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Abstract— This paper proposes a systematic and general ap-
proach to model correlated stochastic processes in power systems
by means of stochastic differential-algebraic equations. The paper
discusses the theoretical background of stochastic differential-
algebraic equations and provides a variety of examples of corre-
lated stochastic models for power system applications. With this
aim, stochastic processes with Normal and Weibull distributions
are considered. The case study utilizes the well-known two-
area system to demonstrate that the presence of correlation
between the stochastic processes can cause instability, despite
the fact that the same system is stable if the same processes are
uncorrelated. The case study also considers a 1479-bus dynamic
model of the all-island Irish transmission system to show the
scalability of the proposed technique, and to compare scenarios
with different levels of correlation among stochastic processes.
Results indicate that correlation has a non-negligible impact
on short-term dynamics. A high level of correlation among the
proecesses, in fact, can give raise to instability.

Index Terms— Correlation, stochastic differential algebraic
equations (SDAE), power system dynamics, time domain inte-
gration, Wiener process, Ornstein-Uhlenbeck process.

I. INTRODUCTION

A. Motivation

Random fluctuations can be modeled as a set of stochastic
processes, in the form of stochastic differential-algebraic equa-
tions (SDAEs) [1]–[3]. While in some cases such processes are
local and independent, there exist processes that are intrinsi-
cally correlated. For example, in most locations, cloudy days
tend to be more windy than clear-sky ones. Then the variations
of the active and reactive power consumption of loads are
coupled if the loads have a constant power factor. While
the correlation of stochastic processes has been thoroughly
discussed for unit-commitment and long-term power system
operation problems, the impact of correlation among different
stochastic processes on the short-term dynamics of power
systems has not been discussed in the literature yet. This paper
provides a general approach to model correlated processes by
means of SDAEs and study the impact of such processes on
power system dynamics.

B. Literature Review

Renewable energy resources such as wind and solar photo-
voltaic are non-dispatchable and are characterized by two
kinds of stochastic behaviors: local fluctuations around a given
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average value; and uncertainty, which is related to operation
and deviations with respect to forecasted values [4]. Loads
power consumption are also not fully deterministic and are
characterized by short- and long-term stochastic processes
similar to renewable energy resources [5]. All these elements
are responsible of introducing stochastic disturbances in the
power systems. In this paper, we are interested in the short-
term effects of noise, i.e. perturbations that are in the same
time scale as voltage and angle transient stability analysis.
This kind of noise is commonly known as “volatility.”

A well-assessed technique that allows taking into account
volatility in transient stability analysis is through a probabilis-
tic analysis. Probabilistic analysis consists in initializing the
set of differential-algebraic equations that model the system
using a random initial value, chosen with given probability
distributions [6]–[8]. The use of correlation in probabilistic
analysis has been widely studied in recent years. In [9], the
authors demonstrate that the risk assessment of line overload
is highly affected by the spatial and temporal correlation
between different wind speeds, and between power generation
and load power consumption. In [10], the authors establish
that the load forecast accuracy is dramatically improved if
the correlation among load power consumption of different
feeders is considered. In [11], the authors explain that the
standard deviation of the output variables is underestimated
if correlation among wind speeds at different wind farms,
and load power consumption between different buses is not
modeled properly. In [12], the authors demonstrate that the
security-constrained unit commitment problem produces less
conservative results if the uncertainty on the load power
consumption and on wind speed is modeled by properly
considering the correlation.

From the references above, it appears that the probabilistic
analysis is particularly suited to study uncertainty. In dynamic
studies based on probabilistic analysis, however, randomness
is included only at the initial point, whereas the remainder
of the simulation is deterministic. This can be useful to
study the sensitivity of the model with respect to parameter
uncertainty but, cannot take into account the dynamic behavior
of stochastic processes.

For this reason, the impact of volatility on the dynamic
response of power systems is better studied using stochas-
tic differential-algebraic equations (SDAEs). This has been
thoroughly explained in [1]–[3]. The latter reference also
presents a general approach to incorporate stochastic processes
in power systems using SDAEs. Some studies in the literature,
i.e. [13]–[15], model power systems subject to stochastic
disturbances as a set of stochastic differential equations (SDEs)
not SDAEs and present stability indices to asses the small
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signal stability and transient stability of power systems subject
to uncertainty and volatility. In [16] the authors devise a
method to determine the probability distribution of the power
system frequency subject to stochastic load variations, and
to evaluate the impact of different input parameters on the
standard deviation of the frequency.

A common assumption of the literature available on SDEs or
SDAEs models for power systems is that stochastic processes
are fully uncorrelated. However, this is not always true. For
example, the voltage on one side of a line/transformer is corre-
lated to the voltage on the other side of that line/transformer.
Similarly, there exists a correlation between the active and
reactive load power consumption at a given bus. This aspect
has been recently studied in [17] although this work only
considers the correlation of two stochastic processes.

C. Contributions

To the best of our knowledge, this is the first work that
discusses a systematic approach to study the effect of corre-
lated stochastic processes on the transient behavior of power
systems. The specific contributions of the paper are as follows.

• A general technique to model correlated stochastic pro-
cesses with any probability distribution in power system
models using large sets of nonlinear SDAEs.

• A procedure to set up correlated processes and quantify
the effect of correlation among stochastic perturbations
on the transient stability analysis of the power system.

It is important to note that the proposed model can be applied
to systems of any order and complexity without the need of
any simplifications or assumptions in the original model.

The manuscript shows that the correlation of stochastic
processes plays a crucial role in the transient behavior of
the system. In particular, we show that a certain set of
processes with given probability distributions are harmless
if they are fully uncorrelated but can drive the system to
instability if correlated. This finding has a significant practical
consequences, i.e., the need for system operators to take into
account not only the probability distribution of the stochastic
processes (such as wind and load power variations) but also
the correlation among these processes.

