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Abstract

This paper proposes a novel data-driven algorithm for measurement-based coherency detection in

power systems, which is based on Monte Carlo Consensus Clustering (M3C). Unlike the clustering

techniques conventionally adopted for coherency detection, M3C automatically identifies the optimal

and stable number of coherent groups, despite the time-varying phenomena affecting power system

operation. The proposed methodology is tested and validated with the IEEE 39-bus system. Re-

sults are compared with other existing clustering techniques, where the Friedman test with post-hoc

analysis is performed on returned clustering scores to assess the statistically significant difference

between the clustering techniques. This comparison highlights the advantages of the proposed ap-

proach, which does not require time-consuming analysis aimed at preliminary tuning and adjourning

the algorithm parameters.

Keywords: Coherency, Network partitioning, Power system stability, Monte Carlo Consensus

Clustering (M3C).

1. Introduction

Coherency detection consists in finding groups of generators oscillating, ideally, with the same

angular speed, given a disturbance in the system. Power system engineers employ coherency de-

tection in the task of solving many fundamental operation and planning problems, which include

disturbance analysis, system separation [1], identification of grid equivalent models [2], [3], optimal

placement of Phasor Measurement Units (PMU), and data-driven-based situational awareness [4].

Traditionally, power system coherency has been assessed through model-based methods, which

rely on the eigenanalysis of power system’s linearized model. The slow-coherency identification

method [5] and the method based on eigenvectors [6] are well-known examples of model-based
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approaches. These methods do not consider system configuration changes or disturbance severity

and location [7]. The large-scale employment of Wide Area Monitoring Systems (WAMS) has led

the transition from model to data-driven based coherency. Indeed, the proliferation of advanced

sensing infrastructures improves the stability assessment and control capabilities of power systems.

An interesting review of the opportunities and challenges associated to WAMS worldwide can be

found in [8].

Despite the large number of methods being proposed in the literature for measurement-based

coherency detection, their deployment in realistic operation scenarios is hindered by the need of

identifying the number of coherent groups and properly tuning the parameters of the classification

algorithm. To solve this challenging issue, in this paper a consensus clustering-based algorithm with

a hypothesis testing framework based on Monte Carlo consensus clustering (M3C) is proposed.

1.1. Literature Review

Data-driven methods use real-time measurements obtained from PMUs, characterized by a high

sampling frequency.

These methods do not rely on accurate models and detailed parameters to assess coherency, only

on the analysis of measured signals [9]. Grouping power system buses into coherent clusters through

data requires unsupervised machine learning techniques [10].

The simplest approach to cluster power system buses is to observe the correlation between phase

angle or frequency signals measured by PMUs. The authors of [11] use a combination of ten cor-

relation indices in the time domain, whereas authors in [12] and [13] apply the Fourier transform

before assessing correlations. In [14], again based on the Fourier transform, the correlation is eval-

uated considering not only the amplitude, but also the phase angle. Furthermore, the coherency

analysis is extended to non generating buses, to define the exact boundaries of the coherent areas.

More advanced techniques, suitable for nonlinear and non-stationary time series, are Hilbert-Huang

transform [15], wavelet phase difference [16] and Prony analysis [17]. Alternatively, PMU data can

be employed to partition coherent areas by defining relevant energy functions [18].

Due to the large dimensionality of the input data, data reduction techniques have been widely

applied to data-driven coherency analysis. Principal Component Analysis (PCA) [19], Independent

component analysis [20] or Singular Value Decomposition [21] are examples of data reduction tech-

niques used in data-driven coherency analysis. After pre-processing, clustering techniques provide

a means to group the measured time series. A wide range of clustering techniques has been pro-

posed in the literature for data-driven coherency detection. Fuzzy c-means [22], k-means [23] and

hierarchical clustering [24] are the most common clustering algorithms employed.
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The main advantage of the aforementioned works is that they are based on well-known algorithms,

applied in a large variety of contexts. They are available and optimized in many packages for several

programming languages.

The disadvantages are as follows. First, no data-driven technique has emerged to be the most

effective with each data set. Hence, in some scenarios, these algorithms can fail. Second, many of

them have no online capabilities. However, this problem is solved in [25]. It proposes a combination of

singular value decomposition and k-means for the online identification and the dynamic visualization

of coherent areas. Third, traditional clustering techniques require to define a priori the number of

expected coherent groups. This number is defined based on the knowledge of the system or on a

trial-and-error approach. However, fault location and operation conditions may affect the optimal

number of clusters.

To solve the last issue, a coherency detection method based on Affinity Propagation clustering

is proposed in [4]. This advanced technique does not require the number of clusters to be defined,

but its performance is greatly affected by the hyper-parameters setting, which is a demanding issue

to address [26].

Another interesting data-driven approach for reliable cluster identification is based on the typicality-

based analysis, which is an alternative to the frequentist representation of data distribution [27].

Although this approach shows promising results and has the advantage of not using clustering algo-

rithms, it does not integrate any methods or metrics to validate the effectiveness of the identification

of the coherent groups over long time-horizons and variable operating conditions.

