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Abstract—This work presents the Complex Frequency Divider
Formula (CFDF), an explicit equation for the complex frequen-
cies (CFs) of the voltage of every bus of a power system in terms
of a linear combination of the CFs of the currents injected by the
devices connected to the network. The coefficients of this linear
combination depend on the topology of the system, voltages and
currents. The CFDF carries valuable information on the impact
of every device on the dynamic of the voltage and frequency
of any particular bus of the system. The formulation is exact,
as it does not require any simplification of the dynamic model
of the system. The CFDF is implemented in two benchmark
systems to show its potential in static and dynamic analysis in
different scenarios. Finally, relevant notes on the applications of
the proposed formula are outlined.

Index Terms—Complex frequency, frequency divider, fre-
quency estimation, low-inertia systems, power system dynamics.

I. INTRODUCTION

A. Motivation

The ongoing move towards renewable, distributed, and
converter-interfaced generation is leading to deep changes in
the dynamic behavior of power systems. A well-recognized
immediate consequence of these changes is the need to develop
new tools for the modeling, control and stability analysis of
modern power systems [1]–[5]. In this vein, the concept of
complex frequency (CF) has been recently presented in [6] to
give a more general and precise definition of the frequency,
unifying the relationship between the variations of the device’s
current injections and the voltage and frequency dynamics at
a particular bus. In [6], the CF is obtained as a function of
power variations through implicit equations, where the CF of
the voltage of a bus is written in terms of the current injected
at the bus and the neighbor voltage CF. It remains an open
and relevant question how to relate explicitly the CF of the
voltage of a bus with the current injections of all the devices
connected to the network. The objective of this work is to
determine such a relationship.

B. Literature Review

There is a growing interest in using the CF as it is
showing promising applications, see, for example, [7]–[11].
These references show that a precise evaluation of the CF can
significantly improve the monitoring, modeling and control of
the system. It is, of course, possible to estimate it through
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PMUs, PLLs or numerical approximations of the derivatives.
However, these approaches are vulnerable to noise and unbal-
ances [12] and perform poorly after disturbances [13].

Analytical methods avoid aforementioned issues at a cost
of increasing mathematical and computational complexity. For
example, reference [14] proposes a method for calculating the
frequency at load buses for time-domain simulations. However,
the approach utilised in [14] is not general as it requires
a specific structure of the dynamic model of synchronous
machines and loads.

Another example of analytical method is the Frequency
Divider Formula (FDF) that provides the frequency at every
bus of the network in terms of the angular speed of all
the synchronous machines [15]. However, the FDF requires
several simplifications, e.g. neglecting voltage magnitude vari-
ations and assumes that the only devices able to modify bus
frequencies are the synchronous machines. Following works
have focused on extending the FDF to consider the effect of
other devices. For example, the inertia contribution of DFIG
generators is included in [16] based on Thevenin equivalents.
An extension of the FDF to include the effect of the frequency
control capability of Inverter-Based Resources (IBRs) is pre-
sented in [17], where converter controllers are formulated to
resemble the structure of synchronous machines, thus allowing
their inclusion in the FDF. In both cases, the estimation
given by the extended FDF still requires simplifications and is
device-model dependent. In this work we propose a technique
that overcomes the intrinsic structural limits of the FDF and
extends it to the complex domain.

C. Contributions

The contributions of the paper are as follows:
• The formulation of the Complex Frequency Divider For-

mula (CFDF), that is, an explicit expression for the CF
of the voltage of every bus as a linear function of the CF
of the current injected by every device. This formulation
is general, systematic and model-agnostic.

• An analytical solution for the CF using the proposed
formula. This solution requires the knowledge of the
device’s dynamic models. The structure required covers
the vast majority of device models.

• Specific expressions for the CF of the current injected
by commonly used device models. These expressions are
required for the analytical solution presented.

D. Paper Organization

The remainder of this paper is organized as follows. Section
II presents the proposed CFDF. An analytical solution for
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a range of common dynamic devices is also presented, and
specific expressions for basic models are provided. The imple-
mentation of the proposed formulation in two study cases is
described in Section III. Relevant remarks on the applications
of the proposed CFDF are also included in Section III. Finally,
Section IV presents the conclusions and outlines future work.