D. Paper Organization

The remainder of the paper is organized as follows. Section
II briefly outlines SDEs. The proposed approach to model cor-
related SDEs using correlated Wiener processes is presented
in Section III. Section IV describes how to include correlated
stochastic processes in power systems. Section V discusses re-
alizations of correlated stationary stochastic processes, which
follow different types of probability distributions, generated
using correlated SDEs. Section VI presents a case study that
discusses the impact of correlation of stochastic processes on
the dynamic response of the two-area system, and the all-
island Irish transmission system. Finally, Section VII draws
conclusions and outlines future work.

II. UNCORRELATED SDES

A n-dimensional set of SDEs can be written as:

κ̇(t) = a(κ(t)) + b(κ(t)) ◦ ξ(t) , (1)

where a : Rn 7→ Rn) is a vector that represents the so called
drift term, which is the deterministic part of an SDE and
defines its long-term trend; b : Rn 7→ Rn) is a vector that
contains the diffusion term, which represents volatility, i.e. the
amplitude of noise; ξ(t) ∈ Rn is a vector of uncorrelated
Gaussian white noise; and ◦ represents the Hadamard product,
i.e. the element-wise product of two vectors. Mathematically,
ξ(t) is defined as the time derivative of the Wiener process,
as follows:

ξ(t) dt = dW (t) , (2)

where W ∈ Rnw is a vector of standard uncorrelated Wiener
process, whose elements, say Wi(t), i = 1, . . . , nw, are fully
independent and have the following properties:

1) Wi(0) = 0, with probability 1.
2) Wi(t) is continuous for every t.
3) Wi(t) has unbounded variation in every interval.
4) Wi(t) has independent normal increments i.e., ∀t ≥ 0,

dWi = Wi(t + h) −Wi(t) ∼ N (0, h) where N (µ, σ2)
represents the Normal distribution with mean µ and
standard deviation σ.

5) Wi(t) is non-differentiable for all t i.e., limh→0(Wi(t+
h)−Wi(t))/h does not exist.

Note that the property 5 does not contradict the expression
of the white noise given in (2), which is only a formal
definition that allows to express SDEs in differential form
but has no practical application. The integration of (1) only
involves dW and sufficiently small time steps h [18]. In other
words, ξ per se is not needed in the calculations and is never
computed. In fact, substituting (2) into (1) and integrating the
result one obtains the common integral form of SDEs, which
is the one actually implemented in numerical tools:

κ(t) =

∫
t

a(κ(τ)) dτ +

∫
W

b(κ(τ)) ◦ dW (τ) . (3)

Equation (1) can be solved by integrating its two terms,
namely, drift and diffusion. The integration of the drift can
be solved as a conventional Riemann-Stieltjes’ integral. Any
numerical method, such as the implicit trapezoidal method or
the backward differentiation formulas can be utilized [19]. On
the other hand, the integration of the diffusion term, which is
associated to white noise, cannot be interpreted as an ordinary
Riemann-Stieltjes’ integral due to its stochastic nature. Several
methods exist in the literature to interpret stochastic integral.
Itô integral is the most popular choice in power systems. Since
an analytical solution to an Itô SDE is not trivial or might not
be available, numerical methods are usually employed. The
Euler-Maruyama method is the most used to solve Itô SDEs
by time discretization [20], [21].

III. CORRELATED SDES

A. SDEs with Correlated Wiener Processes

Let us consider again the set of multi-dimensional SDEs
defined in (1). These are uncorrelated if W is a vector of
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independent Wiener processes. The elements of the covariance
matrix P ∈ Rn×n of the increments dW are defined as
follows:

Pi,j = cov[dWi, dWj ] =

{
σ2
i , if i = j ,

0, if i 6= j ,
(4)

We aim at constructing a vector of correlated Wiener
processes. Suppose V is a vector of n elements that are
obtained as the linear combination of the n uncorrelated
Wiener processes W . The correlation matrix R ∈ Rn×n for
V has the form:

R =


1 r1,2 r1,3 . . . r1,n
r2,1 1 r2,3 . . . r2,n
r3,1 r3,2 1 . . . r3,n

...
...

...
. . .

...
rn,1 rn,2 rn,3 · · · 1

 ,
where ri,j = corr[dVi, dVj ] represents the correlation between
dVi and dVj . Of course, ri,j = 1 if i = j, since the correlation
of any variable with itself is always 1.

The value of r can be calculated using the Pearson’s
correlation coefficient [22]. The elements of covariance matrix
P ∈ Rn×n of dV are written as:

Pi,j = cov[dVi, dVj ] =

{
σ2
i , if i = j ,

ri,jσiσj , if i 6= j ,
(5)

The correlation between two processes can be considered
either a constant or a stationary stochastic process during the
period of simulation. The latter is defined using (1) as:

ṙ(t) = a(r(t)) + b(r(t))ξ(t) , (6)

The technique explained in this paper is equally applicable to
the case of correlation being a stochastic process, as the value
of correlation is just a entry in the correlation matrix R, which
can be updated from the process (6) at every time step during
the integration process.

The procedure to write dV in terms of dW is involved and
is thoroughly explained in [23]. Here, we simply provide the
final expression:

dV = C dW , (7)

where C ∈ Rn×n is chosen such that:

R = CCT . (8)

A family of C matrices satisfies (8) but the best choice of C is
a lower triangular matrix as it reduces memory requirements
and the computational burden of numerical implementations.
A lower triangular matrix is obtained by performing Cholesky-
decomposition of R. Cholesky-decomposition requires that
the input matrix is positive semi-definite. This condition is
generally satisfied for stochastic processes of power systems.

