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Damping Power System Electromechanical
Oscillations Using Time Delays
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Abstract— This paper proposes to utilize intentional time
delays as part of controllers to improve the damping of elec-
tromechanical oscillations of power systems. Through stability
theory, the control parameter settings for which these delays in
Power System Stabilizers (PSSs) improve the small signal stability
of a power system are systematically identified, including the key
parameter settings for which stability regions in the parameter
plane remain connected for effective operation. The paper shows
that PSSs with two control channels can be effectively designed
to achieve best damping characteristics for a wide range of
delays. Analytical results are presented on the One-Machine
Infinite-Bus (OMIB) electromechanical power system model. To
demonstrate the opportunities in more realistic dynamic models,
our results are then implemented via numerical analysis on the
IEEE standard 14-bus system.

Index Terms— Small Signal Stability Analysis (SSSA), time-
delayed control, Power System Stabilizer (PSS), power system
control, delay-independent stability.

I. INTRODUCTION

A. Motivation

Measurement and communication delays in local Power
System Stabilizers (PSSs) and wide area damping controllers
are a potential threat for the overall dynamic performance of
power systems [1]–[3]. However, time delays are not always
detrimental and can actually have unexpectedly beneficial
effects on the stability of dynamical systems [4]–[8]. It has
been shown, for example, that intentionally inserting a certain
amount of delay in a feedback control system can enhance
disturbance rejection capabilities, improve response time, and
add the required damping to avoid undesired oscillations in
a closed-loop system, see, e.g. [9]. More recently, analytical
tuning techniques were proposed to engineer time delays and
controller gains to achieve fast response [10]–[12]. These new
results motivate the use of intentional time delays as part of
controllers to effectively suppress poorly damped synchronous
machine electromechanical oscillations.

B. Literature Review

Time delays appear in many control systems mainly because
it takes time to measure/acquire information, formulate a
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decision based on this information, and implement the de-
cision to achieve a particular control mission. Delays arise in
many applications, such as in network control systems when
sending/receiving information between physical locations [4],
[13]; in connected vehicle models due to delays in communi-
cation/sensing lines and human reaction times [14], [15]; and
in the dynamics of multi-agent systems [16], [17].

Since delays are in general a source of poor performance
and instability, many studies have focused on the fundamentals
of explaining these characteristics within a control theoretic
approach [18]–[20]. Along these lines, stability theory has
been developed to address the peculiarities of systems with
delays and these results were more recently combined with
powerful convex optimization tools to study the stability of
and design controllers for time-delay systems, see, e.g. [21].

While most results in the literature treat delays as undesir-
able, there is also a large amount of work that has focused
on the advantages of having delays in a closed-loop setting.
In these studies, the goal is to incorporate delays intentionally
into the closed-loop and systematically analyze the dynamics
to show that for certain delays and controllers, the closed-loop
dynamics can behave more desirably based on certain metrics,
such as response time [9], [10], [22], [23]. A simple “delay-
based” controller is the one in which a derivative of a signal
ẋ(t) is approximated using a first order Euler’s approximation
ẋ(t) ≈ (x(t)− x(t− τ))/τ , where τ > 0 is the delay [22].

Delay-based controllers have a rich history with many
promising directions [5], [24], [25]. Recent studies have fo-
cused on analytical tractability. This is a challenging effort
since delays cause infinite dimensional system dynamics, study
of which cannot be performed using standard tools available
for finite-dimensional systems. A remedy to this was proposed
by utilizing some salient features of algebraic geometry on a
class of delay systems, and deriving analytical formulae that
prescribe how to tune the delays and control gains to achieve
a desired performance from these systems [10]–[12]. These
results have been recently extended to distributed control of
multi-agent systems with the goal to achieve fast consensus of
agents [26].

Despite the aforementioned advances, benefits of utilizing
time delays as part of controllers are yet to be fully explored
in engineering applications. In electric power engineering, the
vast majority of studies have emphasized only the destabilizing
effects of time delays [1]–[3]. Some studies have focused
on modeling of delays that arise in wide area measurement
systems [27], [28], while others have explored numerical
methods for the stability analysis of power systems with
inclusion of delays [29], [30]. Only very recently were delays
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in power systems viewed as tunable control design parameters
[31], [32].

In light of the above discussion, there exists an opportunity
to connect the recent results in time-delay systems literature
toward improving the stability of power systems. The main
goal of this paper is to systematically assess the impact of the
structure and control parameter settings of delay-based PSSs
on the small signal stability and in particular on the damping
characteristics of power system electromechanical oscillations.

C. Contributions

The following are specific contributions of this paper:
• The One-Machine Infinite-bus (OMIB) system with in-

clusion of a Power System Stabilizer (PSS) is a relevant
example of power system model that allows an analytical
assessment of its stability when delays are considered.
The paper shows the conditions for which the stability
of the linearized OMIB equations is guaranteed indepen-
dently from the magnitude of the delay, and present how
system response time as measured by the concept of σ-
stability can be understood in view of recent results [10].

• On the plane of controller gain vs intentional delay, the
linearized equations of the OMIB system typically exhibit
stable regions that are separated by unstable regions. This
however does not allow tuning the “non-linear” dynamics
to operate in separate stable regions as this would require
the non-linear dynamics to first cross through an unsta-
ble region. The paper addresses this practically-relevant
aspect of delayed dynamical systems by presenting the
conditions under which the stable region of the OMIB
system can be all “connected” so that the non-linear
dynamics can be tuned for any settings inside this region.

