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Abstract— This letter proposes a simple and inexpensive con-
trol of distributed energy resources aimed at improving the power
system dynamic performance. The rationale behind the proposed
control relies on a recent interpretation of the frequency in
the differential geometry framework. A comparison with well-
established controls in terms of eigensensitivity and time-domain
performance is carried out to show the effectiveness of the
proposed control.

Index Terms— Differential geometry, Power Oscillation
Damper (POD), Participation Factor (PF), Low-inertia Systems.

I. INTRODUCTION

In the last decades, power systems have undergone a mas-
sive replacement of conventional synchronous generators by
power converter-based resources. This has led to significant
changes of the dynamic performance and stability properties
of the system [1]. For this reason, significant efforts have been
made, by both industry and academia, to find reliable and
robust control solutions for this unprecedented scenario.

A promising approach consists in taking advantage of
the fast control capabilities of inverter-based generation and
interfaces to improve the system stability. For example, in
[2], the synthetic inertia and droop coefficients of Distributed
Energy Resources (DERs) are designed to meet time-domain
performance objectives of frequency overshoot and steady-
state regulation. In [3], a control framework is proposed for the
provision of ancillary services by aggregated DERs. Moreover,
a multi-sensitivity control approach for VSC-HVDC links and
FACTS devices is described in [4].

Some recent studies have felt the need for the definition
of new control signals that improve the dynamic performance
of low-inertia systems, e.g. see [5]–[7]. This letter proposes a
control scheme based on a novel signal that stems from the
theory of the differential geometry. In particular, the starting
point is a geometrical interpretation of electric circuits recently
proposed by the second and fourth authors [8]. According to
this interpretation, the concept of curvature appears to provide
relevant information on the local transient behavior of electri-
cal quantities. A curvature based-control is a well-established
concept for different applications, such as continuum robotics
[9]. In this letter, the curvature control is applied to power
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systems, by adopting the curvature as an input signal for an
auxiliary control scheme applied to DERs, and its performance
is compared with the ones of conventional input signals, such
as frequency and voltage magnitude.

II. PROPOSED CONTROL SCHEME

The starting point of the proposed control approach is
the definition of curvature in an electric circuit as recently
discussed in [8]. The main idea of [8] is that the vector
of the voltage, v, can be thought as the time derivative (or
velocity) of a space curve. This curve is, in effect, the magnetic
flux, as it descends from Faraday’s law. Assuming this formal
equivalence, namely voltage-velocity, the curvature of the
three-phase magnetic flux is defined as:

κ =

∣∣∣∣vv × v′

v2

∣∣∣∣ , (1)

where v′ is the time derivative of v, × denotes the vector
product, and v =

√
v · v is the voltage magnitude, with ·

being the scalar product of two vectors. The Park transform
of a time-varying balanced three-phase voltage vector v leads
to [8]:

κ =
ω

v
, (2)

where

ω = ωo +
v′qvd − v′dvq

v2
, (3)

is the well-known instantaneous angular frequency of the volt-
age. Note that (2) holds true also in general (e.g., unbalanced
and/or non-sinusoidal multi-phase systems) but in that case ω
assumes the meaning of the module of the geometric frequency
[10], which does not always coincide with the instantaneous
frequency.

This letter proposes to use (2) in auxiliary control loops of
DERs to improve the dynamic performance of power systems.
With this aim, we use an auxiliary device, i.e. a standard Power
Oscillation Damper (POD) (see, e.g., [11]), whose output is
added to the voltage reference of the DER voltage control.
This controller allows testing the proposed scheme in transient
conditions and has been chosen for its effectiveness to damp
oscillatory modes. The control diagram of the POD model
is shown in Fig. 1. The model consists of a low-pass filter
on the input signal u, a washout filter with gain Kw and time
constant Tw, and a double lead lag filter with a windup limiter
on the output vrefPOD. Note that the washout filter makes the
POD sensitive to the rate of change of the input signal, not
the value of the input signal itself. The POD is thus inactive
for constant values of the input signal.

An estimation of the curvature can be easily obtained
in practice, as κ is the ratio of two quantities commonly
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Fig. 1. Control diagram of the POD.

measured at network buses, namely angular frequency and
voltage magnitude.

The performance of the proposed curvature-based control
under varying operating conditions can be assessed through
non-linear time-domain simulations.