II. COMPLEX FREQUENCY DIVIDER FORMULA

A. Derivation

Consider a system with n buses. The starting point is the
current balance equations at network buses:

ı̄ = Ȳ v̄ , (1)

where ı̄, v̄ ∈ Cn×1 are column vectors containing the net
current injections and the voltage at every bus, respectively;
and Ȳ ∈ Cn×n is the admittance matrix of the system, which
is assumed to be constant, i.e., transmission system dynamics
are neglected. This simplification is adopted exclusively for
simplicity. However, line dynamics can be incorporated by
treating them as time-varying admittances with their corre-
sponding complex frequency. The interested reader can find
an example of this in [18].

Recalling the property of the CF to act as a linear derivative
operator of Park vectors [6], one can define the CFs of the
voltage vector (η̄) and the current injection vector (ξ̄) as
follows:

˙̄v = diag(v̄) η̄ ,

˙̄ı = diag(ı̄) ξ̄ ,
(2)

where diag(v̄),diag(ı̄) ∈ Cn×n are diagonal matrices which
elements are the bus voltages and current injections, respec-
tively. Differentiating (1) with respect to time and isolating the
CF of the voltage leads to the proposed CFDF:

η̄ = D̄ ξ̄ (3)

where η̄, ξ̄ ∈ Cn×1 are column vectors containing the complex
frequency of voltages and net current injections at every bus,
respectively, and:

D̄ = [Ȳ diag(v̄)]−1diag(ı̄)

= diag(v̄)−1Ȳ
−1

diag(ı̄)

= diag(v̄)−1Z̄diag(ı̄) .

(4)

where Z̄ = Ȳ
−1 is the (dense) impedance matrix of the grid.

Note that we have assumed that the voltages and currents are
differentiable.

The matrix D̄ is composed of dimensionless complex
numbers which depend on the topology, voltages and currents
injected into the transmission system. Note that the value of
the (h, k) element of D̄, say D̄hk, can be seen as a coefficient
representing the participation of the CF of the net current
injected of a device connected at bus k to the CF of the voltage
at bus h. In particular, the real part represents the impact of the
frequency of the current on ωh (imaginary part of the CF of the
voltage), and the impact of the rate of change of the magnitude

of the current on ρh (real part of the CF of the voltage). Also,
the imaginary part measures the cross-participation, i.e., the
impact of the frequency of the current on ρh, and the effect
of the current magnitude rate of change on ωh.

The elements of the D̄ matrix provide information on
the participation of a device to the CF of every network
bus. These elements embed information on the topology (as
they are built using the network admittance matrix) and grid
operating conditions (as they are obtained for a given power
flow solution). However, note that the actual participation of
a device also depends on its specific dynamic response and
control. For instance, for an arbitrary bus h, a synchronous
machine connected at bus k can have a lower participation
than a constant impedance load connected at bus j, that
D̄hk < D̄hj , due to their locations and current injected to the
grid. However, the actual impact of the synchronous machine
dynamics to the frequency of the system is certainly higher
than that of the impedance, which is a passive device.

Another interesting property holds for the matrix D̄: each
row coefficients are naturally normalized, i.e., the real part
of each row of sums 1, and the imaginary part sums 0 (the
proof can be found in Appendix). Summarizing, for every
bus of the power system, D̄ informs through dimensionless
and naturally normalized coefficients, the participation of
every device dynamic, taking into account both: the topology
(transmission system model), and the operating conditions
(voltages and currents injections).

B. Explicit Expressions of Bus Voltage Frequencies

Equation (3) can be used in time-domain simulations to
calculate the frequency of the voltage at every bus of the grid.
While PLL measurements can be used for a model-agnostic
calculation of the CFDF, it is relevant to note that (3) can
also serve to find analytic and explicit expressions for η̄. The
procedure we propose in this paper consists in formulating ξ̄
in terms of system states and algebraic variables. Depending
on the dynamic model of the devices of the system, ξ̄ can be
also a function of η̄, in which case, (3) becomes an implicit
equation. The ability to find an explicit solution for η̄ depends
on the shape of ξ̄(η̄,x,y), where x ∈ Rnx×1,y ∈ Rny×1 are
column vectors containing the existing nx system states and
ny algebraic variables, respectively.