To deal with these challenging issues, the quality of clusters is often judged through visual

inspection or expert knowledge. In some cases, the results of the clustering techniques are evaluated

through similarity metrics, such as Average Silhouette [28], Elbow method or Gap statistics [29]. A

description of these and additional internal metrics is provided by [30]. However, these metrics do

not consider the strong dependence of clusters on contingencies, network operating conditions and

cluster initialization. Finally, existing works do not consider many fault locations for a considered

grid. This may lead to an incomplete or even inconsistent identification of the clusters and/or of the

clustering technique assessment. In light of these reasons, this manuscript proposes the application

of M3C for the coherency detection of power system clusters. The features of this methodology

that constitutes an added value for power system practitioners with respect to the state-of-the-art

data-driven-clustering algorithms are as follows:

• Internal best cluster number estimation without relying on external metrics.

• The ability to provide a self-consistent validation of the returned clusters based on a Relative
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Cluster Stability Index (RCSI) and on statistical evaluations.

Besides the aforementioned features, the proposed M3C-based coherence detection shows a variety

of advantages for power system operators, as follows:

• Robustness: the ability to return “more robust” clusters than the traditional clustering algo-

rithms. This is a consequence of the resampling mechanism included in M3C that mitigates

the effect of anomalous data on the final clustering.

• Performance: the M3C results are independent of the initial guess on the returned clustering.

The initial guess, on the other hand, affects most existing algorithms and, hence, several

random reinitializations are often required to obtain good results, which affects performance.

• Consistency: as shown in the case studies of this paper, the M3C returns more consistent

(from the dynamic point of view, i.e., “more coherent”) clusters than the concurrent methods.

This feature can help better understand the dynamic behavior of the system under study, and

develop advanced planning and operation-oriented applications based on coherency detection.

Furthermore, the paper presents a comprehensive comparison of the proposed technique with the

most commonly utilized data-driven-clustering algorithms. The following parameters and tests are

considered:

• Faults across each bus of the grid, given several grid sizes.

• A Friedman-based significance statistical test on the returned clustering scores to establish

a performance rank of the clustering algorithms, and to assess their performance under a

statistical framework.

For its depth and completeness, the case study allows not only for a fair comparison of the state-of-

the-art data-driven clustering algorithms and illustrates the benefits of the proposed M3C technique,

but also serves as a benchmark for future works on this topic.

1.2. Organization

The remainder of the paper is organized as follows. Section II provides some background of power

system coherency and clustering. Section III outlines the main concepts of Consensus Clustering,

required to understand the M3C, introduced in Section IV. Section V describes the case studies,

based on the coherency analysis of the IEEE 39-bus system through the M3C and compares it to

existing data-driven methods. Finally, Section VI draws the main conclusions and outlines possible

future research directions on the topic.
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2. Background on Coherency and Clustering

The proposed M3C method uses frequency and phase angle signals, provided by PMUs installed

over the network, for coherency identification. In this section, first the definition of coherency and the

dissimilarity matrix used in clustering techniques are introduced. Then, the most relevant concepts

of Consensus Clustering (CC) and its shortcuts are discussed.

2.1. Coherency

Power system coherency is defined based on phase angle and frequency measurements over the

network. Two generators i and j are considered coherent if the following relation (1) holds:

∆δi(t)−∆δj(t) ≤ ε (1)

where ∆δi(t) and ∆δj(t) are the phase angle deviations of generator i and j after a disturbance.

The parameter ε represents the tolerance set to declare two generators coherent. A larger value

leads to loose coherent groups, a smaller value to tight groups, whereas ε = 0 corresponds to the

ideal coherency. Since the frequency f is obtained as the time derivative of phase angle, assuming a

constant numeric derivation step in its calculation, it is interchangeable with phase angle δ to check

coherency. Note also that, if PMUs are installed not only at generator buses, but wherever on the

network, the coherency concept can be extended to generic buses.

2.2. Time Series Clustering

Clustering is an unsupervised learning process aimed at partitioning a set of N items into k

homogeneous groups, according to a chosen similarity metric. Time-series clustering performs the

partitioning of signals measured over a time interval, where each signal has T samples, depending on

its sampling frequency. In coherency detection, the measured data can be represented as a matrixM,

whose dimensions are [N ×T ]. Each row represents the frequency measurements of a PMU installed

on a bus, for a total number of N buses in the network. Each column represents a measurement

sample at time t. Hence, the dimension of the matrix is highly dependent on the number of PMUs

in the network, the sampling frequency and the observation interval.

The majority of deployed clustering algorithms in coherency detection, such as hierarchical clus-

tering, requires computing a dissimilarity matrix D, which is a symmetric matrix of order N . Each

element of D represents the distance between a pair of items of matrix M. Different distance metrics

can be employed, such as correlation, dynamic time warping, or Euclidean distance. The latter is

the most common choice. Other clustering algorithms, such as k-means, require as input the matrix

M in the original / novel space instead of the distance matrix D. These aspects will be analyzed

more in depth in the rest of the manuscript.
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3. Consensus Clustering

High dimensional data, with a low ratio between the number of items and the number of features

per item, results in clusters sensitive to noise and susceptible to over-fitting. Furthermore, many

algorithms require random initialization, which may lead to different results over many trials.

