than the IEEE one that do not show numerical
issues. These techniques are not considered in this paper as
their dynamic behavior is subtly different for large disturbance
compared to the IEEE PI model. The interested reader can
refer to [11] for a comparison of a variety of AW PI imple-
mentations.

C. Existing Solutions

There exists several techniques to avoid the numerical
deadlock of the IEEE Std. type AW PI controller. These are
the following.
• Deadband: This technique is illustrated in Fig. 3 and

consists in modifying the state transitions through a dead-
band [3].

• Time delay: To move from the INT state to the MAX or
the MIN, this method considers the value of the integrator
state variable from the previous time step (see Fig. 3).

• No-Convergence: In real-world applications the deadlock
eventually disappears because of the variation of the
input. A simulator can mimic such a behavior by forcing
the solver to move to the next time step after certain
number of iterations even if the solver does not converge.

• Semi-implicit: This technique consists in using a semi-
implicit formulation [12] to convert the integrator state
variable into an algebraic variable to continue the simu-
lation during deadlock [2].

The drawbacks of the first three techniques above are that
they do not truly represent the hybrid model and introduce
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artificial chattering. Though it does not show chattering, the
semi-implicit formulation does not consider the effect of
disturbances of the input to evaluate state transitions while the
state is in the deadlock region [4]. Moreover, the semi-implicit
formulation requires a solver-dependent implementation and is
not supported by most software tool.

III. FILIPPOV THEORY

Filippov systems are dynamical systems with discontinu-
ous right-hand side first-order ordinary differential equations
(ODEs) [6]. Consider the following switched dynamical sys-
tem:

ẋ = f(x) =

{
f1(x) when h(x) < 0

f2(x) when h(x) > 0
(8)

where, the event function h : Rn → R and an initial condition
x(t0) = x0 are known. The state space Rn is separated by a
hyper-surface Σ into two regions R1 and R2 as follows,

R1 = {x ∈ Rn | h(x) < 0},
R2 = {x ∈ Rn | h(x) > 0},
Σ = {x ∈ Rn | h(x) = 0},

(9)

such that Rn = R1 ∪Σ∪R2, assuming at x ∈ Σ the gradient
of h never vanishes, i.e. hx(x) 6= 0 for all x ∈ Σ.

Filippov convex method [6] states that the vector field on
the surface of discontinuity is a convex combination of the
two vector fields in the different regions of the state-space:

ẋ = f(x) =


f1(x), x ∈ R1

co{f1(x), f2(x)}, x ∈ Σ

f2(x), x ∈ R2

(10)

where, co(f1, f2) is the minimal closed convex set

co{f1, f2} = {fF : x ∈ Rn → Rn : fF = (1− α)f1 + αf2},
(11)

where α ∈ [0, 1].
Consider the trajectory starting at t0 with ẋ =

f1(x), with x(t0) = x0 reaches at Σ in finite time (tk). Then
at tk the trajectory can cross or slide or exit the Σ. In such
a situation, the first order theory given by Filippov explains
what to do, summarized in the following.

A. Filippov First Order Theory

Filippov first order theory defines the vector field if the
solution approaches the discontinuous surface. Let x ∈ Σ
and n(x) is the unit normal to Σ at x i.e. n(x) = hx(x)

‖hx(x)‖
where, hx(x) = ∇h(x) and ∇ = ∂

∂x ; the components of
f1(x) and f2(x) onto the normal to the Σ are nT (x)f1(x)
and nT (x)f2(x) respectively.

1) Transversal Crossing: If at x ∈ Σ,

(nT (x)f1(x)).(nT (x)f2(x)) > 0, (12)

then the trajectory leaves Σ. The system returns to R1 with
f = f1, if nT (x)f1(x) < 0 or it proceeds to R2 with f = f2
(see Fig. 4[I]), if nT (x)f1(x) > 0.

f1(x)

f1(x)
f1(x)

f2(x)
f2(x)

f2(x)

Σ

Σ

n(x) n(x)x(t)

x(t) x(t)

R2 R2

R1
R1

a1 b1

[I] [II]

Fig. 4: Different regions of the state space with [I] transversal
and [II] sliding trajectory.