For the analytical derivation of the expression of η̄, we
proceed as follows. First, observe that ξ̄ can be written in
general as:

ξ̄(η̄,x,y) = ξ̄a(x,y) + ξ̄p(η̄,x,y) , (5)

where ξ̄a is the η̄-independent part of devices ξ̄, and ξ̄p is the
η̄-dependent part. While ξ̄a is known and defined in terms of
the variables of the system, ξ̄p depends on η̄ thus making (3)
implicit. In the following, we derive the solution for the case
ξ̄p dependency on η̄ can be written as:

ξ̄p(η̄,x,y) = κ̄ρ(x,y)ρ+ κ̄ω(x,y)ω , (6)

where κ̄ρ, κ̄ω ∈ Cn×n are matrices containing complex
functions of existing system variables, and ρ,ω ∈ Rn×1 are
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column vectors containing the real and imaginary parts of η̄,
respectively. Equation (6) holds in general as ξ̄ is obtained as
the point differentiation of the current injections of the devices.
The examples given in Section II-C show how to determine
(6) explicitly for a variety of common power system dynamic
device models.

Next, the derivation of η̄ expressions begins by replacing
(5) and (6) in (3):

η̄ = D̄ ξ̄

= D̄ (ξ̄a + ξ̄p)

= D̄ ξ̄a + D̄ (κ̄ρ ρ+ κ̄ω ω) .

(7)

Then, taking the real and imaginary parts of (7):

ρ = <
{
D̄ ξ̄a

}
+ <

{
D̄ κ̄ρ

}
ρ+ <

{
D̄ κ̄ω

}
ω , (8)

ω = =
{
D̄ ξ̄a

}
+ =

{
D̄ κ̄ρ

}
ρ+ =

{
D̄ κ̄ω

}
ω , (9)

and extracting ρ from (8):

ρ = C1 (<
{
D̄ ξ̄a

}
+ <

{
D̄ κ̄ω

}
ω) (10)

where C1 = (In − <
{
D̄ κ̄ρ

}
)−1 and In ∈ Rn×n is the

identity matrix. Replacing (10) in (9) yields:

C2 ω = =
{
D̄ ξ̄a

}
+ =

{
D̄ κ̄ρ

}
C1<

{
D̄ ξ̄a

}
, (11)

where

C2 = In −=
{
D̄ κ̄ω

}
−=

{
D̄ κ̄ρ

}
C1<

{
D̄ κ̄ω

}
. (12)

Next, extracting ω:

ω = C2
−1 (=

{
D̄ ξ̄a

}
+ =

{
D̄ κ̄ρ

}
C1<

{
D̄ ξ̄a

}
) . (13)

or, equivalently:

ω = Dre <
{
ξ̄a
}

+Dim =
{
ξ̄a
}

(14)

where

Dre = C2
−1 (=

{
D̄
}

+ =
{
D̄ κ̄ρ

}
C1<

{
D̄
}

) , (15)

Dim = C2
−1 (<

{
D̄
}
−=

{
D̄ κ̄ρ

}
C1=

{
D̄
}

) . (16)

Equations (10) and (14) are the sought analytic expressions of
η̄. In particular, (14) is an explicit formula for the frequencies
at every bus that depends only on the η̄-independent part of the
device’s dynamics. Thus, the problem reduces to find ξ̄a, κ̄ρ
and κ̄ω , which depend on the dynamic model used for every
device of the power system. Specific expressions for common
device models are provided in the following subsection.

C. Power System’s Device Models

Expressions for ξ̄a, κ̄ρ and κ̄ω are provided in this section
for specific dynamic models of common devices in a power
system.