For this reason, the authors of [31] defined the concept of cluster stability. It is linked to

the robustness of clusters to resampling. Larger robustness in resampling is associated with high

confidence in considering the clusters as representative of the real data structure. The estimation

of the best number of stable clusters, given a span {1, . . . , K}, is conducted by considering R

resamplings per k.

3.1. Subset resampling

For each k ∈ {1, K}, CC runs R clustering trials on bootstrapped subsets of the original dataset.

Given the r-th subset, the CC performs a clustering algorithm to split the elements. Hence, “con-

sensus matrix” C(r), which is a square matrix of order N , is computed from the knowledge of the

returned clusters as follows:

C(r)(i, j) =

1 if items i and j are in the same cluster

0 otherwise

(2)

Similarly, “connectivity matrix” I(r), which is a square matrix of order N , is computed as follows:

I(r)(i, j) =

1 if items i and j are bootstrapped together

0 otherwise

(3)

Particularly, I(r) encloses information about the bootstrapped items for each r-th trial.

3.2. Information fusion

After the R trials, the consensus matrices are processed to compute the “Overall consensus

matrix” Γ(k):

Γ(k)(i, j) =

∑R
r=1C(r)(i, j)∑R
r=1 I(r)(i, j)

(4)

Given the r-th trial, the connectivity matrix shows which elements are clustered together, whereas

the Overall Consensus matrix represents the tendency of elements i and j to be clustered together,

given different trials with changing subpopulations. (4) normalizes the membership grade between

two items considering the resampling. For this reason, the elements of Γ(k) are continuous values

between 0 and 1.
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3.3. Estimation of the Best Number of Clusters

The best number of clusters is assessed by analyzing the constructed overall consensus matrices

for each k. The first step requires the computation of the Cumulative Distribution Function (CDF)

score for each k, CDF(k). A robust cluster corresponds to the elements of Γ(k) being equal to either

0 or 1. On the other hand, if the clusters are sensitive to resampling, the elements of Γ(k) are equal

to the intermediate values between 0 and 1. The computation of the empirical CDF(k) for each k is

a graphical indicator of the best number of clusters. The empirical CDF(k) is computed as in (5):

CDF(k)(q) =

∑
i<j 1{Γ(k)(i, j) ≤ q}
N(N − 1)/2

(5)

where 1{. . . } is the indicator function, which is 1 if the condition in the braces holds, and 0 otherwise,

and q is an auxiliary variable, whose range is [0, 1]. A flatter CDF(k) results in more robust clusters,

for a given k. The indicator function is computed for increasing discrete steps of q.

The search for the best number of clusters relies on the analysis of the differences between

different CDF(k). The area subtended to CDF(k), A(k), is equal to (6):

A(k) =
m∑
i=2

[xi − xi−1]CDF(k)(xi) (6)

where x = {x1, . . . , xm} are the sorted entries of Γ(k). The difference between the subtended area of

different CDF(k), i.e. the ∆(k) score, is computed as follows:

∆(k) =


A(k) if k = 2

A(k+1) − A(k)

A(k)

if k > 2
(7)

The optimal number of clusters results in the maximum value of ∆(k). Once the best number of

clusters k∗ is returned, the corresponding Γ(k∗) plays the role of distance matrix in an agglomerative

Hierarchical Clustering, producing the final clustering, where the dendrogram is cut at the height

corresponding to k∗ clusters.

3.3.1. Limitations of Consensus Clustering

The conventional CC presents some critical issues. In particular, the ∆(k) score is uninformative

in some circumstances, even in the presence of well-defined structures. For this reason, reference [32]

proposed an alternative to A(k) and ∆(k) scores, called “Proportion of Ambiguous Clustering” (PAC),

as follows:

PAC(k)(v1, v2) = CDF(k)(v2)− CDF(k)(v1) (8)

where v1,2 ∈ ]0, 1[ are the sub-interval bounds. The literature suggests to set v1 = 0.05 and v2 = 0.95.

Hence, the lower is the PAC(k) the more evident is the structure found in the data, meaning that
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Algorithm 1 CC Algorithm

▷ Input: frequency oscillation time series for each bus, algorithm hyper-parameters.

1: for k ∈ {1, . . . , K} do

2: for r ∈ {1, . . . , R} do

3: Run the internal clustering algorithm on a subpopulation of M;

4: Compute the “consensus matrix” C(r) and the “connectivity matrix” I(r);

5: end for

6: Compute the “Overall consensus matrix” Γ(k);

7: Compute the CDF score for Γ(k);

8: Compute the ∆(k) score.

9: end for

10: Find k∗, which is the best number of clusters maximizing ∆(k).

11: Perform Hierarchical Clustering over Γ(k∗).

the elements of Γ(k) are distributed close to 0 and 1, respectively. The best number of clusters k

returns the lowest PAC(k).

