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Impact of Power Fluctuations on Frequency Quality
Ángel Vaca, Student Member, IEEE and Federico Milano, Fellow, IEEE

Abstract—This paper analyzes how power injections affect
frequency quality in power systems. We first derive a general
expression linking active and reactive power injections at buses
to the system’s frequency. This formulation explicitly considers
both real and imaginary frequency components, providing a
complete description of frequency behavior in power systems
during transients. Next, we extend our analysis to incorporate
stochastic variations of power injections. Using the frequency
divider concept and power-based frequency estimation, we de-
velop analytical relationships linking stochastic load fluctuations
to frequency deviations. We discuss under which conditions
the Central Limit Theorem cannot be applied to capture the
frequency distribution, thereby clarifying how its hypotheses are
not satisfied in power system applications. Then, we establish
clear criteria for the appropriate use of statistical methods in
frequency analysis. Finally, we validate our theoretical results
through simulations on modified IEEE 14-bus and all-island Irish
transmission test systems, highlighting the accuracy, practical
utility, and limitations of our proposed formulation.

Index Terms—Stochastic Differential Equations, power fluc-
tuations, frequency quality, noise propagation, Central Limit
Theorem, frequency divider, complex frequency.

I. INTRODUCTION

A. Motivation

Conventional frequency analysis in power systems primar-
ily relies on deterministic approaches based on synchronous
machine rotor speeds and global frequency indicators, such
as the frequency of the center of inertia [1]. Recent methods
like the Frequency Divider Formula (FDF) provide practical
approximations by estimating local bus frequencies directly
from machine rotor speeds, proving effective for transient
stability analysis and control applications [2], [3]. Further
advancements include the Complex Frequency (CF) concept,
which explicitly considers voltage magnitude and phase-angle
dynamics in a unified analytical framework [4].

The complex frequency formulation clarifies the dynamic
interplay between active and reactive power, becoming partic-
ularly relevant in low-inertia and converter-dominated power
grids, where accurate transient representation is essential.
However, these deterministic methods do not adequately cap-
ture the stochastic nature of modern power systems, as men-
tioned in [5], [6]. In this paper, we propose a formulation that
integrates the complex frequency concept with the study of
stochastic fluctuations of power injections at network buses.
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B. Literature Review

With the increasing integration of renewable energy sources,
distributed generation, and dynamic loads, the analysis of
power system frequency has become inherently more complex
and uncertain [7]–[11]. These new generation resources and
variable loads introduce significant stochastic fluctuations,
challenging traditional deterministic modeling and analysis
methods [12]–[17]. Consequently, frequency deviations no
longer follow purely deterministic or predictable patterns,
requiring advanced probabilistic methods to ensure accurate
analysis; while some techniques, such as reconciliation, are
used to diminish the errors introduced in the estimation of
stochastic variables [18], [19].

In response to these challenges, stochastic modeling tech-
niques have gained prominence for their ability to realistically
represent uncertainty in power system dynamics. In particular,
stochastic differential equations (SDEs) provide a robust math-
ematical toolset to model frequency dynamics under random
load variations and renewable generation fluctuations [20],
[21]. Functional models based on SDEs address renewable
variability and dynamic load perturbations, enhancing realism
and accuracy in frequency stability analysis [22].

Despite their strengths, many stochastic approaches rely on
statistical simplifications, often justified through the Central
Limit Theorem (CLT), assuming independence, identical dis-
tributions, and thus, Gaussian behavior. These assumptions
frequently remain unverified in practical scenarios and may not
hold in large-scale power systems, leading to noticeable inac-
curacies or unrealistic simplifications [23]–[25]. As a result,
there is a critical need for more precise analytical frameworks
that rigorously evaluate the validity and limitations of these
statistical approximations.