1) 4th-order Synchronous Machines: Consider the well-
known 4th-order two axes dynamic model of synchronous
machines in the dq-frame [19], where symbols have the usual
meanings:

δ̇ = Ωb(ω − 1) , (17)
Mω̇ = τm − τe −D(ω − 1) , (18)

T ′d0ė
′
q = vf − (Xd −X ′d)ıd − e′q , (19)

T ′q0ė
′
d = (Xq −X ′q)ıq − e′d , (20)

along with the algebraic equations:

v̄ = vd +  vq = v sin(δ − θ) + jv cos(δ − θ) , (21)
ı̄ = ıd +  ıq = ı sin(δ − β) + ı cos(δ − β) , (22)
s̄ = p+  q = (vdıd + vqıq) + (vqıd − vdıq) , (23)
τe = ψqıd − ψdıq , (24)
ψ̄ = ψd + ψq = (e′q −X ′dıd)− (e′d +X ′qıq) , (25)

v̄ = −Rs ı̄−  ψ̄ . (26)

First we note that applying the time derivative to the
grid interface algebraic equations (21)-(22), using (17), and
denoting the rotor speed as ωr = Ωbω, we get:

v̇d = ρvd − ωvq + vqωr , (27)
v̇q = ρvq + ωvd − vdωr , (28)

ı̇d = <
{
ξ̄
}
ıd −=

{
ξ̄
}
ıq + ıqωr , (29)

ı̇q = <
{
ξ̄
}
ıq + =

{
ξ̄
}
ıd − ıdωr , (30)

which, extracting the CF of the stator current, can be conve-
niently rewritten as:

ξ̄ =

(
ıd ı̇d + ıq ı̇q

ı2

)
+ 

(
ıd ı̇q − ıq ı̇d

ı2
+ ωr

)
, (31)

We now obtain the expressions of ı̇d and ı̇q as functions of the
state variables and η̄. With this aim, derivating with respect to
time the stator magnetic algebraic equations (25), one obtains:

ı̇d +  ı̇q =

(
ė′q
X ′d
− ψ̇d

X ′d

)
− 

(
ė′d
X ′q

+
ψ̇q

X ′q

)
, (32)

which, using the expression of the stator fluxes obtained from
(26), can be rewritten as:

ı̇d +  ı̇q =
ė′q − v̇q −Rs ı̇q

X ′d
−  ė

′
d − v̇d −Rs ı̇d

X ′q
, (33)

or, equivalently:

ı̇d =
X ′q(ė′q − v̇q) +Rs(−ė′d + v̇d)

X ′dX
′
q −R2

s

, (34)

ı̇q =
X ′d(−ė′d + v̇d) +Rs(ė

′
q − v̇q)

X ′dX
′
q −R2

s

, (35)

and, using (27) and (28), one can obtain the following final
expressions for the time derivative of the current:

ı̇d =
ė′q
X ′d
− (ρvq + ωvd − ωrvd +Rs ı̇q)

X ′d
, (36)

ı̇q = − ė′d
X ′q
− (−ρvd + ωvq − ωrvq −Rs ı̇d)

X ′q
. (37)
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Then, substituting the expressions above for ı̇d and ı̇q into
(31), we obtain the sougth expression of ξ̄:

ξ̄ =
ı̄∗(Z̄d(vqωr − ė′d) + jZ̄∗q(vdωr + ė′q))

(X ′dX
′
q −R2

s )ı2

+
ı̄∗(Z̄dvd − Z̄∗qjvq)

(X ′dX
′
q −R2

s )ı2
ρ

+ 

(
−ı̄∗(Z̄∗qvd − Z̄djvq)

(X ′dX
′
q −R2

s )ı2
ω + ωr

) (38)

where ė′q and ė′d are defined by (19) and (20), and we have
used the notation Z̄d = (Rs + jX ′d) and Z̄q = (Rs + jX ′q).
Finally, the terms ξ̄a, κ̄ρ and κ̄ω of the 4th-order model of the
synchronous machine are:

ξ̄a = jωr +
ı̄∗(Z̄d(vqωr − ė′d) + Z̄∗q(vdωr + ė′q))

(X ′dX
′
q −R2

s )ı2
,

κ̄ρ =
ı̄∗(Z̄dvd − Z̄∗qvq)

(X ′dX
′
q −R2

s )ı2
, κ̄ω = j

ı̄∗(Z̄dvq − Z̄∗qvd)

(X ′dX
′
q −R2

s )ı2
.