• The paper extends, through numerical methods and the
concept of ζ-stability, the analytical results based on
the benchmark OMIB system to a more complex study.
Specifically, the paper considers the IEEE standard 14-
bus system model with the goal to achieve improved
damping characteristics for a set of controller gains and
intentional delays, and to achieve a fully connected stabil-
ity region to be able to fully explore the parameter space,
without introducing instability. The paper also examines
the application of the proposed approach for the purpose
of wide area damping control and discusses relevant
practical aspects, such as the impact of communication
delays with inclusion of noise and data packet dropouts.

• Finally, the paper demonstrates in what ways time delays
can be utilized beneficially in power systems, adding to a
large body of literature in which time delays were studied
for their detrimental effects.

D. Organization

The remainder of the paper is organized as follows. Section
II describes a comprehensive treatment for the stability anal-
ysis of small and large scale time-delay systems and provides
the conditions for which the stability regions of a second-order
Linear Time-Invariant (LTI) system in the delay vs control
gain parameter space are all connected. Section III provides

analytical results on the OMIB power system. Section IV
discusses a case study based on the IEEE standard 14-bus
system model. Finally, conclusions are drawn in Section V.

II. SPECTRAL ANALYSIS OF TIME-DELAY SYSTEMS

This section first provides some preliminaries on the spectral
properties of LTI systems with time delay. This is followed
by further discussions on a second-order time-delay system.
Then, for such system, the conditions that have to be satisfied
to guarantee stability independently from the magnitude of the
delay are deduced. Finally, it is shown how delay-independent
stability enables “connected” stability regions.

A. Preliminaries

Since the study is concerned with the dynamics associated
with small signals, it is relevant to provide below a concise
discussion on the stability properties of linear systems affected
by time delays. Given that the focus is on time-invariant
systems, consider the following LTI system:

ẋ(t) = A0x(t) + A1x(t− τ), (1)

where A0 and A1 are matrices with constant entries, delay
is denoted by τ ≥ 0, and x, x ∈ Rn, is the state vector.
System (1) is a set of functional differential equations known
as Delay Differential Equations (DDEs). Moreover, this system
is of retarded type, i.e. the highest derivative of the state is
not influenced by the delay term.

To assess exponential stability of system (1), one must study
its characteristic roots, which are the zeros of the system
characteristic function given by:

f(s, τ) = det |sIn −A0 −A1e
−τs| , (2)

where s denotes the complex Laplace variable, In is the
identity matrix of dimensions n×n, and the delay appears in
the exponents as per Laplace transform. Due to the presence
of the exponential function, this equation is not in polynomial
form in s; it is instead called a quasi-polynomial in the
literature [33].

Then one has that, for a given delay τ , system (1) is expo-
nentially stable if and only if all its characteristic roots s∗ have
negative real parts. That is, for all s∗ satisfying f(s∗, τ) = 0,
<(s∗) < 0 holds [7]. While in principle the stability definition
is not different from that for ordinary differential equations1,
computing s∗ to assess stability is challenging due to the
transcendental exponential terms in f(s, τ) that arise due to
the delay τ . This is because these terms bring about infinitely
many characteristic roots, computation of which is prohibitive
[4].

A remedy to the above issue is to recognize that the
characteristic roots of the system vary on the complex plane
in a continuum as the delay parameter changes in a continuum
[34]. Hence, the only way the system may become unstable
is that a characteristic root (or a pair of roots) touches the
imaginary axis of the complex plane at s = jw, w ∈ R+.

1This is mainly because the spectrum of ‘retarded’ type LTI systems exhibit
similar characteristics as those of ordinary differential equations [7].
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That is, whenever f(jw, τ) = 0 for some w ≥ 0 and τ , the
system “may be” in transition from stability to instability, or
vice versa2.

Definition 1. Consider that s∗i,i+1 = αi ± jβi define a pair
of roots of (2). Then, the system is called:
• σ-stable, if ∀ i ∈ N∗, αi < −σ, where σ > 0 is a

prescribed exponential decay rate [10].
• ζ-stable, if ∀ i ∈ N∗, −α√

α2+β2
< ζ, where ζ is a

prescribed dominant oscillation damping ratio.
Since (2) has infinitely many roots, here N∗ denotes all natural
numbers except for zero.

B. Analytical Study of Second-Order LTI Systems

This section starts with some salient stability characteristics
of second-order LTI systems [11], [35], namely, a subset of
the systems described by equation (1). It next demonstrates
the parametric conditions for delay-independent stability and
utilizes this information to characterize the connectedness of
the arising stability regions in the parameter space.