C. Contributions

Motivated by these gaps, this paper presents a novel analyt-
ical framework, first establishing a generalized deterministic
relationship between local power injections and system-wide
frequency response using the recently developed CF concept
[4]. Subsequently, we extend this deterministic analysis into
a comprehensive stochastic framework, explicitly account-
ing for random variations in power injections. Our formu-
lation provides clear mathematical relationships describing
how stochastic fluctuations propagate through the network,
directly affecting frequency quality. By employing this ana-
lytical framework, we investigate the conditions under which
commonly invoked statistical assumptions, particularly those
underlying the CLT, remain valid or fail. Our proposed method
allows determining when these approximations can be reliably
applied.
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D. Paper Organization

The remainder of this paper is organized as follows. Sec-
tion II introduces the theoretical foundations and detailed
mathematical derivation of the proposed analytical framework.
Section III leverages this theoretical basis to critically analyze
the applicability of the CLT in power systems, highlighting
key limitations and offering practical guidelines for its correct
application. Section IV validates the proposed framework
through numerical simulations on power system models, in-
cluding modified versions of the IEEE 14-bus test system
and the all-island Irish transmission system. Section V briefly
discusses broader implications and potential extensions of the
method, specifically addressing its application to wind gener-
ation reconciliation techniques and analyzing asymmetries in
frequency deviations. Finally, Section VI summarizes the main
conclusions and suggests directions for future research.

E. Notation

The following notation is utilized.
a scalar quantity
a(t) time-varying quantity
da infinitesimal variation of a
ā complex quantity
ȧ time derivative of a
a vector
ai i-thv ector element
a⊤ transpose of a
A matrix
Ahk (h, k)-th matrix element
A−1 inverse of A
A+ Moore-Penrose pseudo-inverse of A

II. DERIVATIONS

In this section, we derive the following expressions:
• ω(ṗ, q̇): the dependency of bus voltage frequencies on

the rate of change of active and reactive power injection
at network buses.

• ωCoI(ṗ, q̇): the dependency of the frequency of the center
of inertia (CoI) on the rate of change of active and
reactive power injections at network buses.

• ωCoI(ṗ): an approximated expression of the dependency
of frequency of the CoI on the rate of change of active
power injections at buses.

• dωCoI(dp, dq): the dependency of the variations of the
frequency of the CoI on the stochastic fluctuations of
active and reactive power injections at buses.

A. General Derivation from Complex Frequency Components

Following the formulation developed in [4], In this section,
we derive a novel expression for the frequencies at the network
buses, ω, in terms of active and reactive power components
at the buses, p and q, respectively.

To obtain this expression, we consider as starting point the
definition of complex frequency given in [4]:

˙̄v(t) = (ρ(t) + jω(t)) ◦ v̄(t), (1)

where v̄ = v∠θ is the vector of bus voltage Park vectors, ρ
and ω are the real and imaginary components of the complex
frequency of the voltages, and ◦ is the element-by-element
product. For the i-th bus, one has:

ρi(t) = u̇i(t) =
v̇i(t)

vi(t)
, ωi(t) = θ̇i(t), (2)

with ui = log(vi). For an ac transmission grid, the apparent
powers injected at network buses can be written as a function
of v and θ:

˙̄s(v,θ) = ṗ(v,θ) + jq̇(v,θ), (3)

where, for simplicity, we have omitted the explicit dependency
on time. Then, the time derivative of active and reactive power
injections leads to, respectively:

ṗ =
∂p

∂v

∂v

∂u
u̇+

∂p

∂θ
θ̇

= Aρ+Bω,
(4)

and
q̇ =

∂q

∂v

∂v

∂u
u̇+

∂q

∂θ
θ̇

= Cρ+Dω.
(5)

Solving (5) for ρ yields:

ρ = C−1 [q̇ −Dω] . (6)

Substituting (6) into (4), we obtain:

ṗ = AC−1q̇ −AC−1Dω +Bω (7)

= AC−1q̇ +
(
B −AC−1D

)
ω. (8)

Defining:

E = AC−1, (9)

F = B −AC−1D, (10)

we rewrite the equation as:

ṗ = Eq̇ + Fω, (11)

and solving for ω gives:

ω = F−1ṗ− F−1Eq̇. (12)

Introducing the shorthands:

H = F−1, (13)

K = −F−1E, (14)

and recovering the dependency on time, we obtain the final
compact expression:

ω(t) = H(t) ṗ(t) +K(t) q̇(t) (15)

Detailed derivations and expressions of matrices A, B, C,
D, H , F , and K are given in the Appendix.