Yet, a qualitative appraisal of the performance of a signal for
control purposes can be obtained through modal participation
analysis of the linearized system [12]. In particular, we are
interested in evaluating the Participation Factor (PF) that
links κ with the dynamic modes of the system and compare
such a PF with those of standard signals utilized in power
system control loops, such as the frequency and the voltage
magnitude. With this aim, we first define the expression of the
PF of a generic signal, say z, defined as:

z = xj/yk , (4)

where xj is the j-th state variable and yk is the k-th algebraic
variable of a set of non-linear Differential-Algebraic Equations
(DAEs). The participation matrix Px ∈ Rn×n for a linearized
system with n state variables, can be expressed as [13]:

Px = |Ψ|T ◦ |Φ| , (5)

where ◦ denotes the element-wise multiplication, and T de-
notes the matrix transpose. In (5), Ψ and Φ are matrices
formed with the left and the right eigenvectors of the state
matrix of the system, calculated at a given equilibrium point.

An approach to determine the PFs of algebraic variables in
the dynamic modes of a power system is given in [13]:

Py = −g−1
y gxPx , (6)

where gy and gx are the Jacobian matrices of the algebraic
equations of the explicit non-linear DAE system evaluated at
(xo,yo), with n differential and m algebraic equations.

Differentiation of (4) around (xj,o, yk,o) yields:

∆z =
1

yk,o
∆xj −

xj,o

y2k,o
∆yk , (7)

and, exploiting the superposition principle for linear systems
on (7), the PF pz(i) of the signal z on the i-th mode is:

pz(i) =
1

yk,o
px(j,i) −

xj,o

y2k,o
py(k,i) . (8)

Equation (6) indicates that py(j,i) depends on the network
parameters and topology through the k-th row of the matrix
g−1
y and on the matrix gx. By assuming xj,o, yk,o ≈ 1 pu

(which is reasonable if one sets z = κ, xj = ω and yk = v)
and by knowing that px(j,i) > 0 ∀ px ∈ Rn×n, one obtains:

pz(i) > px(k,i), py(k,i) ∀ py ∈ Rm×n : py < 0 . (9)

This condition is utilized in the case study presented below.

III. CASE STUDY

In this section, the IEEE 39-bus benchmark system is
utilized to illustrate the dynamic performance of the proposed
curvature-based control. All simulation results are obtained
with the software tool Dome [14].

The system is modified to emulate a low-inertia system.
This helps appreciating the dynamic effect of the proposed
control. In particular, a converter-based DER is added at every
generation bus. The DER model employed and its primary
controllers are described in [6]. At generation buses, the power
share of DERs is imposed through a parameter γ ∈ [0, 1],
which scales the capacity of both synchronous machines and
DERs to ensure that the total generation capacity Sn remains
constant:

SDER
n = Snγ , SSyn

n = Sn(1− γ) . (10)

In the simulations discussed below, we set γ = 0.7. Finally,
loads are represented by an exponential model that depends
on both voltage and frequency, see [15].

The DER models and the controllers utilised in this case
study include current limiters and other windup and anti-
windup limiters. Moreover, in one scenario of the case study,
we have considered a three-phase fault that is cleared by
triggering a line and, hence, by changing the topology of
the grid. The system model, thus, properly takes into account
the dynamic couplings among DERs and other devices and
controllers in the system.

Table I shows the five most poorly damped eigenvalues of
the modified IEEE 39-bus system and the corresponding PFs
in these modes of the frequency ωh, the voltage vh, and the
curvature κh. The quantities ωh and vh are measured at the
h-th bus, where h is the index of the bus where the device
with the state variable participating the most in each mode of
Table I is located. The PF of κh is calculated according to
(8). We observe that the results given in Table I always satisfy
condition (9), with κh having the highest PF for the five most
critical eigenvalues. That is, the small-signal analysis indicates
that κh is more effective than ωh and vh in suppressing the
most critical modes of the system.

TABLE I
PFS FOR SYSTEM CRITICAL MODES.

Mode x-dom. p

ωh vh κh = ωh/vh
−1.169± j12.573 ωSyn 1 0.87e-5 −0.22e-5 1.05e-5
−1.447± j24.050 ωSyn 3 2.62e-3 −2.93e-3 5.70e-3
−1.947± j27.404 ωSyn 4 1.02e-4 −2.49e-4 3.52e-4
−1.951± j29.345 ωSyn 8 1.54e-4 −0.61e-4 2.07e-4
−1.998± j23.490 ωSyn 9 6.01e-2 −0.52e-2 6.35e-2

In non-linear time-domain simulations, we compare the
base-case system with and without PODs and for the following
three different input signals u:

• bus frequency ωh;
• bus voltage magnitude vh;
• curvature κh = ωh/vh.