The CDF(k) of the overall consensus matrix shows the distribution of its elements after n trials,

given a number of clusters. Lower values of such elements mean that items are often clustered

separately, higher ones mean that items are often clustered together. Given k, a perfect cluster

separation, which returns always the same groups for all resamplings, corresponds to the case where

the element distribution of the overall consensus matrix is binary (case A) as shown in Fig. 1. Lesser

robust clusters to resampling produce intermediate elements in the range ]0, 1[ (case B). PAC(k) is

a metric analyzing the consensus membership values falling within this intermediate range, which

corresponds to items considered “ambiguous” since they are not always clustered together in B

trials. Although the introduction of this novel score improves the original consensus cluster scores,

statistical tests to validate the PAC score and the corresponding best number of clusters are required.

4. Monte Carlo Consensus Clustering

This paper proposes the application of M3C to the coherency detection analysis in power systems.

M3C was proposed by the authors of [33], which showed to outperform the original CC by employing

statistical tests to validate the best number of clusters. Similarly to CC, the idea behind M3C is

to measure the strength of clusters assessing their tendency to form stable groups in the presence

of elements resampling. Furthermore, M3C introduces a statistical-based procedure to suggest the

optimal number of clusters, based on the work of [34], to overcome the CC limitations in estimating
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Figure 1: Examples of the experimental distribution, and corresponding empirical CDF for a perfect cluster separation

(case A), and imperfect cluster separation (case B). Data processed are the elements of the overall consensus matrix.

The vertical black lines are v1 = 0.10 and v2 = 0.9, which are used to compute the PAC score in this example. To

improve the readability of the figure, the values of v1 and v2 differ from those in [33].

the best number of clusters as shown by [32]. The conducted statistical analysis compares the

expected and actual score. The former is computed on a set of fictional data having statistical

properties to the original ones, whereas the latter on the real clustered elements. In particular, M3C

integrates the original CC with PAC scores according to the algorithm 2. The details of the steps

are explained below.

4.1. Principal Component Analysis

The PCA is the most popular method to perform cardinality reduction. It consists in the linear

combination of the original variables to produce new ones. The original variables are combined

producing a new space with new axes (called Principal Components) orthogonal to the original

ones, and oriented in the direction which maximizes the variance.

The algorithm requires the following steps: (i) transform the original matrix M in M̄, which has

a null mean and unitary variance for each variable; (ii) compute the Singular Value Decomposition

through M̄ = ULAT , where U, whose dimensions are [N × N ], is the left eigenvector matrix, L,

whose dimensions are [N × T ], is the rectangular diagonal matrix, and A, whose dimensions are

[T × T ], is the right eigenvector matrix, and where the columns of A are the eigenvectors of matrix

MTM; iii) Compute the novel variables in the PCA domain through the relation S = MA.

4.2. Generation of the random dataset in M3C

The application of PCA on matrix M allows obtaining the orthogonal eigenvector matrix A

according to M̄ = ULAT . The latter is linked to the principal component matrix S through the

relation S = MA. Particularly, a normal distribution, with null mean and standard deviation for

each column of S, is considered for filling the columns of S(b,k). The knowledge of this matrix allows
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computing the estimation of M̄(b,k), which preserves the same correlation structure as M̄, as shown

in (9):

M̄(b,k) = S(b,k)A
T (9)

where S(b,k) and M(b,k) are the b-th generated score and data in the original domain matrix, respec-

tively, for the k-th number of clusters. Then M̄(b,k) produces M̂(b,k) by considering variance and

mean of M. The generated data are used to compute the expected clustering quality score for each

k as proposed by [34], where this strategy is shown to overcome the limits of the heuristic approaches

as the elbow method. In this case, the cluster quality index utilised in this work is the PAC score

(see Section 4.3).

4.3. RCSI index computation

The Monte Carlo procedure aims at simulating datasets with the same correlation structure as

the original ones. The idea is to produce a distribution of PAC(k) scores, given a number of clusters

k. The different reference PAC(k), for each k, are compared to the real PAC score, PACreal
(k) to

highlight presence of a data structure. The RCSI(k), (10), is the ratio between the average reference

PAC, (11), and the real PAC score:

RCSI(k) = log10
PAC(k)

PACreal
(k)

(10)

PAC(k) =
1

B

B∑
b=1

PACref
(b,k) (11)

PAC(k) is the mean value of all the PACref
(b,k) for each k, where PAC(b,k) defines the PAC scores

computed for each generated b-th dataset. In particular, if PAC(k)/PAC
real
(k) > 1, the structure found

in real data is more evident than the hypothetical structure found considering B similar datasets.

For this reason, a greater RCSI(k) index results in a more evident structure, given k.

4.4. Computation of Monte Carlo p-value

The PAC score of the best number of clusters k∗, identified through the RCSI index, is processed

by a statistical test for validation purposes. The Monte Carlo test is a non-parametric test that

is useful when there is no knowledge on the shape of the observed test statistic distribution. This

test generates independent random datasets under the null hypothesis H0, where an independent

statistical test is conducted for each of the generated datasets. The test statistic is the PAC score in

this specific case. Ideally, the test requires an infinite number of B trials. The p-value is computed

as p(B=∞) = Pr(PACref ≥ PACreal). To provide an unbiased estimation of this probability a large

number of trials must be set, where the p-value is computed according to the ratio between the
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number of times PACref
(b) ≥ PACreal and B in the original version of the Monte Carlo test [35]. In

M3C, the calculation of p-value is adjusted by [36] to avoid zero p-values.