Based on the definitions above, a n-dimensional correlated
SDE is constructed by substituting (7) into (1) as follows:

η̇(t) = a(η(t)) + b(η(t)) ◦ ζ(t) ,

ζ(t) = C ξ(t) ,
(9)

where a, b and ξ have the same meaning as in (1); C satisfies
(8); η ∈ Rn is the vector of correlated stochastic processes;
and ζ ∈ Rn is the vector of correlated white noises.

B. Special Case of Two-dimensional Correlated SDE
This section discusses a relevant special case of (9), namely

a two-dimensional correlated stochastic process, which is
helpful, for example, to model correlated active and reactive
load power consumption. The correlation matrix R for a two-
dimensional case is:

R =

[
1 r
r 1

]
,

where r is Pearson correlation coefficient between the two
processes. The Cholesky-decomposition of R gives C as:

C =

[
1 0

r
√

1− r2

]
.

From (9), a two-dimensional correlated SDE can be written
as:

η̇1(t) = a1(η1(t)) + b1(η1(t)) ξ1(t) , (10)

η̇2(t) = a2(η2(t)) + b2(η2(t))
(
r ξ1(t) +

√
1− r2 ξ2(t)

)
.

IV. MODELING VOLATILITY IN POWER SYSTEMS

As discussed in the introduction, the sources of volatility
in power systems are the stochastic perturbations originated
from physical processes such as stochastic load consumption,
unbalanced conditions and harmonics that distort bus voltage
phasors, and wind speed fluctuations.

Conventional dynamic stochastic models of power systems
consider fully uncorrelated processes as in (1). When including
such processes into the power system model, one obtains:

ẋ(t) = f(x(t),y(t),κ(t),u(t)) ,

0 = g(x(t),y(t),κ(t),u(t)) ,

κ̇(t) = a(κ(t)) + b(κ(t)) ◦ ξ(t) ,

(11)

where x ∈ Rm is a vector of state variables; y ∈ Rl is a
vector of algebraic variables; u ∈ Rs is a vector of discrete
variables; f : Rm+l+n+s 7→ Rm are the differential equations;
g : Rm+l+n+s 7→ Rl are the algebraic equations; and κ̇ are
defined as in (1). The set of SDAEs in (11) is the model that
was proposed in [3] and several other reference thereinafter.

Elaborating on (11) and (9), the set of SDAEs that describes
a power system model with inclusion of n correlated processes
can be thus written as follows:

ẋ(t) = f(x(t),y(t),η(t),u(t)) ,

0 = g(x(t),y(t),η(t),u(t)) ,

η̇(t) = a(η(t)) + b(η(t)) ◦ [C ξ(t)] .

(12)

Note that numerical algorithms, to generate random numbers,
can be utilized to generate independent Wiener processes
and thus ζ can be obtained only indirectly, i.e. through the
calculation of C ξ.

A. Stochastic Load Model
Stochastic load models are well-established in the literature

[24]. The stochastic load model introduced in [3] considers the
well-known voltage dependent load model and uses uncorre-
lated OUPs to define volatility on active and reactive load
power consumption. This is the starting point of the models
presented in this paper.
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1) Correlated Active and Reactive Power Consumption:
The two-dimensional correlated SDEs introduced in Section
III-B are used to model correlated volatility on active and
reactive load power consumption. The proposed model is as
follows:

pL(t) = (pL0 + ηp(t))(v(t)/v0)γp ,

qL(t) = (qL0 + ηq(t))(v(t)/v0)γq , (13)
η̇p(t) = ap(ηp(t)) + bp(ηp(t)) ξp(t) ,

η̇q(t) = aq(ηq(t)) + bq(ηq(t))(rp,q ξp(t) +
√

1− r2p,q ξq(t)) ,

where pL0 and qL0 are the nominal values of active and
reactive power consumption, respectively; v(t) represents the
magnitude of the bus voltage at the load bus; v0 is the initial
value of this voltage magnitude at time t = 0; and γp and γq
impose the voltage dependency of the load, i.e., γp = γq = 0
is for constant power and γp = γq = 2 for constant impedance
loads.

In (13), the volatility on active and reactive power consump-
tion is modeled through two-dimensional correlated SDEs,
and parameters a and b have the same meaning as in (10).
Parameter rp,q represents the correlation between the two
processes, i.e. ηp and ηq . Note that a value of rp,q = 0 means
that the volatility on the active and reactive power consumption
is uncorrelated, thus, leading to the load model in [3].

2) Correlation on Load Power Consumption between Dif-
ferent Load Buses: In practice, some level of spatial and
temporal correlation exists between load power consumption at
different load buses. This is true because consumer behavior is
correlated. This behavior is represented by correlated volatility
and is modeled using n-dimensional correlated SDEs. The
model in (13) is thus modified to include the correlation
between the load consumption of d buses:

pL(t) = (pL0 + ηp(t)) ◦ vp(t) ,
qL(t) = (qL0 + ηq(t)) ◦ vq(t) ,[
η̇p(t)
η̇q(t)

]
=

[
ap(ηp(t))
aq(ηq(t))

]
+

[
bp(ηp(t))
bq(ηq(t))

]
◦C

[
ξp(t)
ξq(t)

]
,

(14)

where pL ∈ Rd and qL ∈ Rd represent the active and reactive
power consumption at load buses, respectively; pL0 ∈ Rd and
qL0 ∈ Rd represent the nominal active and nominal reactive
power consumption at load buses, respectively; vp ∈ Rd and
vq ∈ Rd represent vectors whose elements are calculated as:

vp,i(t) = (vi(t)/v0,i)
γp,i , i = 1, . . . , d ,

vq,i(t) = (vi(t)/v0,i)
γq,i , i = 1, . . . , d ,

respectively; and ap, aq , bp and bq are all d-dimensional
vectors with same meanings as in (9). Matrix C ∈ R2d×2d

and is obtained as the Cholesky decomposition of a correlation
matrix R with the following structure:

R =

[
Rp,p Rp,q

Rq,p Rq,q

]
, (15)

where Rq,p = RT
p,q and:

Rp,p =


1 rp1,p2 . . . rp1,pd

rp2,p1 1 . . . rp2,pd
...