Equation (15) provides a direct linear relationship between
the power injection derivatives and the local frequency compo-
nents at each bus. This relationship is general and only requires
that the dynamics of transmission lines are fast enough to be
negligible during transients.
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B. Frequency of the Center of Inertia

To extend this formulation to the frequency of the CoI, we
follow the framework in [26]. The exact formula of the CoI
is, as it is well known:

ωCoI(t) =

∑m
k=1 Mkωg,k(t)∑m

k=1 Mk
= m⊤

g ωg(t) , (16)

where Mk and ωg,k are the starting time and rotor speed of
the k-th synchronous machine, respectively; m is the total
number of machines; and mg is the normalized vector of
inertia constants. From [2], the rotor speeds of the machines
are linked to the bus frequencies through the frequency divider
expression:

Bbg(ωg(t)− 1m) = [Bbus +Bg](ω(t)− 1n) , (17)

where Bbus is the n × n susceptance matrix of the grid;
Bbg is the m × n matrix obtained using the stator and step-
up transformer impedances of the synchronous machines; 1n

and 1m are unit vectors of order n and m, respectively;
and Bg is a n × n diagonal matrix that accounts for the
internal susceptances of the synchronous machines and step-
up transformers at generator buses. In [26], it is shown that
the Moore-Penrose pseudo-inverse of Bbg allows obtaining an
explicit expression ωg in terms of bus frequencies ω, namely:

ωg(t) = B+
bg[Bbus +Bg](ω(t)− 1n) + 1m . (18)

Merging (16) and (18), one obtains:

ωCoI(t) = c⊤ω(t) + α , (19)

where

c⊤ = m⊤B+
bg[Bbus +Bg] ,

α = m⊤{1m −B+
bg[Bbus +Bg]}1n .

Vector c is an n× 1 vector of weighting factors that depends
on machine inertia constants and network topology through
the imaginary part of the network admittance matrix; and α is
a scalar offset term ensuring ωCoI = 1 at nominal steady-state
operating conditions. Typically, α ≪ 1. The reader can find
more details on (19) in [26].

Equation (19) assumes that the frequency of the CoI is
computed solely based on the contributions from synchronous
machines, neglecting any influence from inverter-based re-
sources (IBRs). However, the contribution of grid-following
converter is marginal (see, e.g., [27]) and the virtual inertia of
grid-forming converters can be embedded in (19) in the same
way as the physical inertia of conventional machines. Thus,
without substantial loss of generality, we merge (15) and (19)
and obtain:

ωCoI(t) = c⊤
[
H(t) ṗ(t) +K(t) q̇(t)

]
+ α (20)

C. Special Case: Simplifications of the General Formulation

The expressions derived above can be simplified using
usual assumptions for high voltage transmission systems as

recommended in the IEC 60909 standard for short-circuit
calculations [28]. Thus, the matrices approximate to:

A ≈ Gbus, B ≈ −Bbus,

C = B, D = −A.

By replacing the matrix coefficients with expressions based
on network parameters, Ȳbus, we obtain:

E = −GbusB
−1
bus,

F = −Bbus +GbusB
−1
busGbus.

Accordingly, the frequency sensitivity matrices become:

H =
[
−Bbus +GbusB

−1
busGbus

]−1
,

K = H−1
(
GbusB

−1
bus

)
.

Several observations follow from these simplifications:
• In distribution networks, the matrices Bbus and Gbus are

typically of comparable magnitude. Therefore, the two
terms in the expression for H have similar contributions
and have therefore to be retained.

• Matrix Gbus is not inverted in the expressions for either
H or K. This ensures numerical robustness in cases
where Gbus ≈ 0n,n, e.g., in high-voltage transmission
systems.

• If Gbus is negligible compared to Bbus, K ≈ 0n,n and
H ≈ −B−1

bus. In this case, equation (20) reduces to:

ωCoI(t) = −c⊤B−1
bus ṗ(t) + α (21)

This approximated expression provides a simplified, yet
often sufficiently accurate, estimate of the frequency of the
CoI for transmission-level systems where reactive effects can
be neglected.

D. Stochastic Formulation of Frequency Deviations

To extend the previous deterministic model to a stochastic
framework, we first formulate the noise of the power injections
at buses as stochastic processes. For the active power, the
infinitesimal increment of the regulated active power, for
example, for an Ornstein-Uhlenbeck process, is defined as:

dp(t) = ap(p, t) dt+Ξp(p, t) dwt, (22)

with:
• ap(p, t): vector of drift terms;
• Ξp(p, t): matrix of diffusion terms; and
• wt: vector of independent Wiener processes.
Similarly, the expression of the stochastic processes of the

reactive power injections can be written as:

dq(t) = aq(q, t) dt+Ξq(q, t) dwt. (23)