(39)
For a second-order classical model of the machine, namely

Rs = 0, X ′q = X ′d, T ′d0 = T ′q0 = 0, and vf = const., the
expressions in (38) and (39) simplify as:

ξ̄ =  ωr +
s̄

X ′dı
2

(ωr +  η̄) , (40)

ξ̄a = ωr +
s̄ ωr

X ′dı
2
, κ̄ρ =

 s̄

X ′dı
2
, κ̄ω = − s̄

X ′dı
2
. (41)

2) ZIP Loads: Consider a constant impedance load whose
equations are as follows:

s = s0
v2

v20
. (42)

The time derivative of (42) gives:

ṡ = 2 s0
v v̇

v20
= 2 ρ s . (43)

Recalling the following identity for the CF (see [7], Section
III):

ṡ = s (η + ξ
∗
) , (44)

and using (43) and (44), one has:

s (η + ξ
∗
) = 2 ρ s . (45)

From the latter expression, it descends that:

ξ = η (46)

Finally, ξ̄a, κ̄ρ and κ̄ω are found for the z-load as:

ξ̄a = 0 , κ̄ρ = 1 , κ̄ω =  . (47)

Note that, as expected, this device is entirely η̄-dependent
(passive). A similar procedure can be followed for different
ZIP load models. For example, for a constant current load,
one has:

ξ̄ =  ω (48)

with
ξ̄a = 0 , κ̄ρ = 0 , κ̄ω =  , (49)

and for the constant power load:

ξ̄ = −η̄∗ (50)

with
ξ̄a = 0 , κ̄ρ = −1 , κ̄ω =  . (51)

3) Inverter-Based Resources (IBR): Consider a simplified
IBR converter model with active and reactive power control,
ideal synchronization, and a droop frequency control. Using
the usual notation for variables and parameters, the set of
differential-algebraic equations are [20]:

Td ı̇d = ıdref − ıd = ∆ıd , (52)
Tq ı̇q = ıqref − ıq = ∆ıq , (53)

Tf ẋp = − 1

R
(ωref − ω)− xp , (54)

pref = pref0 + xp , (55)
pref + qref = vdıdref +  vdıqref (56)
ıd +  ıq = ı cos(β − θ) +  ı sin(β − θ) , (57)

where ω = θ̇. Differentiating (57), the complex frequency of
the current injected into the grid is:

ξ̄ =

(
ıd ı̇d + ıq ı̇q

ı2

)
+ 

(
ıd ı̇q − ıq ı̇d

ı2
+ ω

)
, (58)

Then, replacing (52) and (53) in (58) leads to:

<
{
ξ̄
}

=
Tqıd∆ıd + Tdıq∆ıq

TdTqı2
, (59)

=
{
ξ̄
}

=
Tdıd∆ıq − Tqıq∆ıd

TdTqı2
+ ω , (60)

or, equivalently:

ξ̄ =
ı̄∗

ı2

(
∆ıd
Td

+ 
∆ıq
Tq

)
+  ω (61)

and, hence, the terms ξ̄a, κ̄ρ and κ̄ω of the IBR are:

ξ̄a =
ı̄∗

ı2

(
∆ıd
Td

+ 
∆ıq
Tq

)
, κ̄ρ = 0 , κ̄ω =  . (62)

Finally, it is relevant to remark that all the derivations
presented above hold and are sufficient to describe the device
behavior even in case regulators are attached to them. For
instance, turbine governors, AVRs, AGCs, additional outer
loops in converters and any other controllers.

III. CASE STUDIES

In this section, we apply the CFDF to the well-known
IEEE 39 bus benchmark system, the single-line diagram of
which is shown in Fig. 1. First, we examine the steady state
values of the coefficients of D̄ for different buses, where we
compare the potential influence of a device dynamic connected
at different locations of the network. Then, we perform time-
domain simulations to compare different methods to obtain
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the frequency of the voltage. In particular, we compare our
formula with the FDF and the frequency estimation obtained
with a PLL. All simulations are obtained using the Python-
based software tool Dome [21].
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Fig. 1. Single-line diagram of the IEEE 39 bus benchmark system. Generators
marked with the dashed rectangles are substituted with IBRs in the second
scenario of the case study.

A. Quantification of Device Participation to the CF
The power flow solution of the system is used to compute

the initial steady state values of D̄. We arbitrarily take
buses 15 (load bus) and 35 (generator bus) to evaluate the
coefficients. Devices are sorted according to the magnitude of
their direct influence (real part of the coefficient). Those that
mostly impact η̄ are shown in Table I. Note that the devices
that mostly participate to the frequencies of the selected buses
are the devices that inject (draw) the highest powers to (from)
the network. This suggests that rather than the specific location
of the device, what mostly affects the value of the coefficients
is the amount of power the device is exchanging with the grid.
This effect is particularly evident in a compact and meshed
network such as the New England 39-bus system.