...
. . .

...
rpd,p1 rpd,p2 . . . 1

 ,

Rp,q =


rp1,q1 rp1,q2 . . . rp1,qd
rp2,q1 rp2,q2 . . . rp2,qd

...
...

. . .
...

rpd,q1 rpd,q2 . . . rpd,qd

 ,

Rq,q =


1 rq1,q2 . . . rq1,qd

rq2,q1 1 . . . rq2,qd
...

...
. . .

...
rqd,q1 rqd,q2 . . . 1

 .

B. Stochastic Power Flow Equations

To ensure a secure operation of the grid, it is required that
generation and demand are balanced at all times. The power
balance at i-th bus is given by the well-known power flow
equations, which in polar form are written as:

0 = pG,i(t)− pL,i(t)

− v̂i(t)
nB∑
j=1

[v̂j(t)Bij sin(θ̂i(t)− θ̂j(t))

+ v̂i(t)Gij cos(θ̂i(t)− θ̂j(t))] , i = 1, . . . , nB ,

0 = qG,i(t)− qL,i(t)

− v̂i(t)
nB∑
j=1

[v̂jGij sin(θ̂i(t)− θ̂j(t))

− v̂j(t)Bij cos(θ̂i(t)− θ̂j(t))] , i = 1, . . . , nB ,

(16)

where pG,i and qG,i represent the sum of the active power
generation, and the sum of reactive power generation at the
i-th bus, respectively. Similarly, pL,i and qL,i is the sum of
the active power consumption, and the sum of the reactive
power consumption at the i-th bus, respectively. nB is the
total number of buses of the grid. Gij and Bij , respectively,
are the real and imaginary part of the (i, j) element of the
system admittance matrix.

In [3], noise is included in the bus voltage phasor to
account for possible sources of volatility and fluctuations not
modelled in the set of DAEs for transient stability analysis,
e.g., the effects of harmonics, nonlinearities, load unbalances,
and electromagnetic transients, etc. In the same vein, the
stochastic processes in (16) are included through the variables
v̂i and θ̂i, which are the bus voltage magnitude and the voltage
phase angle, respectively, and are obtained as nB-dimensional
correlated SDEs as follows:

v̂(t) = v(t)− ηv(t) ,
θ̂(t) = θ(t)− ηθ(t) ,[

η̇v(t)
η̇θ(t)

]
=

[
av(ηv(t))
aθ(ηθ(t))

]
+

[
bv(ηv(t))
bθ(ηθ(t))

]
◦C

[
ξv(t)
ξθ(t)

]
,

(17)

where v ∈ RnB and θ ∈ RnB are the noise-free components
of the voltage magnitude and phase angles, respectively, at
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network buses; and av , aθ, bv and bθ are all nB-dimensional
vectors with same meanings as in (9). C ∈ R2nB×2nB is
calculated based on the correlation matrix, using (8), using
a correlation matrix R that contains the correlation values
between voltage magnitudes and voltage angles. The structure
of R is similar to that of (15), namely:

R =

[
Rv,v Rv,θ

Rθ,v Rθ,θ

]
, (18)

where Rθ,v = RT
v,θ and:

Rv,v =


1 rv1,v2 . . . rv1,vd

rv2,v1 1 . . . rv2,vd
...

...
. . .

...
rvd,v1 rvd,v2 . . . 1

 ,

Rv,θ =


rv1,θ1 rv1,θ2 . . . rv1,θd
rv2,θ1 rv2,θ2 . . . rv2,θd

...
...

. . .
...

rvd,θ1 rvd,θ2 . . . rvd,θd

 ,

Rθ,θ =


1 rθ1,θ2 . . . rθ1,θd

rθ2,θ1 1 . . . rθ2,θd
...

...
. . .

...
rθd,θ1 rθd,θ2 . . . 1

 .

C. Wind Fluctuations

The electrical power generated from wind farms is a func-
tion of the wind speed, which is highly affected by weather
conditions. The wind speed is a physical process that exhibits
volatility. Wind speed is modeled as a stochastic perturba-
tion in power systems. Due to the stochastic nature of the
wind speed, it becomes highly important to study its effects
on power system dynamics to ensure a secure and reliable
operation. The uncorrelated volatility model of wind speed is
the following:

w(t) = w0 + ηw(t) ,

η̇w(t) = aw(ηw(t)) + bw(ηw(t)) ξw(t) ,
(19)

where w0 is the average wind speed in a given period, and the
parameters aw, and bw, have the same meaning as in (1).

The spatial and temporal correlation between different wind
turbines within a power plant, as well as among power plants
can be modeled as a set of correlated wind speeds. Such a
model is written as:

w(t) = w0 + ηw(t) ,

η̇w(t) = aw(ηw(t)) + bw(ηw(t)) ◦ [C ξw(t)] .
(20)

where w0 ∈ RnW is the vector of uncorrelated wind speeds;
C ∈ RnW×nW ) is calculated from a wind correlation matrix
R using (8); and other variables and parameters have same
meaning as in (9).