Focusing for simplicity only on the active power and
integrating (22) yields the frequency as a stochastic process
(Itô interpretation):

p(t) = p(0) +

∫ t

0

ap(p, s)ds+

∫ t

0

Ξp(p, s)dws. (24)
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We can thus rewrite the expression (20) as:

dωCoI(t) = c⊤
[
H(t) dp(t) +K(t) dq(t)

]
(25)

and its simplified version (21) as:

dωCoI(t) = −c⊤B−1
bus dp(t) (26)

The two expressions above indicate that the stochastic formu-
lation preserve the linear relationship between active power
and frequency deviations of the deterministic counterparts.
Notably, they also indicate that frequency stochastic variations
are function of the values of dp and dq, not of the variations
of the rate of change of these powers.

In summary, the distribution and statistical properties of
ωCoI are a linear combination of the distribution and statistical
properties of the noise of the active and reactive power injec-
tions, not of their time derivatives. The implications of this
formulation, particularly regarding the statistical distribution of
frequency under stochastic disturbances, are illustrated through
simulations in Section IV.

III. APPLICABILITY OF CLT IN POWER SYSTEMS

The CLT states that for independent and identically dis-
tributed (i.i.d.) random variables ξ1, ξ2, . . . , ξN , each with
finite expectation µ and variance σ2, the normalized sum
converges in distribution to a normal distribution as N → ∞:

1√
N

N∑
i=1

(ξi − µ)
d−→ N (0, σ2). (27)

A generalized form, the Lindeberg Central Limit Theorem,
relaxes the requirement of identical distributions. It states
that for independent random variables ξN,i, each with zero
expectation E[ξN,i] = 0 and finite variance Var(ξN,i) = σ2

N,i,
the sum

ςN =

N∑
i=1

ξN,i (28)

converges to a normal distribution if the following Lindeberg
condition is satisfied:

lim
N→∞

1

ς2N

N∑
i=1

E
[
ξ2N,iI{|ξN,i|>ϵςN}

]
= 0, (29)

where ς2N =
∑N

i=1 σ
2
N,i, ϵ > 0, and I denotes the indicator

function.
In a pragmatic sense, Lindeberg condition ensures that

no single random variable disproportionately influences the
variance of the total sum, verifying a balanced influence
among all terms to allow convergence to a normal distribution.

In power systems, the presence of multiple stochastic
sources, such as loads and distributed generation, suggests
potential applicability of the CLT to system-wide frequency
deviations. However, as indicated in (25), the frequency varia-
tion of the CoI explicitly depends on the stochastic variations
at each bus, which are weighted by system-specific coefficients
tied directly to the network’s topology and impedances.

The main reasons limiting the application of the CLT,
particularly in transmission systems, are two, as follows.

• Limited Number of Terms, i.e., N is small. The CLT
requires a large (theoretically infinite) number of random
variables. Although numerous stochastic sources exist at
the distribution level, their influence aggregates to a lim-
ited number of interconnection buses in the transmission
system, typically small compared to the requirements of
the theorem. Then, the finite aggregation on the buses
does not satisfy the core requirement (n → ∞) for the
CLT convergence.

• Non-Identical Weights, i.e., impact of network topology
and different capacity of generators. Even with a substan-
tial number of interconnected buses, each bus contribution
is scaled uniquely by coefficients given in (25). These
“weighting factors” vary significantly based on network
topology, impedances, and operating conditions, disrupt-
ing the homogeneity and diminishing influence required
by the Lindeberg CLT.

Thus, due to the limited number of buses (finite terms)
and the presence of distinct weighting factors from network
parameters, the CLT cannot be directly applied to frequency
variations in power systems, and the assumption of normal
distribution based on CLT must be carefully reconsidered.

Transmission Level

N

N1

Z NZZ

Z

Z Z Z Z312111

1 1 2

2

3

3

Fig. 1: Stochasticity propagation – Distribution system.

Z

Z

ZN

N1 2

0

2

1

Transmission Level

Fig. 2: Stochasticity propagation – Transmission system.