1) System description: Consider the LTI system:

ẍ(t) + c1ẋ(t) + c2x(t) = −u(t) , (3)

where c1, c2,∈ R and u(t) is a scalar input. Next, let u(t) be
defined as a delay-based controller. Specifically, u is designed
as Proportional Retarded (PR) controller:

u(t) = kpz(t)− krz(t− τr) , (4)

where kp and kr, are the proportional and retarded gains,
respectively; τr ≥ 0 is a constant delay; and z(t) is the control
input signal. This paper considers that z(t) = ẋ(t), since this is
the case that is of interest in power system applications (see the
example discussed in Section III). Substitution of z(t) = ẋ(t)
in (5) yields:

u(t) = kpẋ(t)− krẋ(t− τr) . (5)

The delay τr is intentional and hence its value can be effec-
tively designed to be constant, as is the case with the controlled
parameters of any device. Combining (3) and (5), and taking
the Laplace transform of the arising dynamics leads to the
closed-loop system characteristic equation q(s, τr, kr) = 0,
where

q(s, τr, kr) = s2 + (c1 + kp)s+ c2 − krse−sτr , (6)

is the system characteristic equation.
2) σ-stability analysis : In order to study the σ-stability of

system (3), the change of variable s → (s − σ) is applied to
(6). This yields the following quasi-polynomial:

q̃(σ, s, τr, kr) = q̃0(σ, s) + q̃1(σ, s)kre
στre−sτr , (7)

where

q̃0(σ, s) = (s− σ)2 + (c1 + kp)(s− σ) + c2 ,

q̃1(σ, s) = −(s− σ) .

2Note that it is necessary, but not sufficient, that the system has at least one
root on the imaginary axis for its transition from stable to unstable behavior.
For sufficiency, the system must be stable for τ − |ε|, |ε| � 1.

Recall that the roots of the characteristic equation change
continuously with respect to variations of system parameters
and time delays. That said, the system may change from stable
to unstable, and vice versa, only if a root (or a pair of roots)
crosses the imaginary axis of the complex plane.

Hence, the σ-stability of (3) can be assessed by finding the
set of crossing points (τ crr , k

cr
r ), that satisfy:

q̃(σ, jw, τ crr , k
cr
r ) = 0 , (8)

where s has been substituted for jw. The set (τ crr , k
cr
r ) can be

determined by considering the magnitude and the argument of
(8), as follows [11], [35]:

τ crr =
1

jw

(
Arg(q̃1(σ, jw))−Arg(q̃0(σ, jw)) (9)

+
π

2
(4µ+ ν + 1)

)
,

kcrr = νe−στ
cr
r

∣∣∣∣∣ q̃0(σ, jw)

q̃1(σ, jw)

∣∣∣∣∣ , (10)

where ν = ±1, µ ∈ Z. Since µ ∈ Z, there exist infinitely
many crossing points (τ crr , k

cr
r ) that satisfy (9) and (10) which

show up periodically. Moreover, since ν = ±1 in (10)
crossing points appear for both positive and negative gains.
Furthermore, by employing (9) and (10), one can trace the
domains of stability that correspond to specified exponential
decay rates, i.e. the σ-stability map in the (τr, kr) space.

Finally, note that if the time-delayed state in (3) is not
utilized, i.e. kr = 0, then the closed-loop system behavior is
determined by the polynomial q̃0(σ, s). In this case, dissipative
terms included in the system are defined by the coefficient of
s corresponding to the first derivative of the state:

c = c1 + kp . (11)

Here, the coefficient c1 defines the damping of the open-loop
system oscillatory mode, while kp defines the amount of non-
delayed artificial damping introduced by the PR controller.

3) Delay-independent stability: K ⊂ R, such that the
dynamics are stable regardless of the magnitude of the time
delay τr.

For a given set K, a necessary condition for delay inde-
pendent stability is that the roots of the system characteristic
equation never cross the imaginary axis, or equivalently:

q(jw, τr, kr) 6= 0 , ∀τr ≥ 0, ∀kr ∈ K . (12)

Condition (12) is also sufficient, provided that, with τr = 0 and
an arbitrary gain in K, the roots of the characteristic equation
have negative real parts.

Using (11) in (12) yields3:

− w2 + cjw + c2 − krjwe−jwτr 6= 0

⇒ −w2 + cjw + c2
krjw

6= e−jwτr

⇒ c

kr
+ j

1

kr
(w − c2

w
) 6= e−jwτr , w 6= 0 . (13)

3Clearly, for c2 6= 0, w = 0 is not a solution. Hence, only the case of
w 6= 0 is investigated.
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Notice that the real part of (13) does not depend on w, and
thus, in the complex plane, the left hand side defines the
vertical line with abscissa c/kr. In addition, e−jwτr defines
in the complex plane a unit circle centred at (0, 0), regardless
of the value of the delay τr. That said, the critical condition
for delay independent stability is that the line c/kr is tangent
to the unit circle. Equivalently, one has:

c = ±kr . (14)

Remark 1. (Connectedness of stability regions). The fol-
lowing cases are deduced from (14):
• If c = −k0r < 0, kr = k0r > 0, the system is delay

independent unstable in K = (−k0r , k0r). Since c < 0,
the system is unstable around the origin of the τr-kr
plane. Hence, even if stable regions exist, these regions
are guaranteed to be disconnected.

• If c = 0, there are no delay independent stable or unstable
regions.

• If c = k0r > 0, kr = k0r > 0, the system is delay
independent stable in K = (−k0r , k0r). The existence of
a delay independent stable region around the zero gain
guarantees that there is a large connected stable domain
in the τr-kr plane. This feature is very important for two
reasons: (i) there is the possibility that the dynamics can
be characterized by favorable σ- and ζ-stability properties
for large delay values, (ii) the presence of a delay-
independent stable region indicates that there exists at
least one large, “connected” stable region from zero to
infinite delay.

Notice that the delay independent stable/unstable region is
symmetric with respect to the gain kr.