As discussed in Section II-A, even though loads 39, 8
and 4 show high participation factors to the frequencies of
buses 15 and 35, the impact on the frequency ultimately
depends on the dynamic model and control of the devices
connected to the grid. In the extreme case of being modeled as
constant impedances, there is no independent internal variable
at all as they are entirely passive devices. In such a case, the
participation measured by D̄ spreads to the rest of the devices.
As a consequence, the information provided by the elements
of D̄ is especially useful for comparing the participation of
devices of the same kind and size or with a similar dynamic
model.

B. Calculation of the Frequency
We consider two scenarios. First, we apply the CFDF to the

original IEEE 39 bus system, where a good performance of

TABLE I
DEVICES THAT PARTICIPATE THE MOST TO η̄15 AND η̄35

Bus 15 Bus 35
Device Value Device Value
Load 39 0.314 Load 39 0.545
Gen 1 -0.274 Gen 1 -0.485
Load 8 0.212 Load 8 0.282
Load 4 0.201 Load 4 0.267
Gen 9 0.183 Gen 2 -0.173

the FDF is expected since the system dynamic is dominated
by synchronous generators, which are also well distributed
throughout the grid. Then, we simulate a modified version of
the system replacing some synchronous generators with IBRs.
In both scenarios, a sudden disconnection of 200 MW and 96
MVAr at bus 15 is applied at t0 = 1.0 s.

1) Original IEEE 39 Bus System: The network is composed
of ten synchronous generators. A 4th-order dynamic model as
the one described in Section II-C1 is used for all the machines.
A constant power model is used for all the loads. The
transmission system is modeled through a constant admittance
matrix. All the generators are equipped with Type 1 governors
for primary frequency control and IEEE Type AC4 automatic
voltage regulators. Finally, a standard automatic generation
control provides secondary frequency regulation.

The frequency is evaluated at two different buses. First,
at bus 15, where the load is suddenly disconnected. Second,
at bus 35, a generator bus. For each case, we compare the
frequency obtained through our formula, the FDF and a
synchronous reference PLL. The results are shown in Figs. 2
and 3 for buses 15 and 35, respectively. As expected, the
estimation given by the PLL experiences a numerical peak
right after the event, especially in bus 15, from which the
load is disconnected. After that, it gives a precise estimation
of the frequency of the buses, thus serving as a reference for
the analysis. Regarding the estimation given by the FDF, it is
well-defined at every point of the simulation, as its dynamic is
driven only by the state variable ωr of the machines, which do
not change discretely. However, the approximations on which
the FDF is based lead to a deviation from the reference. This
error is higher for buses far from synchronous machines (see,
in this case, bus 15) than for those very close to them (bus 35).
Finally, the calculation given by our formula outperforms the
others, as it gives a precise result for the frequency without
numerical issues.

For the sake of an example, Fig. 4 shows the frequency at
bus 15 as obtained by solving the CFDF analytically and using
the values of the CF of the current of every device as estimated
with PLLs. Results verify that the PLL-based approximation is
accurate except for the numerical issues right after the event.

2) Modified IEEE 39 Bus System: The IEEE 39 bus system
is modified replacing 6 synchronous generators with IBRs,
particularly, generators 4, 5, 6, 7, 8 and 10. The dynamic model
described in Section II-C3 is used in all the IBRs. Thus, they
have active and reactive power control, ideal synchronization,
and a droop frequency control loop.
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We consider buses 31 and 35 and show the results in
Figs. 5 and 6, respectively. While the former is still connected
to a synchronous machine bus, the latter is now connected
to an IBR bus. The FDF performs reasonably well for the
synchronous machine bus 31, and deviates from the exact
value obtained with CFDF almost only in the magnitude of the
oscillations. However, the deviation of the FDF with respect
to the PLL and CFDF is higher for bus 35, as expected, as
it cannot properly capture the shape of the local frequency
deviations which are due to the IBR control. The results
confirm the ability of the CFDF to accurately calculate the
frequency at every bus independently of the type of devices
connected to the grid and without numerical issues.