V. PROCESSES GENERATED USING CORRELATED SDES

The correlated SDE introduced in (9) can be utilized to
generate correlated stationary stochastic processes, which will
follow any required probability density function, through the

proper implementation of the drift a and diffusion b terms. In
the examples and case study of this paper, we consider Normal
and Weibull distributed stochastic processes. However, it is
important to note that processes with any other probability
distribution can be utilized. All types of distributions, in fact,
can be created through the proper definition of a and b using
the procedures described in [25]–[27].

A. Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process (OUP) is a continuous
stationary process with a normal probability density function.
The OUP is widely utilized to model volatility in physical
processes such as stochastic load dynamics [5], [28], [29] and
wind fluctuations [30]–[32]. Correlated OUPs can be generated
using (9) with the drift and diffusion term given as:

a(η(t)) = −α(η(t)− µ) ,

b(η(t)) =
√

2ασ ,
(21)

where α defines the auto-correlation coefficient of the process,
µ is the mean value of the process at the stationary condition,
σ is the standard deviation.

Figure 1 illustrates the realizations of two-dimensional
correlated OUPs for different values of r while keeping α and
σ constant. The probability densities of the OUPs in Figure
1 are shown in Figure 2. From Figure 2 it is evident that
the processes η1 and η2 follow a Normal distribution, despite
being generated for different values of r between them.
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0 5 10 15 20 25 30
Time [s]

−0.25

0

0.25

η2 ; r = 0.9

Fig. 1. Realizations of two-dimensional OUPs for different values of the
correlation r, and for α1 = α2 = 1s−1, and σ1 = σ2 = 0.1.

B. 2-Parameter Weibull Distributed Process

N -dimensional correlated Weibull distributed processes are
generated using (9) with the drift term as:

a(η) = −α
(
η − λΓ

(
1 + κ−1

))
, (22)

and the diffusion term as:

b(η) =
√
b1(η)b2(η) , (23)
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Fig. 2. (a) Probability distribution of OUP; and (b) Probability distribution
of Weibull process, realized for different values of correlation.

with
b1(η) = 2αη c1

λ

κ
(c2)

−κ
, (24)

and

b2(η) = κ exp ((c2)
κ
) Γ (1 + c1, (c2)

κ
)− Γ (c1) (25)

where c1 = 1/κ and c2 = η/λ; α is the autocorrelation
coefficient; κ is a shape parameter; λ is a scale parameter; Γ(·)
is the Gamma function; and Γ(·, ·) is the Incomplete Gamma
function.

Figure 3 illustrates the realizations of two-dimensional
correlated Weibull distributed processes for different values
of r while keeping shape and scale constant. The probability
densities of the Weibull distributed processes presented in
Figure 3 are shown in Figure 2. This figure shows that the
processes η1 and η2 follow, in effect, a Weibull distribution
and can be correlated with each other while preserving their
probability density annd other statistical properties.

0
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η2 ; r = 0.0

0

10

20 η2 ; r = 0.45

0 5 10 15 20 25 30
Time [s]

0

10

20 η2 ; r = 0.9

Fig. 3. Realizations of two-dimensional Weibull processes for different values
of the correlation r, and for α1 = α2 = 0.5s−1; λ1 = λ2 = 8; and
κ1 = κ2 = 2.

VI. CASE STUDY

This case study aims at evaluating the effect of the corre-
lated stochastic processes on the dynamic behavior of power
systems. With this goal, we compare the standard deviation
of the trajectories of system variables such as the active
power of synchronous generators and bus voltage magnitude
considering the cases of correlated and uncorrelated stochastic
processes. Two power systems are considered, namely, the
well-known Kundur’s two-area system, and a dynamic model
of the All-Island Irish Transmission System (AIITS).

To study the impact of correlated stochastic perturbations
on the electrical power system, we need first to define the
correlation matrix R. Data to account for the correlation
among stochastic processes in the time scale of transient
stability analysis are currently unavailable. Hence, we carry
out a sensitivity analysis. With this aim, we define three
scenarios S1, S2 and S3, as follows:
• S1 represents the fully uncorrelated SDAE model, i.e. the

correlation between any two stochastic processes i and j
is ri,j = 0.

• S2 considers a low level of correlation among processes,
i.e. the correlation between any two stochastic processes
i and j is set to ri,j = 0.4 if they belong to the same
area, 0 otherwise.

• S3 considers a high level of correlation among processes,
i.e. the value of correlation between any two stochastic
processes i and j is set to ri,j = 0.8 if they belong to
the same area, 0 otherwise.

The loads are modeled as constant impedance loads. In
this paper, we consider noise to be normally distributed.
Other probability distributions can also be modeled using
the procedures defined in Section V. The technique propsed
in this paper, in fact, allows correlating stochastic processes
independently from their probability distribution.

To evaluate the impact of the correlation of stochastic
processes, we consider a Monte Carlo analysis and observe
the trajectories of relevant quantities of the system. The Monte
Carlo analysis consists in 1,000 time domain simulations per
scenario. Each simulation requires about 8,000 realizations
of the Wiener processes for all wind speeds, bus voltage
phasors, and load active and reactive power consumption.
The integration scheme utilizes a step size h = 0.01 s for
the Maruyama-Euler integration of the Wiener processes and
∆t = 0.01 s for the integration of the drift obtained with the
implicit trapezoidal method.

The step size of 0.01 s is utilized in the simulations only
to achieve accurate results. Larger sampling times, e.g., 0.1
s or 1 s, can be utilized to define the correlation of the
stochastic processes. It is important to note that, while large
amount of data are required to set up the correlation matrix,
the technology to gather and store such data with the required
sampling rate is already available. For example secondly
measurements of wind were utilized in [33]; frequency mea-
surements with a sampling time of 0.1 s were utilized in
[34]; and power measurements with a sampling frequency of
120 Hz were utilized in [5]. It is also important to note that
the measurements are required only to define the correlation
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Fig. 4. Two-area system.

matrix and the probability distribution of the proecesses. After
that, the model proposed in this paper is capable or generating
synthetic noise with the same statistical properties and same
correlation. The proposed approach, thus, does not need to be
continuously fed with measurement data. This is, in turn, one
of the practical advantages of the proposed method.