C. Linear Large-Scale Time-Delay Systems

For a second-order LTI system with PR control, such as
the one discussed above, one can analytically identify the
parameter regions with specified exponential decay rates, as
well as the conditions for delay independent stability. How-
ever, real-world dynamical systems are larger in size and much
more complex. Capturing the impact of delays on the behavior
of large system models can be achieved only by carrying
out a numerical analysis. Nevertheless, these studies must be
carefully guided by our analytical understanding of small scale
dynamical systems. This is the approach we aim to take in
what follows.

We describe next how to assess the stability of large scale
linear time-delay systems. To this aim, system (1) is extended
to include multiple delays τi. The resulting LTI dynamical
system is described through the following set of DDEs:

ẋ(t) = A0x(t) +

ρ∑
i=1

Aix(t− τi) , (15)

where τi ≥ 0, i = 1, 2, . . . , ρ, The characteristic matrix of
(15) has the following form [29]:

sIn −A0 −
ρ∑
i=1

Aie
−sτi . (16)

Since (16) is transcendental, it has infinitely many eigenvalues,
and only an approximation of the solution is possible. Different
approaches have been proposed to overcome this problem [29].
In this paper, the DDE system (15) is transformed to a formally
equivalent set of Partial Differential Equations (PDEs), which
has infinite dimensions. The PDE system is then reduced
to a finite dimensional problem through Chebyshev spectral
discretization [36], [37]. If NC is the number of points of
the Chebyshev differentiation matrix [29], then discretization
leads to an approximate linear matrix pencil in the form:

sInNC
−M , (17)

where the matrix M has dimensions nNC × nNC . The
spectrum of (17) – which can be found using any common
numerical technique, e.g. the QR method – represents an
approximate spectrum of (16). The Chebyshev spectral dis-
cretization technique has been successfully applied to single
and multiple time-delay systems, e.g. to power systems with
constant and stochastic delays affecting damping controllers
[28], [38].

After the above analysis is complete, one can reveal the
most critical eigenvalue(s), by comparing the damping ratios
ζi of all computed eigenvalues. This work focuses on the
parametric analysis in a delay vs control gain space. The
above analysis allows building a map of specified dominant
oscillation damping ratio ζ. In the remainder of the paper, this
map is referred to as the ζ-stability map.

D. Non-linear Large-Scale Time-Delay Systems

Real-world dynamical systems, such as, for example, high-
voltage transmission systems, are conventionally described
through a set of non-linear Differential-Algebraic Equations
(DAEs), as follows:

ẋ = f(x,y) ,

0m,1 = g(x,y) ,
(18)

where f (f : Rn+m → Rn), g (g : Rn+m → Rm) are
the differential and algebraic equations; x, x ∈ Rn, and y,
y ∈ Rm, are the state and algebraic variables, respectively;
and 0m,1 denotes the m× 1 zero matrix. For simplicity, the
time dependency has been omitted from (18).

The presence of time delays, for example, in control loops,
changes the set of DAEs (18) into a set of Delay Differential
Algebraic Equations (DDAEs). A non-linear dynamical system
with inclusion of delays can be described as:

ẋ = f(x,y,xd,yd) ,

0m,1 = g(x,y,xd,yd) ,
(19)

where xd, xd ∈ Rnd , and yd, yd ∈ Rmd are the delayed state
and algebraic variables, respectively. Suppose that the system
includes a single constant delay τ . Then, one has:

xd = x(t− τ) ,

yd = y(t− τ) ,
(20)

where t is the current time. When yd does not appear in
the algebraic equations of (19), this leads to the index-1



5

Hessenberg form of DDAEs:

ẋ = f(x,y,xd,yd) ,

0m,1 = g(x,y,xd) .
(21)

Model (21) is adopted instead of (19), since it allows simplify-
ing the form of the characteristic equation of the corresponding
linearized system, while being adequate for the applications
considered in this paper. The interested reader can find a
detailed study on the Small Signal Stability Analysis (SSSA)
for non-index 1 Hessenberg form systems of DDAEs in [39].

For sufficiently small disturbances, and for the purpose of
SSSA, (21) can be linearized around a valid stationary point,
as follows:

∆ẋ = fx∆x + fy∆y + fxd
∆xd + fyd

∆yd , (22)

0m,1 = gx∆x + gy∆y + gxd
∆xd , (23)

where fx, fy , gx, gy , are the Jacobian matrices of the delay-
free variables; and fxd

, fyd
, gxd

, are the Jacobian matrices
of the delayed variables of (22) and (23).

In the linearized system (22), (23), the algebraic variables
∆y, ∆yd can be eliminated, under the assumption that gy is
not singular. Substitution of (23) into (22) yields:

∆ẋ(t) = A0∆x(t) + A1∆x(t− τ) + A2∆x(t− 2τ) , (24)

where

A0 = fx − fygy
−1gx ,

A1 = fxd
− fygy

−1gxd
− fyd

g−1y gx ,

A2 = −fyd
g−1y gxd

.

Applying the Laplace transform in (24) yields the following,
quasi-polynomial characteristic matrix:

sIn −A0 −A1e
−sτ −A2e

−2sτ . (25)

Note that the form of the characteristic matrix (25) can be
retrieved from (16) for ρ = 2 and τ2 = 2τ1.

III. ONE-MACHINE INFINITE-BUS SYSTEM

The OMIB system shown in Fig. 1 serves well for illustra-
tion purposes since it is the simplest power system dynamic
model and is analytically tractable. This section first describes
the classical machine model and then includes in this model
a simplified PSS with a Proportional-Retarded (PR) control,
i.e. with two input signals, one instantaneous and one delayed.
The results presented in Section II-B are critical to establish
the stability features of the closed-loop system.

e′q 6 δ kh

jXjX′
d

Fig. 1. Single-line diagram of the OMIB system.