To illustrate these constraints, consider the transmission
and distribution system configurations depicted in Figs.1 and
2. In Fig. 1, buses 1, 2, . . . , N represent interconnection
points between distribution networks and the transmission
grid. Downstream of each interconnection bus, there typically
exists a complex distribution network composed of many
interconnected components, often arranged in highly meshed
topologies. Within such configurations, the resulting matrices



5

Bbus and Gbus include a large number of elements, each
individually small in magnitude relative to the overall net-
work. If these elements are sufficiently similar and uniformly
distributed across the network, no single branch or component
significantly dominates the aggregate influence. This granular
and balanced distribution of contributions should be mathe-
matically tested through the Lindeberg theorem, thus enabling
the valid application of the CLT. Consequently, stochastic
fluctuations from numerous sources within distribution net-
works aggregate at an interconnection bus, producing an
approximately normal probability distribution.

On the other hand, as illustrated in Fig. 2, even if each
individual bus (Bus 1, Bus 2, . . . , Bus N ) exhibits Gaussian
distributions for active power injections, aggregating these
distributions at a higher-level bus (Bus 0) can disrupt this
normality. This deviation occurs because each bus contribution
is individually scaled by the influence of distinct impedances
(Z̄1, Z̄2, . . . , Z̄N ) and associated weighting factors. These
weights cause the combined probability distribution of the
aggregated active power at Bus 0, and therefore also the
frequency deviations calculated using (20), to move away from
normality. As a result, the aggregated distribution typically
becomes skewed or develops heavy tails, as the ones typically
observed in the real operation of power systems, and confirmed
by the simulation results and detailed analyses presented in
Section IV.

In summary, to aggregate the power contributions of the
loads is not the same as to sum them up. A simple sum, in
fact, loses the information on the “weights” corresponding to
the topology of the grid.

IV. CASE STUDY

This section evaluates the proposed methodology using
two representative case studies: a modified IEEE 14-bus test
system and the all-island Irish transmission system. Time-
domain simulations and stochastic analyses are carried out
using the power system analysis software tool Dome [29].

A. IEEE 14-Bus Test System

The IEEE 14-bus system consists of 14 buses, 20 trans-
mission lines, and 5 synchronous generators. The total system
load is approximately 2.59 pu. We utilize this simple system
to show: (i) the different level of accuracy of expressions (20)
and (21); and the effect of network topology on the distribution
of the frequency of the CoI.

a) Power Injections and Frequency Response: Figure 3
shows the response of the frequency of the CoI computed
using (16), (20) and (21), following the ramp connection of a
constant admittance load at Bus 4. The load ramps up starting
at t = 10 s, with a rate of 0.1 pu/s, over a duration of 10 s.

The frequency’s expression from (21) fails to properly
capture transient dynamics, particularly the smooth frequency
transition during load variation. On the other hand, the fre-
quency computed using the full complex frequency formula-
tion, (20), which incorporates both real and imaginary compo-
nents, shows a significantly closer match with the simulated
response. This improved accuracy results from the model’s

ability to account for both active and reactive power dynamics
in a unified analytical framework. This result suggests that
voltage control, which impacts on the reactive power, not only
active power control, impacts on frequency deviations and,
ultimately, on system frequency quality.

C
oI

eq. (21)

eq. (16)
eq. (20)

Fig. 3: Calculated vs. simulated frequency response using different
formulations.

b) Influence of the Grid on Stochastic Propagation: This
second example illustrates the role of network topology. Two
stochastic loads are connected to the system: one at Bus 10 and
another at Bus 12. The noise of both loads follow a Weibull
distributions but Bus 12’s distribution is skewed to the left
and Bus 10’s to the right. Figures 4 and 5 show the respective
active power distributions. The two distributions are mirrored,
so that their direct sum is symmetrical. Similar distributions
are utilized for the reactive power fluctuations of these two
loads.

−0.12 −0.10 −0.08 −0.06 −0.04
pBus 10 [pu]

0

5

10

15

20

25

30

35

40

P
ro

b
ab

ili
ty

d
en

si
ty

Fig. 4: Weibull-distributed power injection at Bus 10.
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Fig. 5: Weibull-distributed power injection at Bus 12.
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In order to better illustrate how (20) captures the influence
of network topology, we have modified the impedances of the
lines of the IEEE 14-bus system so that the two selected buses
have substantially different Short-Circuit Levels (SCLs). The
SCL is defined as:

SCLi =
1

|Z̄ii|
, (30)

where Z̄ii is the i-th diagonal element of the bus impedance
matrix Z̄ = [Ȳbus+Ȳg]

−1, where Ȳg is a n × n diagonal matrix
that accounts for the internal admittances of the synchronous
machines and step- up transformers at generator buses. Specifi-
cally, SCL10 = 4.43 pu and SCL12 = 2.16 pu. A higher SCL
indicates that the bus is strongly coupled to the rest of the
network, exhibiting lower equivalent impedance and greater
ability to transmit power fluctuations. Based on this metric,
thus, Bus 10 has a stronger electrical connection to the grid
than Bus 12.