2) Sliding mode: Sliding occurs, at x ∈ Σ, if

(nT (x)f1(x)).(nT (x)f2(x)) < 0 . (13)

An unique attracting sliding mode occurs if

(nT (x)f1(x)) > 0 and (nT (x)f2(x)) < 0, x ∈ Σ , (14)

and the solution does not leave Σ (see a1 in Fig. 4[II]). During
sliding, the time derivative fF is given by:

fF (x) = (1− α(x))f1(x) + α(x)f2(x) , (15)

where, α(x) is given by [proof, see [6]]:

α(x) =
nT (x)f1(x)

(nT (x)(f1(x)− f2(x))
· (16)

If the signs are opposite in (14) the sliding mode is called
repulsive and does not generally have a unique solution. For
this reason, the repulsive sliding mode is not considered in
this work.

3) Exit Conditions: If, while in sliding mode, one of the
vector fields drifts away, the solution continues above or below
the sliding surface (see b1 in Fig. 4[II]). The exit point is
calculated by finding either the root α(x) = 0 or α(x) = 1 as
appropriate. The following remarks are relevant:

• If fF (x) 6= f1(x), fF (x) 6= f2(x) such a solution is often
called a sliding motion.

• If at the point of discontinuity, condition (13) becomes
≤ 0 and f1(x) 6= f2(x) then a continuous vector-valued
function fF (x) is given which determines the velocity
of motion ẋ = fF (x) along the discontinuity line. If
nT (x)f1(x) = 0 then fF (x) = f1(x); if nT (x)f2(x) = 0
then fF (x) = f2(x).

IV. FILIPPOV BASED ANTI-WINDUP PI CONTROL

FT is based exclusively on ODEs. However, power systems
models are described as DAEs. Hence, in power system
applications, the input to a PI controller can be an algebraic
or a state variable. In this section, we discuss the requirements
of a FT-based model of the IEEE Std. AW PI controller and
then propose a general design that is compatible with DAEs.
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A. General-Purpose Design

Let us consider the PI controller in Fig. 5. This system is
represented by (1) and

u̇ = (v1 − u)/T

v1 = v − vref ,
(17)

where v1 is the controlled signal and vref is the reference
signal.

+

- v1v

v
ref

1

1 + sT

u

wmax

wmin

kp
s

ki w

Fig. 5: Generalized IEEE Std. anti-windup PI controller based
on FT.

According to FT, the dynamical equations of this system
can be represented as (considering the upper limit only),

ẋ = f(x) =

{
f1(x) if h(x) < 0 ,

f2(x) if h(x) > 0 ,

with

f1(x) =

(
(v1 − u)/T

kiu

)
, f2(x) =

(
(v1 − u)/T

0

)
,

and the surface Σ is defined by zero of h(x) = y − wmax =

kpu+ x− wmax and hx(x) = [∂h(x)∂u
∂h(x)
∂x ]T = [kp 1]T .

Let us define r1 = hTx (x) f1(x) and r2 = hTx (x) f2(x) and

r1 = (kp 1)

(
(v1 − u)/T

kiu

)
= kp

(
(v1 − u)/T

)
+ kiu ,

r2 = (kp 1)

(
(v1 − u)/T

0

)
= kp

(
(v1 − u)/T

)
.

(18)
If a sliding condition is met, the sliding vector field on Σ

using (15) and (16) becomes:

α(x) =
kp((v1 − u)/T ) + kiu

kiu
,

fF (x) =

(
(v1 − u)/T

−kp((v1 − u)/T )

)
.

(19)

An AW PI controller based on (18) and (19) provides
correct dynamic response for any disturbance and transient
condition. This is obtained through the introduction of the low
pass filter. The FT, in fact, requires that all input signals are
smooth (i.e. continuous and differentiable) variables. The low
pass filter, however introduces a small delay in the transient
behaviour of the input and, thus, has to be tuned so that it
dynamic is faster than that of the PI controller. Since power
system DAE models are intrinsically stiff, the condition on the
dynamic of the low pass filter can be easily accommodated by
any solver designed for power system analysis.