A. Classical Model
The classical per-unit model of this system is as follows

[40]:
δ̇ = Ωb(ω − ωo) ,

2Hω̇ = pm − pe(δ)−D(ω − ωo) ,
(26)

where δ, ω, are the rotor angle and the rotor speed of the
synchronous machine, respectively; pm and pe are the mechan-
ical, electrical power output of the machine, respectively. In
addition, H is the machine inertia constant; D is the machine
rotor damping coefficient; ωo is the system reference angular
speed; and Ωb is the nominal synchronous angular frequency
in rad/s. The time dependency has been omitted from (26) for
simplicity.

The electrical power pe is described by the following non-
linear expression:

pe(δ) =
e′qvk

Xtot
sin(δ − θk) , (27)

where vk, θk, are the (constant) voltage magnitude and angle at
the infinite bus k; e′q is the internal electromotive force of the
synchronous machine, which is taken as constant, by assuming
an integral Automatic Voltage Regulator (AVR). Xtot is the
total reactance, comprising the machine transient reactance
(X ′d) and the line reactance (X), where the latter is referred
to the machine power base.

Defining the system state vector as [δ ω]
T , making use of

(27) and linearizing (26) around a valid equilibrium [ δo ωo ]T

yield:

∆δ̇ = Ωb∆ω , (28)

2H∆ω̇ = −
e′qvkcos(δo − θk)

Xtot
∆δ −D∆ω , (29)

where ∆δ = δ − δo and ∆ω = ω − ωo. Equations (28)-(29)
can be rewritten as a second-order LTI system:

∆δ̈ + d∆δ̇ + b∆δ = 0 , (30)

where ∆δ ≡ x and

b =
Ωbe
′
qvkcos(δo)

2HXtot
, d =

D

2H
. (31)

B. Power System Stabilizer with PR Control
In power systems, measurements of synchronous machine

rotor speeds are available in practice, whereas measurements
of rotor angles are not. Thus, in its simplest form, the PSS
measures the machine rotor speed variation, i.e. Ω−1b ∆δ̇ =
∆ω, and introduces a fictitious damping into the swing equa-
tion (29). The linearized closed-loop system can therefore be
written as:

∆δ̈ + d∆δ̇ + b∆δ = −u(∆δ̇) . (32)

The damping controller is modeled here as a proportional PSS
with two control channels, one with and one without delay.
The PSS diagram is shown in Fig. 2.

Dual-channel PSSs have been employed in the past, e.g. as
decentralized-hierarchical schemes for wide-area stabilizing
control [41]. The dual-channel PSS output is described as:

u = kp∆δ̇ − kr∆δ̇(t− τr) . (33)
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ω(t)

ω(t − τr)

kp

kr

u
+

–

Fig. 2. PR control-based PSS diagram.

Merging (28), (32) and (33) leads to the following closed-loop
system representation:

∆δ̈ + (d+
kp
Ωb

)∆δ̇ + b∆δ − kr
Ωb

∆δ̇(t− τr) = 0 . (34)

which is exactly in the form of (3)-(5). Applying the Laplace
transform and substituting the initial conditions ∆δ(0) =
∆δ̇(0) = 0, yields the following characteristic quasi-
polynomial:

q(s, τr, kr) = s2 + (d+
kp
Ωb

)s+ b− kr
Ωb
se−sτr . (35)

Comparing the quasi-polynomial (35) with the one in (6), one
has c1 = d, c2 = b, = Ω−1b . Therefore, the analysis of σ-
stability and the conditions for delay independent stability
can be studied through the derivations of Section II-B. The
amount of friction included in the delay-free OMIB system is
according to (11):

c = d+
kp
Ωb

. (36)

The critical condition for which the OMIB system is delay
independent stable is that Ωbc/kr is tangent to the unit circle.
Equivalently, one has:

c = ± kr
Ωb

. (37)

C. Illustrative example

This section provides a numerical example on the closed-
loop OMIB system. Let e′q = 1.22 pu, vk = 1 pu, θk = 0 rad,
pm = 1 pu, Xtot = 0.7 pu. The initial value δo of the rotor
angle is given by:

δo = arcsin

(
pmXtot

vke′q

)
. (38)

The examined equilibrium is hence [0.61 , 1]T . Let also H =
2.5 MWs/MVA, and Ωb = 100π rad/s (50 Hz system). Then,
b = 89.756 pu in (30). The cases below construct the σ-
stability map of the system for the three cases of negative,
zero and positive values of c at this fixed equilibrium.

Case 1: For c = −0.4 < 0, the stability map is shown in
Fig. 3. The map has a symmetric delay independent unstable
region obtained for kr ∈ (−125.6, 125.6). In addition, PR
control can stabilize the system, provided that the delay is
τr < 0.131 s and a proper kr > 0 is selected (see e.g. point
P1(0.05, 729)). The maximum value of σ in the visible part
of the map shown in Fig. 3 is 4.32.

Stable regions of the map in Fig. 3 also exist for delays
higher than 0.131 s. For example, the system is stable around
the point P3(0.30,−763.4). Note, however, that obtaining the
equilibrium of a delayed system implies that a time equal
to the maximum delay included in the system has elapsed
but, meanwhile, the system may have been already rendered
unstable. Indeed, Fig. 3 indicates that there is no path to P3

without crossing the system stability boundary, which implies
that the system necessarily becomes unstable before actually
reaching P3. A relevant consequence is that in this case there
is no way to operate the system in a stable equilibrium for
negative gain values.