A. Two-Area System

The two-area system, shown in Fig. 4 and originally defined
in [35], consists of 11 buses, 12 lines/transformers, and four
synchronous generators, which are modeled via a 6th-order
model and are equipped with IEEE ST1a exciters, turbine
governors, and an AGC that coordinates the four synchronous
generators.

Correlated stochastic processes are inclued into the two-area
system through stochastic load consumption, and bus voltage
phasors, with the following parameters: αp = αq = αv =
αθ = 1s−1, σp = 0.6% of pL0, σq = 0.6% of qL0, σv = 0.3%
of v0 and σθ = 0.3% of θ0.

We first consider correlated volatility on load consumption,
as discussed in Section IV-A.2. The correlation matrix utilized
to model correlation on stochastic load consumption is shown
in Table I, where the value of r represents the correlation
between any two given quantities. The value of r is chosen
based on the scenarios S1, S2, and S3. The paper considers
correlation between the load devices connected in the same
area. Hence, inter-area correlation is not considered. In this
example, bus voltage phasors do not include noise. The
trajectories of the voltage profile at bus 8 are observed for
the three scenarios simulated, and the results are presented
in Table II. Results indicate that the higher the correlation
among processes, the higher the probability that the system
becomes unstable. This result can be explained as follows:
the loads will require more/less power from generators if they
all increase/decrease in a coordinated manner. For illustration
purposes, a selection of the unstable trajectories of voltage at
bus 8 from scenarios S2, and S3, are shown in Figs. 5-6 and
Figs. 7-8, respectively. Simulations indicate that the loss of
stability, in this case, is due to a shortage of reactive power
that leads to voltage collpase.

An effective way to evaluate the effect of correlation be-
tween the loads is through observing the statistical properties
of the relevant quantities. The statistical property, and the
quantity chosen in this case study is the standard deviation
of the active and reactive power generation of synchronous
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Fig. 5. Voltage profile at bus 8 of the two-area system for selected unstable
trajectories for S2.
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Fig. 6. Generator (upper panels) and load (lower panels) active (left panels)
and reactive (right panels) power selected unstable trajectories for S2.

TABLE I
CORRELATION MATRIX OF THE LOADS OF THE TWO-AREA SYSTEM

p1 p2 p3 p4 q1 q2 q3 q4

p1 1 r 0 0 r r 0 0

p2 r 1 0 0 r r 0 0

p3 0 0 1 r 0 0 r r

p4 0 0 r 1 0 0 r r

q1 r r 0 0 1 r 0 0

q2 r r 0 0 r 1 0 0

q3 0 0 r r 0 0 1 r

q4 0 0 r r 0 0 r 1

TABLE II
UNSTABLE TRAJECTORIES FOR THE TWO-AREA SYSTEM

Scenario Unstable trajectories
Disconnection of load L3:
Unstable trajectories

S1 0 0
S2 68 (6.8%) 19 (1.9%)
S3 369 (36.9%) 68 (6.8%)
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Fig. 7. Voltage profile at bus 8 of the two-area system for selected unstable
trajectories for S3.
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Fig. 8. Generator (upper panels) and load (lower panels) active (left panels)
and reactive (right panels) power selected unstable trajectories for S3.

generators, namely, σpg and σqg , respectively. The standard
deviation of stable trajectories of active pg and reactive qg
power generation of synchronous generators obtained from the
simulations presented above in this section is calculated and
presented in Table III. This table indicates that the increase of
the values of σpg and σqg increases by about 25% comparing
scenarios S1 to S2 and by about 50% comparing scenarios S1
and S3.

Next, the impact of correlated noise of bus voltage phasors
on σpg and σqg of the synchronous generators is evaluated
by modeling the stochastic perturbations on the bus voltage
phasors through correlated stochastic processes, as explained
in Section IV-B. The correlation matrix is built in such a
way that stochastic perturbations on every bus connected in
the same area are considered to be correlated, whereas no
correlation is considered between buses connected in different
areas. In this example, load power consumption does not
include noise. Table IV shows σpg and σqg of synchronous
generators calculated for the three scenarios S1, S2, and S3. It
appears that the correlation among the stochastic bus voltage
phasors is inversely proportional to the σpg and σqg of the

generators. Note that none of the trajectories were found to be
unstable. This effect is thus the opposite as the one obtained
when varying the correlation of the load power consumption.

TABLE III
STANDARD DEVIATION OF ACTIVE AND REACTIVE POWERS OF

SYNCHRONOUS GENERATORS FOR THE TWO-AREA SYSTEM WITH

CORRELATED STOCHASTIC LOADS

Standard S1 S2 S3

deviation absolute % increase % increase
pgG1 0.0519 22.73 45.04
pgG2 0.0439 22.34 44.15
pgG3 0.0432 22.76 45.03
pgG4 0.0442 21.94 42.53
qgG1 0.1399 24.37 48.88
qgG2 0.1726 24.37 48.89
qgG3 0.1215 25.22 50.82
qgG4 0.1554 25.13 50.55

TABLE IV
STANDARD DEVIATION OF ACTIVE AND REACTIVE POWERS OF

SYNCHRONOUS GENERATORS FOR THE TWO-AREA SYSTEM WITH

CORRELATED STOCHASTIC VOLTAGES

Standard S1 S2 S3

deviation absolute % increase % increase
pgG1 0.0495 -20.06 -47.24
pgG2 0.0547 -20.68 -49.20
pgG3 0.0908 -17.51 -39.67
pgG4 0.0909 -18.22 -41.70
qgG1 0.0598 -18.75 -42.93
qgG2 0.0705 -17.63 -40.22
qgG3 0.0420 -21.49 -50.79
qgG4 0.0516 -20.75 -49.49