Based on (18) and (19), the controller has three states, the
two states for h(x) < 0 (INT) and h(x) > 0 (MAX), and a

z1 = 0, z2 = 0

r1r2 < 0 &

r1 > 0 & r2 < 0

r 1
r 2

>
0
&
r 1

<
0

SLIDING

z1 = 0, z2 = 1

MAX

r2 = 0

r
1
=
0

INT

z1 = 1, z2 = 0

r 1
r 2

>
0
&
r 1

>
0

r
1 r

2
<
0
&
r
1
>
0
&
r
2
<
0

Fig. 6: State transitions of the anti-windup PI controller based
on FT (MIN state is not shown).

new state called SLIDING, characterized by h(x) = 0. For
the computer implementation of the FT-based AW PI model,
it is convenient to introduce two discrete variables, say z1 and
z2, into the integrator differential equations, as follows:

ẋ = kiu z1 −
(
kp(v1 − u)/T

)
z2 .

Fig. 6 shows the change in (z1, z2) for the three states
and the conditions to move from one state to another. These
conditions are based on FT and evaluated the moment at which
the event function (h(x)) crosses zero. If the solution enters
into the sliding region the exit conditions are defined based
on (19). In particular, α(x) = 0 and α(x) = 1 are the
conditions that indicate to move to the INT and MAX regions,
respectively.

Following a similar procedure a complete state transition
scheme can be obtained to consider the lower limit i.e. the
MIN state.

V. CASE STUDY

This section discusses the software implementation of the
proposed FT-based implementation of the AW PI and vali-
dates such a model through time domain simulations. Two
applications are considered: (i) an excitation system in a
Single Machine Infinite Bus (SMIB) system; and (ii) a Static
Synchronous Compensator (STATCOM) in WSCC 9-bus test
system.

A. Software Implementation

The generalized design of the AW PI controller can be
implemented in a computer language considering an event
driven or a time stepping approaches [13]. The former method
simulates the system with accurately detecting the actual event
time [14] and the latter method without [2]. The case study of
the SMIB system considers an event driven implementation
utilizing the Modelica language [8] and the WSCC-9 bus
systems considers a time stepping implementation utilizing the
Python-based power system software tool DOME [9].

The deadband (DB) and time delay (TD) based PI con-
trollers described in Section II-C are also implemented for
comparison. In all case studies the value of DB is 0.001. The
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v1 6 θ1

jx13

v3 6 θ3

jx23

pl + jql

v20 6 θ20

Fig. 7: Single-machine infinite-bus test system.

TABLE I: PARAMETERS OF THE SMIB SYSTEM

Name Values

Generator M = 8, D = 0, x′
d = 0.25, xd = 1, pm = 1, T ′

d0 = 6
Line x13 = 0.3, x23 = 0.5
Load pl0 = 0.7, ql0 = 0.01
AVR Tr = 0.005, kpr = 10, kir = 25, kpm = 2, kim = 20,

Ta = 0.02, Tg = 0.005, kg = 0.18, vmax
G = 99, vref = 1

PSS ks = 1.5, T1 = 0.23, T2 = 0.12

time constant of the lag filter is T = 0.0001 s for the FT-based
AW PI model.

B. SMIB with an ST4C type Excitation System

Fig. 7 shows the SMIB system considered in this example.
The generator is equipped with an Automatic Voltage Regu-
lator (AVR) and a Power System Stabilizer (PSS) as depicted
in Fig. 8. The generator model is a third order type; the PSS
consists of a stabilizer gain and a lead lag block [15]. The AVR
is a simplified version of the ST4C static excitation system
[10].