Figure 6 shows that the system’s frequency probability den-
sity (PD) inherits the positive skew from the power injection
at Bus 10, which confirms its impact on the grid has a stronger
influence than the power injection at Bus 12. The PD shown
in Fig. 6 is obtained using (20). The PD obtained using the
ωCoI as calculated from its definition (16) are substantially the
same.

CoI

Fig. 6: Resulting system frequency response influenced predomi-
nantly by Bus 10.

c) Applicability of the CLT in Distribution Systems: To
further explore the conditions under which the CLT holds in
power systems, we simulate a subnetwork composed of 1,000
buses connected downstream of Bus 4. Within this subnetwork,
2,000 small loads are randomly distributed. As shown in Fig. 7,
the resulting frequency probability density function is close to
converge toward a Gaussian shape, illustrating the effect of
aggregation when contributions are numerous and relatively
uniform.

However, when a single load, that represents a feeder with
a big and random load attached, with disproportionately large
impact is introduced into the same network, the conditions
required by the Lindeberg criterion are no longer satisfied.
This imbalance disrupts the convergence process and results
in a frequency distribution with visible heavy tails. Figure 7
illustrates how even a single dominant term can prevent the
CLT from applying, emphasizing the importance of uniformity
in the magnitude of stochastic sources. As mentioned, this

uniformity can be achieved indirectly when the grid is large,
with small and numerous distributed loads.

CoI

Fig. 7: Frequency response on presence of uneven contributions.

B. All-Island Irish Transmission System

To evaluate the proposed methodology under realistic con-
ditions, we apply it to a detailed model of the all-island
Irish transmission system. This model, based on publicly
available data from EirGrid and SONI, includes 1,479 buses,
1,851 transmission lines, five conventional synchronous power
plants, and 302 wind power plants. Note that we have on
purpose made “weak” the model of the system by reducing
the number of machine below 7, which EirGrid and SONI
strictly enforce as the minimum number of on-line machines
at any given time. This choice allows dramatizing the effect of
noise and better appreciating the impact of topology on system
frequency.

In the remainder of this section, we utilize the simplified
expression (26) as the resistances of the lines of the model of
the Irish system are small and thus the differences between
(25) and (26) are negligible.

a) Applicability of the CLT in Transmission Systems:
The Central Limit Theorem is often assumed to apply in dis-
tribution networks, where large numbers of small, independent
sources or loads contribute to aggregate behaviors. While this
assumption may appear reasonable, Fig. 7 demonstrates how
a misleading conclusion can arise from naively applying the
CLT at the distribution level. In the case of the transmission
level, the application of CLT is even more limited because
the number of buses where the stochastic loads/generators
aggregates is smaller than in the distribution system, thereby
degrading the conditions for applying the CLT.

To illustrate this, we simulate two large groups of small
stochastic loads (30,000 each) connected downstream of Bus
Belford and Bus Platin. The aggregated active power at both
buses approximates a normal distribution, as seen in Fig. 8.
This observation is supported by the quantile-quantile (Q-Q)
plot shown in Fig. 9, which confirms a close fit to Gaussian
behavior for the injected power at Belford.

Despite the local application of the CLT at Bus Belford
and Platin, this normality is not preserved in the system-
wide frequency response. Figure 10 shows the resulting PD
of the system frequency, which deviates significantly from
Gaussian behavior. This aligns with the analytical formulation
in (21), where the system frequency results from a weighted
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Fig. 8: Aggregated active power at Bus Belford approximates a
Gaussian distribution.

Fig. 9: Normality test of the active power at Bus Belford (Q-Q plot).

aggregation of individual power injections, shaped by network
topology and bus-specific impedances.

CoI

Fig. 10: PD of the system frequency — non-Gaussian distribution.

To further explore the breakdown of normality, Fig. 11
presents a Q-Q plot to check if the frequency follows a
normal distribution, under two scenarios: one with two buses
(Belford and Platin), and another with five. Even with two
contributing buses, the distribution shows subtle deviations
from the Gaussian reference. When the number of buses
increases to five, the distribution exhibits more pronounced
skewness and heavier tails, which is a clear indication of non-
Gaussian behavior.