A POD is added to each DER connected to the bus h. For
fair comparison, the tuning of the PODs is optimized for each
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signal u according to the method of residues [16], whereas
gains Kw are set using a trial and error procedure to realize the
maximum damping for each POD and for each input signal.
Table II summarizes the results of the tuning.

TABLE II
PARAMETERS OF THE POD TUNED WITH THE METHOD OF RESIDUES.

h-th POD signal Tf Kw Tw T1 T2 T3 T4

#1

ω1 0 8 3.4 0.28 0.01 0.0 0.0

v1 0.2 −4 5 0.037 0.17 0.0 0.0

κ1 0.2 4 3.4 0.5 0.006 0.0 0.0

#3

ω3 0 8 2.7 0.22 0.01 0.0 0.0

v3 0.2 −3 2.6 0.1 0.017 0.0 0.0

κ3 0.2 4 2.7 0.12 0.014 0.12 0.014

#4

ω4 0 8 2.3 0.11 0.01 0.0 0.0

v4 0.2 −3 2.3 0.027 0.05 0.0 0.0

κ4 0.2 2 2.3 0.15 0.01 0.15 0.01

#8

ω8 0 5 2.2 0.003 0.36 0.003 0.36

v8 0.2 −3 2.1 0.01 0.09 0.0 0.0

κ8 0.2 6 2.2 0.6 0.002 0.0 0.0

#9

ω9 0 5 2.7 0.09 0.02 0.0 0.0

v9 0.2 −3 2.7 0.02 0.08 0.0 0.0

κ9 0.2 6 2.7 0.4 0.004 0.0 0.0

We consider two contingencies: (i) the distributed outage of
24% of the load consumption; and (ii) a short circuit at bus 12
cleared after 0.1 s. The simulation results for the load outage
and for the short circuit are shown respectively in Figs. 2 -
5. The results show the transient behavior of frequency and
voltage, as well as the active power injected by DERs and
Synchronous Generators (SGs) to the grid.

The PODs driven by the curvature signal restore the station-
ary condition faster and with higher damping than the PODs
that utilize the voltage frequency and magnitude. This result
is consistent with the small-signal analysis above.

It is relevant to note that the proposed control does not
increase the effort, namely the active power generation, of
the DERs or of the synchronous generators. Moreover, note
that, in the case of loss of load, the PODs with conventional
input signals cannot remove oscillations and in the scenario
for which the input signal of the POD is the bus voltage mag-
nitude, the system becomes unstable (undamped oscillations).
In all scenarios, the proposed curvature-based POD control is
able to properly damp the oscillations, also resulting in lower
power oscillations by the machines and DERs.

IV. CONCLUSIONS

This letter uses as starting point a recently proposed geomet-
ric interpretation of the transient behavior of electric quantities
in ac power systems. The effectiveness of this approach is
confirmed by the eigensensitivity analysis and the evaluation
of the PFs, and by a time-domain simulation, both performed
on a low-inertia system. Simulation results show that a control
based on the curvature is more effective than the same control
driven by the voltage magnitude or frequency.

Besides being effective, the proposed control is also simple
and inexpensive to implement. It is simple, as the proposed
controller is a conventional POD, which effectively has the
same implementation as a power system stabilizer, and it has

no POD u = ω u = v u = κ
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(a) Frequency and voltage at bus 39.
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(b) Frequency and voltage at bus 33.

Fig. 2. Transient response following the outage of 24% of the load.
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(a) Active power provided by DER and SG connected to bus 39.
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(b) Active power provided by DER and SG connected to bus 33.

Fig. 3. Transient response following the outage of 24% of the load.

been widely discussed and utilized in the literature. It is inex-
pensive, as a POD can be implemented with a microcontroller,
which has a cost of the order of US$ 100.

Moreover, the proposed control does not require to measure
remote signals and hence does not require an ad hoc com-
munication system, nor it requires to measure quantities that
require expensive hardware. The curvature, in fact, is obtained
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(a) Frequency and voltage at bus 39.
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(b) Frequency and voltage at bus 33.

Fig. 4. Transient response following a fault at bus 12 cleared after 0.1 s.
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(a) Active power provided by DER and SG connected to bus 39.
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(b) Active power provided by DER and SG connected to bus 33.

Fig. 5. Transient response following a fault at bus 12 cleared after 0.1 s.

by simply dividing the frequency and the magnitude of the bus
voltage at the point of connection of the DER with the grid.
These measurements are needed for the conventional control
of DERs, and hence the estimation of the curvature does not
suppose additional costs.
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