+

_ _

+

uin

ks
1 + T1s

1 + T2s

1

1

c vr

vt

kg

1 + Tgs

v
ref

kir

v
min
m

kpm
kim

s s

vim

1 + sTr

v
min
r

v
max
r vg

v
max

G

v
max
a

v
min
a

1 + sTa

kpr

v
max
m

vf

Fig. 8: Control diagram of the ST4C static excitation system
with inclusion of a PSS.

The input to the PSS is the rotor speed of the generator and
the active and reactive power of the load are modelled as pl =
pl0( v3

v30
), ql = ql0( v3

v30
)2, where v30 is the initial voltage from

power flow calculation. The parameters of all components of
the SMIB system are given in Table I. For all PI models and
the lag filter model (see Fig. 8), the maximum and minimum
values of the AW limiter are 2 and −0.8, respectively.

As discussed in Section II-B, the numerical integration of
the IEEE AW PI controller can fail as a consequence of several
factors. In the following, we consider two disturbances for
which the solver gets stuck for validating the FT based AW PI
controller. The Modelica-based simulation tool Dymola [16]
is used to solve all simulations for this case study.

1) Contigency I: A three phase fault occurring at 5 s
and cleared after 100 ms is simulated in the SMIB system.
Following the disturbance, both the PI controllers and the lag
block of the AVR reaches their limits. Fig. 9 shows the state-

1.7

ts

DB

TD

FT

ẋ
i
m

xim

5

2

3

4

1.4 1.45 1.5 1.55 1.6 1.65

1

0

−1

−2

Fig. 9: Time derivative of the integrator state variable (ẋim)
with respect to the integrator state variable (xim).

DB

TD

FT

v
f

Time [s]
5 6 7 8 9

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Fig. 10: Trajectory of the output of the AVR.

space representation (xim, ẋim) of one the AW PI controller
included in the AVR (see Fig. 8).

The FT-based AW PI controller provides a smooth response
compared to the DB and TD implementations. Thus the main
advantage of the FT model is that it removes the artificial
chattering. To realize how this chattering is removed observe
the sliding vector field in (19). During the sliding mode, the
FT-based implementation allows increasing the integrator state
variable consistently to the decrease of proportional channel of
the controller. On the other hand, DB and TD models increase
the integrator state variable by imposing some delay. This
delay originates the chattering. Compared to these techniques,
the FT-based AW PI model requires less state events and
is thus less computationally demanding along the chattering
region.

For completeness, Fig. 10 illustrates the output of the AVR,
i.e. the field voltage (vf ) and the response is identical for all
the methods.

2) Contigency II: The SMIB system is simulated by in-
creasing the voltage reference set-point (vref = 1.03 pu) and
the load (pl0 = 0.8 pu, ql0 = 0.02 pu) at t = 5 s. Fig. 11
shows the time derivative of integrator state variable (ẋim)
with respect to time. Following the disturbance, the integrator
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Fig. 11: Response of the time derivative of integrator state
variable (ẋim) with respect to time.

state variable xim enters into the deadlock region for the DB
and TD models. Then, xim into the MAX state, comes back
to the deadlock region and chatters again. While chattering,
another step increase in the load (pl0 = 0.82 pu, ql0 = 0.025
pu) is applied at t = 5.4 s which drives xim to the MAX state
exactly at 5.4 s.

Except for the chattering, the FT model shows same trajec-
tory for xim as the DB and TD models between the SLIDING
and MAX states while the solution is at the SLIDING state for
a step increase in the reference set-point. Thus the FT based
method provides accurate dynamic response considering all
kinds of disturbance. This proves that the proposed model is
consistent with existing implementation and captures accurate
hybrid system dynamics without any chattering.

Fig. 12 shows the output (vim) of the AW PI controller
included in the AVR with respect to the integrator state
variable (xim). The trajectory obtained with the DB and
TD models continues through switching during the deadlock
period. Note that the number of switches depends on the dead-
band width/delay magnitude as well as the time step of the
simulation. The latter dependency indicates that the chattering
actually a numerical issue, not a physical behaviour of the
controller. On the other hand, the FT-based implementation
is independent from the time step, as long as the time step
is compatible with the numerical stability of the integration
method and adequate for the DAE stiffness.