It is relevant to illustrate the effect of crossing the stability
boundary of the closed-loop OMIB system by carrying out a
time domain simulation. Suppose that the non-linear system
(26) with the inclusion of the PR controller (33), operates
around the stable equilibrium defined by the point P1 of Fig. 3.

Fig. 3. Closed-loop linearized OMIB system: σ-stability map in the τr-kr
plane, c = −0.4.

The system is numerically integrated considering a small
noise on the measurement of the OMIB rotor speed. The noise
is a normal process with zero mean and standard deviation
of 0.0002. The noise amplitude is set to a small value with
the purpose of showing the dynamics of the system in a
neighbourhood of the equilibrium point. At t = 2 s, the
gain and delay are switched to kr = −765 and τr = 0.3,
respectively, so that the system is set at the new equilibrium
point P3.

Fig. 4 shows the simulation result, and indicates that, as
expected, attempting to jump to a different, not connected
stable region by crossing the stability boundary during a
transient, renders the system unstable. Thus, P3 is an example
of an infeasible stationary point, and thus, the delay margin
of the system is 0.131 s.

Case 2: The σ-stability map for c = 0 is presented in
Fig. 5. In this case, the stability of the system depends on the
magnitude of the delay, regardless of the value of the gain
kr. In fact, the horizontal line kr = 0 comprises bifurcation
points. The delay-free closed-loop system is stable for kr > 0
and unstable for kr < 0. Provided that a proper positive kr
value is selected and that τr < 0.166 s (see point P4), the
delayed system is stable. For completeness, we mention that
the maximum value of σ in the visible part of Fig. 5 is 4.68.

There also exist stable regions for τr > 0.166 s. For ex-
ample, the system is small-signal stable around P5. However,
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Fig. 4. Closed-loop non-linear OMIB system (26) with noisy rotor speed
measurement: the equilibrium is switched from P1 to P3 at t = 2 s.

similarly to the discussion of Case 1, the system destabilizes
before actually reaching P5. The reason for this is that
one must go through the point P4 while staying inside the
stable regions, however this point is bifurcation point and is
technically unstable due to having σ = 0, or equivalently zero
damping.

Fig. 5. Closed-loop linearized OMIB system: σ-stability map in the τr-kr
plane, c = 0.

Case 3: The stability map for c = 0.4 > 0 is shown
in Fig. 6. In this case, the stable region is compact. For
kr ∈ (−125.6, 125.6) the system is stable regardless of the
magnitude of the delay τr. Moreover, all points of Fig. 6
with σ > 0 represent stable and feasible stationary points
of the linearized OMIB system. For example, such points are
P6(0.13, 400) and P7(0.35,−410). The maximum value of σ
in the map as presented in Fig. 6 is 5.07.

A time domain simulation is carried out including the same
noise model on the rotor speed measurement as in Case 1. At
t = 2 s, the system equilibrium is switched from P6 to P7.
The resulting plot, presented in Fig. 7, shows that the machine
maintains synchronism.

Overall, proper design of the PSS given by the PR law (33)
allows unifying the σ-stable regions, and thus allows one to
operate the OMIB system under the presence of large delays.
In particular, this is achieved by properly adjusting the control
parameter kp which introduces delay-free artificial damping to
the system.

Finally, the delay τr in this example is assumed to be a
fully controlled parameter. However, the above discussion is

Fig. 6. Closed-loop linearized OMIB system: σ-stability map in the τr-kr
plane, c = 0.4.
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Fig. 7. Closed-loop non-linear OMIB system (26) with noisy rotor speed
measurement: at t = 2 s, the equilibrium is switched from P6 to P7 shown
in Fig. 6.

relevant also for systems with inherent delays. For the sake
of example, consider again point P6 of Fig. 6. Suppose that
the corresponding delay, i.e. 0.13 s, represents an uncontrolled
physical phenomenon, e.g. the latency of a measurement trans-
mitted through a communication system. In power systems,
this situation describes, for example, the behavior of a Wide
Area Measurement System (WAMS) [28]. In such a scenario,
the parameter τr can be adaptively adjusted to add an artificial
delay, which ensures that the system under the total delay
0.13 + τr always operates at a region of high exponential
decay rate. Along these lines, see, for example, the idea of
delay scheduling in [9].

IV. CASE STUDY

This case study discusses the stability characteristics of the
IEEE 14-bus system depicted in Fig. 8. The system consists
of fourteen buses, five synchronous machines, twelve loads,
twelve transmission lines and four transformers. All machines
are equipped with Automatic Voltage Regulators (AVRs). The
static and dynamic data of the system can be found in [42].
Simulations in this section are carried out using the Python-
based power system analysis software tool Dome [43].