These observations highlight that statistical assumptions
based on the CLT may hold locally within distribution net-
works but break down at the transmission level due to unequal
weighting, network heterogeneity, and topological effects.

It is important to mention that the stochastic perturbations
used in these experiments are sufficiently small to avoid
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Fig. 11: Normality test of the frequency distribution with 2 and 5
active buses.

triggering frequency control mechanisms, as the frequency
regulation support provided by wind power plants or auto-
matic generation control (AGC) operations, which in the Irish
system, despite the name, is operated manually. This ensures
that the frequency variations observed reflect the intrinsic
transmission of stochasticity through the system, free from
the influence of active regulation and the asymmetries due to
the nonlinearity of wind turbine frequency control (see also
the remarks in Section V-B below).

In practice, large stochastic fluctuations, due for example
to fault and generator tripping, such as those from aggre-
gated wind generation or sudden load changes, are subject
to correction by primary and secondary control loops. These
controllers suppress significant deviations and maintain oper-
ational frequency bounds. However, the underlying stochastic
propagation analyzed in this section remains relevant for
characterizing frequency behavior under normal operating
conditions to understand the impact of individual stochastic
power injections, and even for designing control strategies that
consider the true statistical nature of power system dynamics.

V. APPLICATIONS

The framework described in Sections II and III can be
utilized to tackle relevant problems that have been described
in the literature. We discuss below two of them, namely, the
reconciliation of wind generation and the determination of
asymmetries in power system control.

A. Reconciliation of Wind Generation

Wind power plants are typically integrated into the grid
through hierarchical, tree-like structures, as depicted in Fig. 1.
These topologies enable multiple levels of aggregation, from
individual turbines to substation and regional levels, ultimately
reaching the transmission grid. This granularity and the spatial
distribution of wind farms introduce correlated stochastic
behaviors that influence system-level dynamics in nontrivial
ways.

Reconciliation techniques aim to resolve inconsistencies
between forecast and observed wind power across aggregation
levels by accounting for spatial correlation and ensuring inter-
nal consistency. Studies, such as [18], [19], propose frame-
works to quantify and mitigate the impact of wind forecast
uncertainty. The analytical framework developed in this paper
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complements such approaches by providing a mathematical
foundation to understand how stochastic power variations orig-
inating at the distribution level propagate to the transmission
system [30].

The proposed formulation allows the identification of con-
ditions under which these fluctuations are either amplified
or attenuated as they dissipate through the network. This
becomes especially important when large-scale wind farms are
connected directly to high-voltage transmission buses, where
their influence on frequency dynamics is significant and should
not be directly calculated by aggregation. Furthermore, due
to spatial correlation among wind sources, the assumption of
statistical independence, critical for the applicability of the
CLT, no longer holds. As such, standard Gaussian approxima-
tions are invalid, reinforcing the need for advanced stochas-
tic modeling approaches that explicitly consider dependence
structures, as the one presented in this paper.

B. Asymmetry in Frequency Distributions

An increasingly observed phenomenon in modern power
systems is the asymmetry of the frequency distribution, partic-
ularly in systems with high shares of inverter-based renewable
generation. As discussed in studies such as [31] and [32],
this asymmetry can degrade system performance and reduce
the effectiveness of traditional frequency control strategies.
Related bibliography attributes the effect of asymmetry to non-
linearities in system dynamics, control actions, and unbalanced
contributions from heterogeneous generation sources [33].

The methodology proposed in this paper provides a mathe-
matical rationale for the complete understanding and analysis
of such asymmetries. Specifically, it reveals how frequency
deviations are influenced by the different weighting of power
injections, particularly from large-scale units connected at
the transmission level, which cause disproportionate impacts
due to their size and location. As a result, the system’s
aggregated stochastic response deviates from symmetric or
Gaussian distributions.

This insight lays the concepts for investigating how fre-
quency control mechanisms behave under non—Gaussian con-
ditions, including droop control, AGC, and fast frequency
response schemes. It also opens the possibility of design-
ing improved control strategies that explicitly account for
individual contributions to the asymmetries and the overall
result, enhancing the resilience and frequency quality of power
systems.