C. VSC-based STATCOM

This case study considers a VSC (Voltage-Sourced
Converter)-based STATCOM in the WSCC 9-bus test system.
The STATCOM is a shunt Flexible AC Transmission System
(FACTS) device utilized to regulate the voltage of the bus at
which it is connected. To model the STATCOM an Average
Value Model (AVM) of the converter and a vector-current
control based on dq-composition with grid voltage as phase
reference is used [17]. The converter and its control loops are
shown in Fig. 13. The d and q components in the outer control
are utilized to control AC and DC voltages respectively and

DB

TD

FT

xim

v
i
m

1.2

1.3

1.4

1.4

1.5

1.5

1.5

1.6

1.6

1.6

1.7

1.7

1.7

1.8
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1.8

1.9

1.9

2
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2 2.1 2.2
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Fig. 12: Response of the output (vim) with respect to the
integrator state variable (xim).
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Fig. 13: VSC converter with its inner and outer control in
dq-frame.

TABLE II: VSC-based STATCOM parameters.

Name Values

Converter lac = 0.401 pu, rac = 0.003 pu
Current Limits ilim

ac,q = ±0.3 pu, ilim
ac,d = ±0.01 pu

Outer Control ko,q
p = 5.5, ko,d

p = 50, ko,q
i = 45, ko,d

i = 25

Inner Control ki,q
p = 0.2, ki,d

p = 0.2, ki,q
i = 20, ki,d

i = 20

the inner loop controls the decoupled d and q currents. Both
outer and inner level controllers are AW PI controllers.

The test network consists of three synchronous machines,
three two-winding transformers, three loads and six transmis-
sion lines. All generators are equipped with AVRs and Turbine
Governors (TGs). The dynamic data of this test network is
provided in [18]. The VSC-based STATCOM is connected at
bus 8 and the parameters are given in Table II. The STATCOM
without any storage can only provide reactive power support
except for some losses. Therefore current limits in the outer
loops are set by prioritizing the q-axis component [11]. The
simulations of this example have been solved with DOME [9].

1) Contingency: A three phase fault occurring at t = 1 s is
applied for 60 ms and cleared through disconnecting the line
in between buses 6 and 9. The line is reconnected at t = 6
s. The dynamic response of the q-axis current reference (iref

ac,q)
is shown in Fig. 14 for DB and FT models. The TD model is
not compared in this case study as it shows similar results as
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Fig. 14: Response of the output of the AC voltage controller
in the outer loop.
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Fig. 15: Time derivative of the integrator state variable with
respect to the state variable of the AC voltage controller in the
outer loop.

the DB one.
Before the occurrence of the fault, the STATCOM does

not provide any reactive power so the iref
ac,q is zero until

t = 1 s. However following the fault, the iref
ac,q reaches its

limit in the attempt to regulate the voltage and comes back
within the limit when the fault is cleared. Then the controller
shows an oscillatory response to reach a steady state solution.
The AW PI controller enters into a deadlock region in two
occasions (zoomed in Fig. 14). In the deadlock region the
controller based on the DB model shows numerous chattering
whereas the FT-based controller shows a smooth response.
The trajectories of the time derivative of the integrator state
variable of the AW PI controller of the AC voltage controller
based on DB and FT models are shown in Fig. 15, confirming
the ability of the FT implementation to avoid chattering.

This example also confirms the versatility of the proposed
FT approach, which proves to be suitable for both event-driven
(Dymola) and time-stepping (DOME) software tools.

VI. CONCLUSIONS

A general-purpose state transition diagram is proposed to
model and implement the IEEE Std. 421.5-2016 AW PI

controller to remove trajectory deadlock and chattering based
on the FT. The conditions to automatically switch to different
discontinuous vector fields are also duly derived. The case
studies show that the proposed design provide accurate dy-
namic response and is suitable for implementation in a power
system software tool.

Future work will extend the FT-based AW PI controller to
impose time varying limits.
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