Particularly, the p-value p(k∗), computed according to (12), is employed for the Monte Carlo test:

p(k∗) =
σ(k∗) + 1

B + 1
(12)

σ(k∗) =
B∑
b=1

1{PACref
(b,k∗) < PACreal

(k∗)} (13)

The parameter σ(k∗) is the PAC score threshold, in (13) is the number of reference PAC scores lesser

than the real one. p(k∗) is the input of the following statistical test,where α is the confidence level

threshold. If H0 holds, the data are a single Gaussian cluster (k∗ = 1), otherwise the data are not a

single Gaussian cluster. According to [33], the statistical test cannot be used to select which k is the

best number of clusters, but it is used to test if k∗, returned from the analysis of RCSI score, assures

that the null hypothesis (the elements are all similar and a unique cluster exists) is rejected (and

the k∗ clusters exist). Further discussion about the interpretation of statistical tests in clustering

applications can be found in [37].

5. Case Studies

The proposed M3C method for finding a stable optimal number k of coherent groups is now

applied to the IEEE 39-bus system. The aim of these case studies is to show the superior performance

of the proposed method, the M3C, with respect to the ones in the literature, in performing the

clustering while assessing the optimal number of clusters k. The chosen benchmark methods are

k-means, Fuzzy-C-Means (FCM), and the original Monti Consensus Clustering (CC). k-means and

FCM are supported by the average silhouette score to select the best number of clusters.

The dynamic simulations, which provide the input data for the analysis, were performed through

the software Dome [38]. The clustering algorithms were implemented in the scripting language R,

version 3.4.1 and were carried out on a workstation equipped with an i7-7900HQ CPU and 16 GB

RAM.

5.1. Clustering of the IEEE-39 bus system

The input data consist of frequency measurements from each bus, supposed to be equipped with

a PMU. The time step is equal to 10 ms and the observed time window is 10 s. The generators,

which are installed from bus 30 to 39, are represented by a fourth-order model. Automatic Voltage

Regulators and Power System Stabilizers are also included in the model.
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Algorithm 2 M3C Algorithm

▷ Input: frequency oscillation time series for each bus, algorithm hyper-parameters.

1: Perform the PCA to obtain the orthogonal matrix of eigenvectors A, given the data matrix M

(Sec. 4.1);

2: for k ∈ {1, . . . , K} do

▷ Iterate over the number of cluster span;

3: for b ∈ {1, . . . , B} do

▷ Perform the Monte Carlo simulation, where B is the total number of Monte Carlo trials and

b the individual trial;

4: Generate a random score matrix based on the statistical properties of the real one;

5: Generate a M̂(b,k) matrix data, which is used as input for the CC algorithm, given k

(Sec. 4.2);

6: Return the PACref
(b,k) score;

7: end for

8: Perform the CC on real data, given k;

9: Return PACreal
(b,k);

10: Compute the RCSI(k) index, given k (Sec. 4.3);

11: end for

12: Return the best number of clusters k∗ and the groups;

13: Compute the Monte Carlo p-value (P -score) (Sec. 4.4).

The first case study refers to the coherency analysis of the network subject to a three-phase fault

at bus 27, with a clearing time equal to tclear = 0.2 s, which is a realistic value. Table 1 shows the

setup of the M3C algorithm, where Rreal and Rref are the number of bootstrapping for the real and

reference datasets, respectively.

Before choosing these parameters, a sensitivity analysis is conducted to assess their impact on the

results provided by M3C. The outcomes of this analysis show that M3C results are stable with respect

to changes in parameters B, Rreal, and Rref , even for a low number of Monte Carlo simulations. This

is consistent with the results of reference [33].

Ideally, the parameter K, which is the maximum number of clusters considered, should be set

equal to N . However, in the presence of a large number of elements, it is preferable to set K << N .

Furthermore, the case K = N corresponds to the unclustered case, which has no practical utility.

The literature does not suggest a criterion to set the maximum K in the iterative approach; it

should be selected depending on the specific application. For example, in this case, the value chosen

12



is K = 10 since the number of buses is not very large and a larger number of clusters would be

useless for any practical application.

Table 1: Input parameters of M3C

B Rreal Rref K v1 v2 α

100 100 100 10 0.05 0.95 0.005

5.2. Fault at bus 27

Finding the optimal number of clusters requires building the overall consensus matrix Γ(k) for

different numbers of clusters k, as illustrated in Fig. 2. First, a CDF(k) representing the distribution

of matrix elements is calculated for each Γ(k) (Fig. 3a). Then, starting from different CDF(k),

the PAC(k) scores are computed and the optimal number of clusters is identified by selecting the

minimum score (Fig. 3b). Finally, this choice is validated by computing the RCSI(k) index (Fig. 3c),

and performing a statistical test (Fig. 3d). The optimal number of clusters returned by this procedure

is k∗ = 7.
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Figure 2: (2a)-(2d) Overall consensus matrices applied to the coherency analysis of IEEE-39 bus system for different

numbers of clusters.