VI. CONCLUSION

This paper introduces an analytical framework to examine
the effects of stochastic power injections on frequency quality
in power systems. Using the frequency divider concept and the
complex frequency formulation, we explicitly quantify how
local active and reactive power fluctuations propagate through
the network, affecting global frequency behavior. A key insight
from this study is that the CLT must be applied cautiously in
power system analyses. Specifically, we demonstrate that the
assumption of normality in frequency deviations can fail due
to the limited number of aggregated sources and the uneven

contributions of individual buses. Our analytical derivations
demonstrate that network topology and impedance distribu-
tions significantly impact the resultant frequency statistics.

Simulation results validate these theoretical findings, reveal-
ing that frequency distributions may deviate from Gaussian
behavior, even when local stochastic injections are normally
distributed. These outcomes underline the importance of care-
fully considering system-specific conditions and statistical
assumptions, particularly in low-inertia and renewable-rich
power grids, to enhance modeling accuracy and reliability.

Future research directions include further exploration of
non-Gaussian modeling approaches, detailed analysis of asym-
metries in frequency distributions, and improved methods for
integrating stochastic frequency modeling into power system
stability and control. We will also further investigate how
reactive power control impacts on the frequency quality of
low inertia systems.

APPENDIX

The main result of [4] is the following expression:

˙̄s = s̄ ◦ η̄ + S̄η̄∗, (31)

which links the vector of complex frequency η̄ = ρ + jω to
the time derivative of the vector of complex powers s̄ injected
at network buses and to the matrix of complex power flows
S̄ in the transmission lines and transformers. In (31) where
η̄∗ = ρ− jω and ◦ denotes the element-wise product.

In this formulation, S̄ = P + jQ is a matrix of the same
size of the number of network buses where the hk-th elements
of matrices P and Q are:

Phk = vhvk [Ghk cos θhk +Bhk sin θhk] , (32)
Qhk = vhvk [Ghk sin θhk −Bhk cos θhk] , (33)

where Ghk and Bhk are the real and imaginary parts of the
admittance matrix Ȳbus, vh is the voltage magnitude at bus
h, and θhk = θh − θk. Then the power injections at network
buses can be written as:

ph =

n∑
k=1

Phk, qh =

n∑
k=1

Qhk. (34)

The real and imaginary components of vector ˙̄s can be
written as:

ṗ = diag(p)ρ− diag(q)ω + Pρ+Qω

= [diag(p) + P ]ρ+ [−diag(q) +Q]ω. (35)
q̇ = diag(q)ρ+ diag(p)ω +Qρ− Pω

= [diag(q) +Q]ρ+ [diag(p)− P ]ω. (36)

Solving equation (36) for ρ:

ρ = [diag(q) +Q]
−1

[q̇ − [diag(p)− P ]ω] . (37)

Substituting into (35) yields:

ṗ = [diag(p) + P ] [diag(q) +Q]
−1

q̇ (38)

−
(
[diag(p) + P ] [diag(q) +Q]

−1
[diag(p)− P ] (39)

+ [diag(q)−Q]
)
ω. (40)
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Grouping terms, we can express the frequency vector as:

ω = H ṗ+K q̇, (41)

which is the derived expression (15) and where:

H =
{
− [diag(p) + P ] [diag(q) +Q]

−1
[diag(p)− P ]

− [diag(q)−Q]
}−1

, (42)

K = H [diag(p) + P ] [diag(q) +Q]
−1

. (43)

Finally, relating this formulation to the general frequency
derivation of (20):

A = diag(p) + P , (44)
B = −diag(q) +Q, (45)
C = diag(q) +Q, (46)
D = diag(p)− P . (47)
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Escuela Politécnica Nacional, Ecuador and M.Sc. in
Electrical Engineering from the North Carolina State
University, USA in 2018. He is pursuing a Ph.D. in
Electrical Engineering at University College Dublin,
Ireland. His research interests include analyzing and
modeling discrete and hybrid components of power
systems, their control, and impact on the system’s
stability.

Federico Milano (F’16) received from the Univ. of
Genoa, Italy, the Ph.D. in Electrical Engineering
2003. In 2013, he joined the University College
Dublin, Ireland, where he is currently a full pro-
fessor. He is Chair of the IEEE Power System
Stability Controls Subcommittee, IET Fellow, IEEE
PES Distinguished Lecturer, Senior Editor of the
IEEE Transactions on Power Systems, and Co-Editor
in Chief of the IET Generation, Transmission &
Distribution. His research interests include power
system modeling, control, and stability analysis.