C. Remarks on the Applications of the CFDF

The matrix D̄ contains valuable information on how the
dynamic of the devices participates to the dynamic of all the
buses of the grid. However, the actual affectation of a specific
internal variable of a device depends on its dynamic model,
reflected in ξ̄, not in D̄. Yet, the pure examination of the values
of D̄ is appropriate for comparing the effect of devices of the
same kind, or with a similar dynamic model. Moreover, since
these coefficients have the properties of participation factors,
they can be utilized to decide where to locate resources to
support the control of η̄ at a specific bus or area of the grid.

The derivation of the CFDF does not require approximating
the dynamic models of the devices connected to the grid.
This feature implies that the CFDF, rather than a technique
to estimate the CF of the voltage at every bus of the network,
is in effect the actual analytic expression of the CF at the
buses. We also note that, since the definition of the CFDF is
based on differentiation of the differential-algebraic equations
of the system, it is a linear (although time-variant) expression
in terms of the CF. This makes possible to find the CF as
an explicit function of the state and algebraic variables of the
system.

Nevertheless, obtaining such expressions can be involved, as
shown in Section II-C1 for the 4th-order synchronous machine
model. The factorization of the dense matrix D̄ at every step
of a time-domain simulation can also be cumbersome for
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Fig. 2. Results for bus 15 - Original IEEE 39 bus system.
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Fig. 3. Results for bus 35 - Original IEEE 39 bus system.
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Fig. 4. Frequency at bus 15 calculated through the CFDF, analytical solution
vs estimation.

large networks. Yet, an offline approach — i.e., solving (3)
post-processing the results of the time-domain simulation —
appears relevant if an exact value for η̄ is required. This can be
used, for example, as a reference to compare the performance
of different PLLs or other frequency estimators.

Finally, we note that (3) can also be evaluated by estimating
ξ̄ through current measurements. This approach is accurate in
practice, and as shown in the simulations of the case, except
right after faults and events resulting in large sudden variations
of bus voltages.

IV. CONCLUSION

The paper introduces the CFDF, which is an explicit equa-
tion for the CF of the voltage of all buses (η̄) in terms of
the CF of the current injected by the devices connected to
the network (ξ̄). The paper shows how the coefficients of the
matrix of the proposed formulation carry valuable information
to quantify the participation of the different devices on the
dynamic of η̄. The proposed formula can also be used to
directly calculate η̄, either solving analytically or estimating
ξ̄, for example, using PLLs.

The analytical solution is exact in the measure the dynamic
model of the system is exact. It has a substantial theoretical
value as it defines, explicitly, η̄ for every bus in terms of
existing variables of the dynamic model. Therefore, it can
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Fig. 5. Results for bus 31 - Modified IEEE 39 bus system.
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Fig. 6. Results for bus 35 - Modified IEEE 39 bus system.

serve as a reference to compare other methods to estimate
the frequency at every bus. Nevertheless, its computational
cost makes it more suitable for an offline analysis rather than
integrating it into the set of DAEs of the system.

Future work will focus on reducing the computational cost
of the CFDF. For example, by neglecting the terms correspond-
ing to devices which, a priori are known to have a minor effect,
or by solving the system only for a subset of buses of interest.
Future research will also explore practical applications of the
CFDF for control and dynamic state estimation.

APPENDIX

This appendix proves that the rows of D̄ always sum up 1.
Equation (1) can be equivalently rewritten as:

Z̄ ı̄ = v̄ . (63)

Then, consider the h-th row of equation (63):

n∑
k=1

Z̄hk ı̄k = v̄h ⇒ 1

v̄h

n∑
k=1

Z̄hk ı̄k = 1 . (64)

On the other hand, from (4), the (h, k)-element of D̄ is:

D̄hk =
1

v̄h
Z̄hk ı̄k . (65)

Taking the sum over the columns of D̄ for the h-th row:
n∑
k=1

D̄hk =
1

v̄h

n∑
k=1

Z̄hk ı̄k , (66)

and, recalling (64), one obtains:
n∑
k=1

D̄hk = 1 . (67)

The proof is complete. �
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