The frequency signals of each bus, grouped by cluster, are shown in Fig. 4a. The partitioned

system is represented as a graph in Fig. 4b. The edges are weighted considering the admittances of

the network.

The results show that a fault at bus 27 causes large frequency oscillations ∆f ≈ 0.01 pu at the set

of buses {28, 29, 38}. These are probably due to the low admittance of the line connecting buses 25

and 26, the only one connecting them to the main network during the fault. Furthermore, buses {1,

9, 39} form a cluster with a higher frequency of oscillation than the other coherent groups. Clusters

from 3 to 6 seem to be well partitioned from a first visual inspection of frequency signals, although
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Figure 3: (a) CDFs curve of the elements of Γ, (b) PAC score, (c) RCSI index, and (d) P -score applied to the

coherency analysis of IEEE-39 bus system, for different k.

they all have similar amplitude and frequency of oscillation. Additional cluster validation can be

obtained by reducing the dimension of the input data through a PCA and plotting the resulting data

points on a two-dimensional plot. The results of PCA are shown in Fig. 5. In this figure, clusters 1,

2 and 7 have a larger inter-cluster distance from the other clusters. Clusters from 3 to 6 are closer

to each other.

Figure 5 also shows the results of the benchmark clustering techniques, in order to compare them

to the proposed M3C method. Particularly, Fig. 5 shows the bi-dimensional scatter plot of clusters

in two dimensions in the PCA domain. It is possible to observe that CC produces only two clusters,

where one is characterized by a large spread over the PC2 axis. FCM splits this large group into

two parts. Differently, k-means and M3C produced more complex partitions, which makes it more

difficult to interpret which method is better.

The bi-dimensional scatter plot may not be exhaustive when additional principal components are

required to correctly represent data. Indeed, the three-dimensional scatter plot shows the separations

of buses {39,9,1} from {2,30}. Hence, the closeness of the elements is only apparent and caused by

space-flattening. Fig. 6 shows that these groups are on a different plane over the 3-rd PC. However,

k-means and FCM do not return a bad clustering for this particular fault scenario, hence additional

analysis can lead to suggest that M3C may be the better option. This can be validated through the

Visual Assessment of Tendency (VAT), introduced by [39] and first used in the field of coherency

grouping by [40].

The VAT method is not a clustering method but a way of sorting the distance matrix, such

that similar signals are kept close together and are clearly visible. In this case, the distance matrix

between the signals is calculated as the sum of the euclidean norms of each point in time. The

result of VAT, using the command imagesc in MATLAB® is shown in Figs. 7a-7d. The black
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Figure 4: Frequency signals (Fig. 4a) and Graph of the network clustered through M3C (Fig. 4b), fault at bus 27

of IEEE-39 bus system. The colors of signals (Fig. 4a) and nodes (Fig. 4b) identify the clusters, the white-colored

font identifies the fault location, and the labels of the edges identify the line admittance, which are normalized with

respect to the maximum admittance value. For the sake of clarity, the latter are not an input of any clustering model.

They are used to improve the physical interpretability of the grid graph.
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Figure 5: Visualization of the frequency signals reduced through PCA 2D, fault at bus 27 of IEEE-39 bus system.
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Figure 6: Visualization of the frequency signals reduced through PCA 3D, fault at bus 27 of IEEE-39 bus system.

color indicates a small distance between buses, while the red color denotes maximum distance. For

example, the group formed by {28, 29, 38}, which is the one with the larger amplitude of the

oscillations, is clearly more distant from the others.

The VAT shows how the M3C partition in 7 clusters is better than the benchmark methods.

With k-mean clustering, buses {26, 27} in group 2 are badly matched, as it is clear from Fig. 7b.

Also, group 4 containing buses {1, 2, 9, 30, 39} should be split. With CC, the buses are split into

two groups, where the former includes 36 buses, and the latter three. The VAT analysis suggests

the largest groups include clearly visible separate bus sub-groups {1-14} and {15-25}, {26, 27}, etc.,

which must be split. Finally, with FCM, buses {26 and 27} are joined in the group 2 {15-37},

whereas VAT suggests splitting them.

5.3. Coherency metrics

Clustering validation is not an easy task, especially in absence of the so-called ground truth, which

allows external validation. Different metrics, defined in the supplementary material, are tested, each

one with its own advantages and flaws. For coherency grouping, a quantitative metric that reports

numerically what is shown by the visual inspection is of interest. The first metric tested is the

Average Silhouette, the most common internal validation metric used in clustering. Unfortunately,

this metric does not perform well on coherency analysis in the time-domain. The main reason is

due to its large dependence on the inter-cluster distance. For example, if the distance between one

group and all the others is very large, it is likely that the maximum value of the Average Silhouette

16



is reached at k = 2 optimal number of clusters.

Since coherent groups in power systems should be characterized by a low intra-cluster distance

and low dispersion, a more suitable metric such as the Calinski Harabasz (CH) is calculated. The

calculation of this metric for each fault location is reported in Table 2.