Without any PSS installed to the system, SSSA shows that
the rightmost pair of eigenvalues is 0.3522± j9.12, and thus,
the system is unstable around the examined equilibrium. This
situation can be fixed through a PSS. The PSS employed in
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Fig. 8. Single-line diagram of the IEEE 14-bus system.

this section is described by the following DAEs:

Twv̇1 = −Kwvsi − v1 ,

T2v̇2 =
(

1− T1
T2

)
(Kwvsi + v1)− v2 ,

T4v̇3 =
(

1− T3
T4

)(
v2 +

T1
T2

(Kwvsi + v1)
)
− v3 ,

0 = v3 +
T3
T4

(
v2 +

T1
T2

(Kwvsi + v1)
)
− vso ,

where v1, v2, v3 are the PSS state variables; Tw, T1, T2, T3, T4
are time constants; Kw is the PSS gain. In addition, the input
vsi is the local rotor speed, which, depending on the examined
scenario, may be delayed or not. Finally, the output signal
vso is an additional input to the local AVR reference, so that
the PSS provides damping of electromechanical oscillations
through excitation control. The PSS block diagram is depicted
in Fig. 9.

vsi
Kw

Tws

Tws+ 1

T1s+ 1

T2s+ 1

T3s+ 1

T4s+ 1

v
max

s

v
min

s

vso

Fig. 9. Power system stabilizer block diagram.

To study the effect of time-delayed damping control on the
small signal stability of the IEEE 14-bus system, two damping
control configurations are compared, namely, a conventional
PSS with delayed input signal; and a PSS that consists of two
channels, one delayed and one non-delayed. In both cases, the
damping controller is installed at the AVR of the synchronous
machine connected at bus 1.

The impact of time delay in each case is evaluated by means
of constructing the ζ-stability map in the delay-control gain
space. For each point of the plane, an eigenvalue analysis is
carried out by applying the Chebyshev discretization technique
(see Section II-C). The spectrum of the approximate matrix

pencil is calculated using the QR algorithm with LAPACK
[44]. Then, comparison among the eigenvalues allows obtain-
ing the most poorly damped one determining the ζ-stability.

A. Standard PSS with Delayed Input Signal

The employed PSS model is as shown in Fig. 9. The control
input signal is considered to be the delayed local rotor speed
measurement:

vsi = ω1(t− τ) , (39)

where τ is an intentional constant delay. The PSS time constant
values are summarized in Table I.

TABLE I
IEEE 14-BUS SYSTEM: PSS PARAMETERS.

T1 = T3 = 0.28 s, T2 = T4 = 0.02 s, Tw = 10 s

The dynamic order of the system is 54. Setting the number
of points of the Chebyshev differentiation matrix to NC = 10
yields 540 eigenvalues in total. The system ζ-stability map
in the τ -Kw plane is shown in Fig. 10. The map consists
of distinct and not compact stable regions, which stems from
the fact that, without the PSS, the system is unstable. For
Kw ∈ (−0.55, 0.65), the system is unstable regardless of the
magnitude of the delay. The delay margin of the system is
0.104 s and is obtained for Kw = 1.5. Moreover, using the
standard PSS with a negative gain value leads necessarily to
instability. Finally, operation under the presence of a large
delay, e.g. 0.35 s, is infeasible.

Fig. 10. IEEE 14-bus system: ζ-stability map in the τ -Kw plane (ζmax =
0.11).

B. Dual-channel PSS

In the OMIB system example of Section III, a compact
stable region in the delay-control gain plane can be achieved
by employing a PR-based PSS scheme, tuned to operate the
system at a point with good damping characteristics. The same
principle can be applied to the IEEE 14-bus system. With this
aim, a PSS with two control channels, one not delayed and one
delayed, is examined. The scheme of the dual-channel PSS is
shown in Fig. 11.

The Non-Retarded PSS (NRPSS) is tuned to render the
non-delayed system small signal stable. The control input of
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ω1(t− τR)

NRPSS

RPSS
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+

+

Fig. 11. Dual-channel PSS configuration.

NRPSS is the local rotor speed ω1(t). The Retarded PSS
(RPSS) tunes the delay dynamics so that the system operates
at a point with good damping characteristics. The input signal
of the RPSS is the delayed rotor speed ω1(t − τR), where
τR ≥ 0 is the magnitude of the delay. The time constants
of both NRPSS and RPSS are as summarized in Table I. In
addition, Kw,P and Kw,R denote the gains of NRPSS and
RPSS, respectively. An analogy between the dual-channel PSS
configuration and the PR-based PSS of the OMIB system
example of Section III is given in Table II.

TABLE II
ANALOGY BETWEEN THE EXAMINED DUAL-CHANNEL PSS
CONFIGURATION AND THE PR CONTROL OF SECTION III.

System OMIB IEEE 14-bus

Non-retarded control Proportional kp NRPSS
Retarded control kr , τr RPSS

The NRPSS gain is tuned so that the system without delayed
control is small signal stable. For Kw,P = 5, Kw,R = 0, SSSA
shows that the rightmost pair of eigenvalues is −0.1376 ±
j0.0203. The most poorly damped pair is −0.5171± j7.2516,
which yields a damping ratio 0.071.

Figure 12 shows the ζ-stability map of the system in the
Kw,R-τR plane assuming Kw,P = 5. In this case, the dynamic
order of the system is 57 and, using NC = 10, 570 eigenvalues
are calculated in total to obtain each point of the map. The
resulting map shows that the stable region is compact, while
the area with Kw,R ∈ (−2.4, 2.5) is delay independent stable.
Figure 12 also shows that the maximum damping is ζmax =
0.178 and is achieved for τ = 0.34 s, i.e. a relatively large
delay value.

Fig. 12. IEEE 14-bus system: ζ-stability map in the τR-Kw,R plane
(ζmax = 0.178).