Finally, we simulate the two-area system, shown in Fig-
ure 4, using correlated stochastic loads with the following
parameters: αp = αq = 1s−1, σp = 0.5% of pL0, and
σq = 0.5% of qL0. Besides correlated stochastic loads, the
system undergoes disconnection of load L3 at t = 10s.
The simulation results for unstable trajectories for the three
scenarios of correlation are shown in Table II. The results
show that the system experiences increased number of unstable
trajectories for higher values of correlation. A few of such
unstable trajectories of rotor angle δ of all the machines
for scenario S2 are shown in Figure 9. Whereas, the stable
trajectories of δ simulated for scenario S3 are shwon in Figure
10.

B. All-Island Irish Transmission System

AIITS consists of 1479 buses, 1851 lines/transformers, and
22 synchronous generators that are modeled through a VI-
order model and are equipped with IEEE ST1a exciters and
turbine governors to ensure a secure operation of the grid.
6 conventional power plants also include a power system
stabilizer. The model also includes 176 wind power plants,
34 of which are equipped with constant-speed and 142 with
doubly-fed induction generators. In this case study, we model
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Fig. 9. Rotor angle δ of all the machines of the two-area system for selected
unstable trajectories for S2.

Fig. 10. Rotor angle δ of all the machines of the two-area system for stable
trajectories for S3.

correlated volatility on stochastic load consumption, and bus
voltage phasors. Stochastic perturbations on wind farms are
modeled using the model of correlated wind speeds explained
in sub-section IV-C.

The parameters for stochastic load consumption, stochastic
bus voltage phasors, and stochastic wind speeds are as follows:
αp = αq = αv = αθ = αw = 1s−1, σp = 0.5% of pL0,
σq = 0.5% of qL0, σw = 0.5% of w0, σv = 0.3% of v0
and σθ = 0.3% of θ0. Note that throughout the case study
in this section, the correlation matrix is constructed in such a
way that stochastic perturbations on every device connected in
same area are correlated whereas no correlation is considered
between the devices connected in different areas.

We discuss first the impact of correlated load consumption
on σpg and σqg of the synchronous generators. In this example,
wind, and bus voltage phasors do not include noise. Table
V shows σpg and σqg of selected synchronous generators
calculated for the three scenarios S1, S2, and S3. The cor-
relation among the stochastic loads has a direct impact on
σpg and σqg of the generators. The value of σpg and σqg
almost doubles when the correlation among stochastic loads is
doubled. This is a noteworthy result as the standard deviation
of the loads remains the same in all three scenarios. This result
also substantiates the results obtained for the two-area system.

Next, we consider the impact of correlated noise on bus
voltage phasors on σpg and σqg of the synchronous genera-
tors. In this example, wind, and load power consumption do
not include noise. Table VI shows σpg and σqg of selected
synchronous generators calculated for the three scenarios S1,
S2, and S3. These results corroborate the results obtained in

Table IV. Henceforth, modeling correlation on stochastic bus
voltage phasors leads to reduction in the values of σpg and
σqg of the generators. This effect is thus the opposite as the
one obtained when varying the correlation of the load power
consumption.

In the following example, we model the AIITS incorpo-
rating the correlated stochastic perturbations, i.e. correlated
stochastic loads, and correlated wind speeds with stochastic
perturbations, using the parameter values presented above in
this section. To observe the effect of correlation between
different stochastic perturbations on the system dynamics, we
consider the sum of the trajectories of the relevant quantities
such as active power consumption and generation of all the
devices connected in the same area. Figure 11 illustrates the
sum of the active powers pload consumed by all loads; the
sum of the active powers pwind generated by all wind power
plants; and the sum of the active powers psyn generated by all
synchronous generators for the three scenarios of correlation,
i.e. S1, S2, and S3. Despite the fact that the standard devia-
tion of the individual stochastic processes remains the same
regardless of the level of correlation being used, Fig. 11 shows
that the spread, in terms of standard deviation, of the sum of
the quantities above increases as the correlation between the
stochastic process is increased.

TABLE V
STANDARD DEVIATION OF ACTIVE AND REACTIVE POWERS OF

SYNCHRONOUS GENERATORS FOR THE AIITS WITH CORRELATED

STOCHASTIC LOADS

Standard S1 S2 S3

deviation absolute % increase % increase
σpgHUNT CT

0.0025 44 76
σpgDUBLIN B

0.0037 56.76 94.59
σpgPBEGG4

0.0013 53.85 92.31
σpgPBEGG5

0.0012 58.33 100
σpgPBEGG6

0.002 55 90
σqgHUNT CT

0.0004 25 50
σqgDUBLIN B

0.001 50 80
σqgPBEGG4

0.0003 33.33 66.67
σqgPBEGG5

0.0004 50 75
σqgPBEGG6

0.0006 50 83.33

TABLE VI
STANDARD DEVIATION OF ACTIVE AND REACTIVE POWERS OF

SYNCHRONOUS GENERATORS FOR THE AIITS WITH CORRELATED

STOCHASTIC VOLTAGES

Standard S1 S2 S3

deviation absolute % increase % increase
σpgHUNT CT

0.0193 -22.8 -42.49
σpgDUBLIN B

0.0234 -18.8 -32.48
σpgPBEGG4

0.01 -20 -41
σpgPBEGG5

0.0099 -20.2 -40.4
σpgPBEGG6

0.0127 -18.11 -34.65
σqgHUNT CT

0.0176 -19.89 -50.57
σqgDUBLIN B

0.0298 -18.79 -48.32
σqgPBEGG4

0.0159 -22.64 -49.06
σqgPBEGG5

0.0148 -20.27 -41.89
σqgPBEGG6

0.0188 -16.49 -40.43
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Finally, we consider a model of the AIITS that incorporates
all stochastic perturbations, i.e. correlated stochastic loads,
correlated stochastic bus voltage phasors, and correlated wind
speeds with stochastic perturbations, using the parameter val-
ues presented above in this section. In addition to the stochastic
perturbations, the AIITS undergoes a disconnection of a load
connected to East-West interconnector at t = 10 s.