The following insights can be extracted from Table 2: M3C outperforms (43% of the total number

of cases), or confirms (48%), the results of k-means, which prevails only for the 3% of the total cases.

Furthermore, when M3C outperforms k-means, the improvements in CH score are remarkable. The

reduction of CH score in the cases in which k-means provided a better cluster than M3C is lower

than 20%. Further insights concern the M3C and CC, where the former supplies better CH scores for

(a) M3C. (b) k-means.

(c) Consensus Clustering (CC). (d) Fuzzy-C-Means.

Figure 7: Distance matrix plot as obtained by (a) M3C, (b) k-means, (c) Consensus clustering, and (d) Fuzzy-C-

Means, fault at bus 27 of IEEE-39 bus system.
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67% of cases, compared with 5% where CC is better than M3C. The improvements of MC3 over CC

are remarkable, with some cases showing gains greater than 100%. Conversely, CC improvements in

M3C are always lower than 11%. Finally, M3C outperforms the CH scores of FCM for 67% of the

cases. Conversely, FCM performs better than M3C for only 3% of the cases.

Table 2: Results on Clustering Quality, IEEE-39 Bus System

Fault

Location
M3C k-means Consensus Clustering (CC) Fuzzy C-Mean (FCM)

bus:
Cluster

Nr.:

Calinsky

Harabasz
CTC

Cluster

Nr.:

Calinsky

Harabasz
CTC

M3C vs k-means

CH change [%]

Cluster

Nr.:

Calinsky

Harabasz
CTC

M3C vs CC

CH change [%]

Cluster

Nr.:

Calinsky

Harabasz
CTC

M3C vs FCM

CH change [%]