C. Application to Wide Area Damping Control

The proposed approach has an interesting application to
wide area measurement systems. A Wide Area Damping
Controller (WADC) typically employs a signal that is remote,
and thus has to be transmitted to the control actuator through
a communication network, which introduces an inherent and
unavoidable delay.

Considering that the delay fed to the dual-channel PSS (see
Section IV-B) is inherent, the structure of Fig. 12 implies
that if a proper artificial delay is injected on top of the
inherent delay, the system can be led to a region of better
damping characteristics4. This extra delay can be introduced,
for example, by a properly designed controller that adjusts
both the delay and gain values following a stable path, through
consecutive quasi-steady state shifts of the system equilibrium.

The inherent delay can create a severe stability issue for the
conventional PSS with delayed input signal (see Section IV-A
and in particular Fig. 10), since the delay margin in this case
is relatively small (0.104 s). For an inherent delay that has
a small magnitude, a delay-dependent design of the standard
PSS allows increasing the delay margin and may be adequate
to avoid instability. In fact, in Fig. 10, the region of the highest
damping ζ ≥ 0.10 is obtained for a non-zero delay value, with
the maximum damping ratio value being ζmax = 0.11. The
closed-loop loci related to the critical system mode have an
angle of departure closer to 180◦ when τ = 0.03 s. In other
words, the phase shift introduced by the PSS is optimal when
a small delay is present.

Another technique commonly employed to mitigate destabi-
lizing delay effects is time delay compensation. The main idea
of delay compensation is to apply a control block which gener-
ates a signal that is similar to the original, non-delayed signal.
The compensated signal is then fed to the PSS. Let consider
an example using the classical Proportional-Derivative (PD)
delay compensation method [45], [46]. With Kw = 1.5, the ζ-
stability map in the delay vs delay compensation gain (τ -Kτ )
is shown in Fig. 13. The inclusion of the PD compensation
to a conventional PSS with delayed input signal increases
the delay margin of the system to 0.184 s, while oscillations
have a damping ratio ζ ≥ 0.10 but only for delays smaller
than 0.121 s. That is, delay compensation cannot handle
large communication delays. On the other hand, as already
discussed, the dual-channel PSS can be adaptively tuned to
achieve good damping characteristics for a wide range of
communication delays.

So far, a constant delay model for the inherent communica-
tion delay has been considered. While WAMS delays are time-
varying, assuming constant delays in power system damping
control applications is conservative [38], [47]. Although the
constant delay analysis provides valuable insights, for com-
pleteness, and in order to ensure that arbitrary deviations of
delays do not compromise stability of the system, e.g., see
[48], it is relevant to study also via time simulations the impact
of the proposed approach on the transient response of the IEEE
14-bus system with inclusion of a stochastic delay model.

4Outside the power systems literature there is theoretical and experimental
evidence of this ‘delay scheduling’ idea [9].
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Fig. 13. IEEE 14-bus system with delay compensation: ζ-stability map
(ζmax = 0.112).

To this aim, the realistic time-varying WAMS delay model
proposed in [28] is employed. This model is as follows:

τ(t) = τc + τp(t) + τs(t) , (40)

where τc is a constant component that expresses the processing
time of the measurement unit plus the inevitable delay imposed
by the communication medium; τp(t) is a periodic component
arising from the fact that that data packets are sent repeatedly
in discrete time instants; and τs(t) is a stochastic component
modeling uncertainties and noises during the transmission,
including the probability of a dropout. The profile of the
WAMS delay τ(t) considered in this example, as well as the
corresponding average constant delay τ̄ , are shown in Fig. 14.
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Fig. 14. WAMS delay (40) and average constant delay τ̄ .

Two scenarios are compared: (i) system with inclusion of the
standard PSS with delayed input and (ii) system with inclusion
of the dual-channel PSS. The gain and artificial delay of the
dual-channel PSS are tuned based on the stability map in
Fig. 12. The system operates around the point (0.62,−0.15),
which corresponds to an equilibrium with ζ ≥ 0.10. The
average delay of the WAMS delay is τ̄ = 0.201 s, and thus
the dual-channel PSS adds an extra constant delay equal to
0.419 s.

A three-phase fault is simulated at bus 3 of the IEEE-14 bus
system. The fault occurs at t = 1 s and is cleared after 0.12 s
by tripping the line that connects buses 2 and 3. The trajectory
of the rotor speed of the synchronous machine connected at
bus 1 is shown in Fig. 15. As expected, using the standard PSS
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Fig. 15. IEEE 14-bus system with WAMS delay: Response following a
three-phase fault.

leads to an unstable oscillation of increasing amplitude, since
the considered WAMS delay is larger than the delay margin of
the system (see Fig.10). On the other hand, the dual-channel
PSS properly damps the electromechanical oscillation.

V. CONCLUSIONS

This paper presents new results on time-delayed damping
control of power system synchronous machine electromechani-
cal oscillations. The paper shows that injecting delays in a PSS
can, under certain conditions, significantly improve the dy-
namic response of the overall system. The paper focuses on the
delay-control gain space, and studies the stability boundaries,
as well as the relationship between the existence of delay-
independent stability and connected stability domains in the
system parameters Connected stable regions are obtained by
employing a PSS with two control channels and indicate that
best damping characteristics may be achieved for larger delay
values. Connectedness in this context enables the utilization
of a large range of stabilizing parameters without the system
having to jump over destabilizing settings. Future work will
focus on the application of domain knowledge like the property
of passivity, see, e.g. [49], to benchmark the performance of
passivity-based controllers.
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