Figure 12 shows the time domain profile of voltage mag-
nitude at bus Woodland, for the 1,000 simulations, for S1,
i.e. for the fully uncorrelated SDAE model. The black solid
line shows the mean value of the 1,000 trajectories, which
reflects the voltage profile of a deterministic solution, since
all Wiener processes have zero average. This is evident from
Fig. 12 that the mean trajectory coincides with the determin-
istic trajectory. The deterministic trajectory is obtained for
simulating AIITS for same fault conditions without including
the stochastic processes. Figure 12 indicates that the voltage
profile for the deterministic solution is below the maximum
voltage limit, which is shown by a dashed line. It is also
relevant to note that 24.4% of the trajectories exceed the
maximum voltage limit at least once in the period 10 s <
t < 30 s. This result can be relevant for TSOs as grid codes
do not allow voltage variations above or below 10%. Moreover
overvoltage protections are implemented in some systems and
these protections can be triggered if voltage limits are violated
in transient conditions.

Figures 13 and 14 illustrate the 1,000 trajectories of voltage
magnitude at bus Woodland, for S2 and S3, respectively.
Results indicate that the higher the correlation among the
processes the lower the standard deviation of the trajectories.
For S3, i.e. for the maximum correlation considered in this
case study, no trajectory crosses the maximum voltage limit.
These results are summarized in Table VII. In this example, the
uncorrelated stochastic model shows more conservative results
than the scenarios that take into account correlation.

The examples discussed in the case study lead to conclude
that the correlation among stochastic processes has a relevant
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5.525
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Fig. 11. Total active power load consumption (pload); total active power
generation (pwind) by wind power plants; and total active power generation
(psyn) by conventional power plants for the three scenarios of correlation,
i.e. S1, S2, and S3. All the values are in [pu], with a base of 100 MVA.

Fig. 12. Bus voltage magnitude at bus Woodland for S1.

Fig. 13. Bus voltage magnitude at bus Woodland for S2.

Fig. 14. Bus voltage magnitude at bus Woodland for S3.

TABLE VII
TRAJECTORIES WITH OVER-VOLTAGES FOR THE AIITS

Scenarios Trajectories with over-voltages
S1 244 (24.4%)
S2 70 (7%)
S3 0

impact on the dynamic response of the system and that such
an impact is not known a priori as, in some cases, taking into
account correlation leads to more conservative results and in
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others to less conservative results than assuming fully uncorre-
lated processes. Correlation has thus to be modeled correctly
to properly estimate the standard deviation of variables and
the stability of the system.

As a final remark, we note that the the noise included
in conventional generators, wind power plants and loads in
this case study lead to relatively small peak-to-peak power
variations, of the order of 1 MW. Nevertheless, such varitions
have a non-negligible effect on the dynamic response of the
whole system. It is important to note that it is not the power
variation of the single wind power plant or load that is relevant
but, rather, how such a variation is correlated to the variations
of the other wind power plants. It is the combined effect that
can make a difference in the transient behavior fo the system.

VII. CONCLUSIONS AND FUTURE WORKS

This paper presents a general approach to model power
systems as a set of correlated SDAEs. The generality and
scalability of the proposed model is demonstrated through
simulations based on detailed dynamic model of the all-
island Irish transmission system. Simulation results indicate
that correlation plays a significant role in the dynamic response
of the system as it can modify the standard deviation of the tra-
jectories. Moreover, the case study demonstrated that a power
system deemed to be stable, in the presence of uncorrelated
noise, may become unstable due to the presence of correlated
noise, despite the fact that the stochastic processes have same
statistical properties in both cases. A precise estimation of the
correlations among the stochastic processes appears thus an
important parameter to be defined by system operators for the
transient stability analysis of the grid.

Various future works can be devised. As said above, the
proper estimation of the actual values of correlations among
the physical stochastic processes is a relevant step that can
help set-up and maybe improve the proposed model. This
of course requires a large amount of measurement data. At
the time of writing this paper, however, it is very difficult
to obtain measurement data that can be actually utilized to
calculating the correlation matrix for a real-world system. The
data made available to us by TSOs, in fact, are either detailed
but spanning short periods, i.e., considering only specific
events (and thus not allowing calculating correlation matrix) or
large time series but consisting of values averaged over several
minutes, e.g., 15 minutes (and thus inadequate for short-term
dynamic analysis). It is our understanding that TSOs have
access to such detailed data through SCADA systems, as
mentioned in the websites, but is not being stored in such
a detail because it requires large amount of storage and until
now it was not required by a modeling scheme such as the
one introduced in this paper.

The results discussed in this work highlight the importance
of modeling correlated stochastic processes in power systems.
The technology to gather and store such a large amount of
information is already available and it can be used for the
evaluation of statical properties so that they can be utilized to
model accurately correlated processes for dynamic analysis.
Another important aspect that can be deduced from data is

whether the correlation among processes is constant or variable
with time. This can lead to various scenarios. Finally, we
anticipate that the correlation of stochastic processes depends
on the time scale considered, e.g. short term or long-term
dynamics. This appears another relevant topic to future work.
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