1 4 46.12 1.000 4 46.12 1.000 0 2 22.58 1.000 104 9 27.01 0.986 71

2 4 48.52 0.934 2 31.23 1.000 55 2 31.23 1.000 55 5 41.67 0.846 16

3 4 55.95 0.888 5 69.49 0.960 -19 2 48.24 0.875 16 3 50.93 0.794 10

4 3 42.51 0.984 3 11.70 0.833 255 2 16.15 1.000 163 3 39.33 1.000 8

5 3 46.42 1.000 3 46.42 1.000 0 2 10.21 1.000 355 2 34.31 1.000 35

6 3 44.08 1.000 3 44.08 1.000 0 2 9.59 1.000 360 2 35.20 1.000 25

7 3 55.84 1.000 3 30.40 0.833 84 3 55.84 1.000 0 2 47.62 1.000 17

8 3 62.12 1.000 3 31.11 0.833 100 3 62.12 1.000 0 2 53.05 1.000 0

9 2 46.24 1.000 3 29.16 0.833 59 2 16.69 1.000 177 2 46.24 1.000 0

10 2 37.20 1.000 2 37.20 1.000 0 2 10.39 1.000 258 2 37.20 1.000 0

11 2 37.03 1.000 2 37.03 1.000 0 2 7.31 1.000 407 2 37.03 1.000 6

12 2 46.01 1.000 2 46.01 1.000 0 4 35.95 1.000 28 2 43.47 1.000 0

13 2 32.70 1.000 4 32.47 0.988 1 2 8.24 1.000 297 2 32.70 1.000 0

14 9 52.09 0.981 6 42.82 0.976 22 5 31.65 1.000 65 9 52.09 0.981 0

15 2 91.06 1.000 2 91.06 1.000 0 2 91.06 1.000 0 2 91.06 1.000 0

16 2 142.05 1.000 2 142.05 1.000 0 2 142.05 1.000 0 2 142.05 1.000 0

17 2 93.71 1.000 2 93.71 1.000 0 2 93.71 1.000 0 2 93.71 1.000 -10

18 2 71.17 1.000 4 67.22 1.000 6 4 67.22 1.000 6 3 79.24 0.917 0

19 3 131.35 1.000 2 122.19 1.000 8 2 122.19 1.000 8 3 131.13 1.000 181

20 3 85.84 0.889 2 96.02 1.000 -11 2 96.02 1.000 -11 2 30.57 1.000 0

21 2 91.27 1.000 2 91.27 1.000 0 3 82.88 1.000 10 2 91.27 1.000 59

22 9 78.17 0.898 2 54.76 1.000 43 2 68.60 1.000 14 2 49.16 1.000 67

23 3 74.73 1.000 2 49.27 1.000 52 2 62.58 1.000 19 2 44.75 1.000 0

24 2 121.70 1.000 2 121.70 1.000 0 2 121.70 1.000 0 2 121.70 1.000 0

25 5 40.07 1.000 3 35.17 1.000 14 2 10.72 1.000 274 4 30.86 1.000 30

26 2 107.39 1.000 2 107.39 1.000 0 2 107.39 1.000 0 5 69.35 0.875 55

27 7 89.54 0.914 5 58.21 0.872 54 2 50.89 1.000 76 3 74.65 0.979 20

28 2 143.64 1.000 2 143.64 1.000 0 2 143.64 1.000 0 2 113.45 1.000 27

29 2 131.11 1.000 2 131.11 1.000 0 2 131.11 1.000 0 2 34.14 1.000 284

30 4 46.92 1.000 3 39.30 1.000 19 2 13.73 1.000 242 2 23.84 1.000 97

31 2 58.16 1.000 2 14.96 1.000 289 2 14.96 1.000 289 2 58.16 1.000 0

32 2 51.69 1.000 2 51.69 1.000 0 2 12.24 1.000 322 2 51.69 1.000 0

33 3 74.76 1.000 2 79.25 1.000 -6 2 79.25 1.000 -6 2 30.51 1.000 145

34 2 103.11 1.000 2 103.11 1.000 0 2 103.11 1.000 0 3 97.48 1.000 6

35 3 72.75 1.000 2 63.88 1.000 14 3 40.02 1.000 82 2 50.11 1.000 45

36 2 55.84 1.000 2 55.84 1.000 0 2 27.85 1.000 100 2 32.74 1.000 71

37 5 50.22 0.969 5 18.03 0.869 179 2 22.01 1.000 128 2 15.43 1.000 225

38 2 140.27 1.000 2 140.27 1.000 0 2 140.27 1.000 0 2 115.97 1.000 21

39 2 225.28 1.000 2 225.28 1.000 0 2 225.28 1.000 0 3 213.22 0.900 6

There are cases where M3C and the benchmark models return the same output. This means the

benchmark models’ clusters are robust in those cases. Hence M3C validates the results of the former

algorithm. For this reason, when the clusters are equal between M3C and the benchmark models

this must not be considered as a negative aspect of M3C.
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5.4. Friedman test with post-hoc analysis

The percentage CH score gained/lost by M3C over the benchmark clustering models allows for

an easy point comparison for each case study. A limitation of this approach is that is does not return

a judgment about the overall performance of the analyzed clustering models.

On the other hand, a fair comparison must consider the performance of all models for each case

study given a referring metric, such as the CH score in this case. The Friedman test with a post-hoc

analysis returns crucial output to assess the performance of machine learning models [41].

The Friedman test is a rank-based non-parametric multiple comparison between several popula-

tions in the presence of repeated measures [42]. Some recent applications in power systems of this

test lies in the model performance comparisons for wind power [43], load [44] and irradiance forecast-

ing [45] applications. Moreover, the Friedman test is a randomized block analysis of variance, whose

null hypothesis is that the methods’ performance has the same distribution. Given a confidence

threshold αFT , if the test rejects the null hypothesis H0, it is possible to assess if the models exhibit

different performances. In this case, a post hoc analysis reveals which pair of methods is significantly

different. In this case, Tukey’s test performs the post hoc analysis. Particularly, Tukey’s test returns

an upper diagonal square matrix, whose the column elements are sorted by their rank.

The post hoc analysis can eventually return a graphical output, which is shown in Fig. 8. In this

case, αFT = 0.05. The final rank is built by considering the models ranks for decreasing values of

CH scores by the Friedman test for each fault location. Hence, the number of samples per method

is 39. In this case, the test returns that the null hypothesis is rejected, which allows for performing

the post hoc analysis. Tukey’s test supplies that the most performing clustering model is the M3C,

which significantly differs from k-means. The latter is better than CC and FCM, but not enough to

be considered significantly different. Hence, under the obtained results it is possible to assess the

M3C outperforms the other clustering methods across the 39 fault locations.

5.5. Topological Compactness of clusters

Table 2 also contains the “Cluster Topological Compactness” (CTC) score, which measures the

grade of topological compactness of the clusters. CTC can be calculated as follows:

CTC(s) =
Bc

(s)

B(s)

(14)

where B(s) and Bc
(s) are the total number of buses in the s-th cluster and the number of physically

connected buses in that cluster, respectively. This score allows inspecting the degree of connection

of the clustered groups. When all the clusters form connected graphs, this index is equal to 1.

This index might be particularly important for some applications of coherency detection, such as
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Figure 8: Visualization of Friedman’s test with Post-hoc Analysis in terms of CH score. The best models are on the

leftmost/lower side. The elements placed on the left side are placed in a specular manner to those on the downside

for each insert. A green case means that the models on the respective row/column are not significantly different.

(n.s.d), otherwise they are signicantly different (s.d).

controlled islanding, which requires connected groups. It is interesting to notice that M3C returns

better results in terms of CTC, when compared to the benchmark method.

6. Conclusions

This paper proposes a Monte Carlo-based consensus clustering method as a tool to choose the

optimal number of coherent groups in a network, based on the measured dynamic response of the

system to a contingency. The proposed method is compared with the well-assessed clustering tech-

nique based on the maximum Average Silhouette score. The case study shows that the proposed

method outperforms the benchmark methods both qualitatively, e.g., visual inspection, and quan-

titatively, considering the metrics. The Friedman test with post-hoc analysis statically confirmed

the obtained results over the whole IEEE-39 bus network. Future works on the topic will focus on

the application of the M3C method to power systems with a variable penetration of RES, which

might affect the behavior of coherent groups due to their characteristic dynamics, and to effectively

integrate the the algorithm in online-power system operation tools.
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