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Abstract—The paper shows that, for certain classes of power
system models, if time-varying delays are replaced with their
average value, the small-signal stability analysis returns conser-
vative results, while showing a lower computational burden. The
paper first compares, through an exact analytical approach, the
delay margin of a second-order electromechanical model with
inclusion of constant, square-wave, and Gamma distributed de-
lays. Since the analytical approach is not viable for realistic power
system models, the paper also develops a novel general method to
calculate the eigenvalues for systems with time-varying stochastic
delays that cannot be described by an analytical probability
distribution function. These kind of delays are relevant for the
study of wide-area measurement systems (WAMSs). The IEEE
14-bus system serves to compare the stability margin and the
critical damping ratio of a constant and two WAMS delay models
solved with the proposed numerical method.

Index Terms—Delay Differential Algebraic Equations (DDAE),
time-delay system, delay margin, small-signal stability, Wide-
Area Measurement System (WAMS).

I. INTRODUCTION

A. Motivation

The Quenching Phenomenon (QP) in time-delay systems
describes the situation where a system that is stable (unstable)
with a constant delay becomes unstable (stable) if the constant
delay is replaced by a time-varying delay with the same
average value as the constant delay [1]. The QP implies that
constant and time-varying delays have different delay margins,
where delay margin is defined as the maximum magnitude of a
delay that does not make the system unstable. The existence of
the QP justifies the need of precise delay models to study the
stability analysis of power systems with inclusion of delays.
However, the stability analysis involving time-variant delays
shows a significant computational burden and hard-to-solve
numerical issues [2].

This paper deals with delay systems for which the delay
margin when considering constant delays is always smaller
than with time-varying delays that have the same average val-
ues. For such systems, a constant delay leads to conservative
results of the stability assessment. Moreover, the computa-
tional burden of the stability analysis is much lower than that
required for studying system with time-varying delays. This
paper aims at discussing the mathematical conditions for the
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existence of such delay systems and show that certain classes
of power system models fall in this category.

B. Literature Review

The delay margin of a time-delay system can be computed
through time-domain or frequency-domain stability analysis
methods. Time-domain methods include Lyapunov functional
approaches, in particular the Lyapunov-Krasovskii Functional
(LKF) [3]. Frequency-domain methods mostly consist in tech-
niques to find a finite set of approximated roots of transcen-
dental characteristic equations [4]–[6].

The LKF method has been utilized to study the delay margin
of power systems [7]–[9]. The LKF method is a sufficient
but not necessary criterion, and is generally over-conservative.
The extent of its conservativeness is system and delay model
dependent [10], [11]. The LKF method, therefore, is not
suitable to compare the delay margin for different types of
delay. On the other hand, the eigenvalue analysis is a sufficient
and necessary stability criterion and ensures a fair comparison
[12]. The eigenvalue analysis method has proved to be accurate
and efficient to evaluate the small-signal stability of power
systems [13]–[15]. The QP has been observed in power
systems through a frequency-domain method [16].

References [17] and [18] show that time delays that range
from a few tens to a few hundreds of milliseconds can
deteriorate the damping mode and even lead the power systems
to collapse. The delays introduced by Wide-area Measurement
Systems (WAMSs) distribute within 50 – 700 ms and, there-
fore, can affect the stability of power systems [19]. WAMS
delays are the results of a series of processes along with the
data communication from the measurement device to the grid,
including long-distance data delivery, data packet dropout,
noise, communication network congestion [7], [20], [21]. They
are necessarily time-variant.

Reference [2] proposes a detailed time-varying WAMS
delay model and the eigenvalue analysis method to evaluate the
impact of this time-varying delay on the stability of power sys-
tems. This method is based on an iterative Newton technique
that allows determining the critical eigenvalues. This method
has two limitations: (i) the analytic Probability Distribution
Function (PDF) of the time-varying delay is required; and
(ii) the accuracy of this method relies on the initial guess
utilized to start the Newton method. This paper develops a
generalized method that avoids these issues and, thus, enables
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the calculation of the eigenvalue for any system with time-
varying delays.

C. Contribution

The contributions of the paper are as follows.
• An analytic method to evaluate the delay margin of a

one-machine infinite-bus model with inclusion of both
constant and time-varying delays.

• A generalized small-signal stability analysis approach for
arbitrary-size power systems with generic time-varying
delays.

• A WAMS delay model with more realistic assumptions
than the one developed so far in the literature.

• An study on the delay margin and optimal control gain
of a power system using different WAMS delay models
through the proposed small-signal stability analysis ap-
proach.

D. Organization

The paper is organized as follows. Section II reviews the
existing propositions and techniques to solve the stability
analysis of time-delay systems. Section III compares the delay
margin of a one-machine infinite-bus model with constant,
time-varying and distributed delays. Section IV proposes a
generalized eigenvalue analysis method that can solve the
small-signal stability of the power system with any time-
varying delays, and validates the method through an illus-
trative example. In Section V, two WAMS delay models are
discussed, and the IEEE 14-bus system is utilized to compare
the effect of these two models and the constant delay on the
stability of a power system. Finally, Section VI outlines the
most relevant results of the paper and draws conclusions.

II. TECHNICAL BACKGROUND

The transient behavior of power systems with inclusion of
time delays can be formulated as a set of nonlinear Delay
Differential Algebraic Equations (DDAEs) [18]:

ẋ(t) = f(x(t),y(t),x(t− τ),y(t− τ))

0 = g(x(t),y(t),x(t− τ),y(t− τ)) ,
(1)

where x ∈ Rn and y ∈ Rm are the state variables and
algebraic variables, τ is the time delay.

Linearizing the system (1) at a given operating point, one
can deduce the small-signal model of the power system in the
form of linear Delay Differential Equations (DDEs):

ẋ(t) = A0x(t) +

im∑
i=1

Aix(t− τi), (2)

where A0 is the state matrix, Ai is the delay matrix. The
expression of these matrices can be found in [18]. In real-
world power system, τi is time-variant, and therefore, the DDE
(2) is a Time-Varying Delay System (TVDS).

A TVDS can be transformed into a comparison Distributed
Delay System (DDS), and the DDS can be further transformed
into a Multiple Constant Delay System (MCDS), as shown in
Fig. 1. The two propositions shown in Fig. 1 are the following.

Delay System

Distributed

(DDS)

Multiple Constant

Delay System

(MCDS)

Proposition 1 Proposition 2

Delay System

(TVDS)

Time−Varying

Fig. 1: Transforms of different time-delay systems.

Proposition 1: Consider that in (2), τi is time-varying: τi(t) :
R+ → [τmin, τmax], 0 ≤ τmin < τmax. If each τi(t) changes
fast enough, the stability of (2) is the same as the following
comparison system:

ẋ(t) = A0x(t) +

im∑
i=1

Ai

∫ τmax

τmin

πi(ξ)x(t− ξ)dξ , (3)

The characteristic matrix of the comparison DDS is:

∆(λ) = λI −A0 −
im∑
i=1

Aih(λ) , (4)

where

h(λ) =

∫ τmax

τmin

e−λξπ(ξ)dξ . (5)

Remark 1: Proposition 1 is deduced in [2]. Reference [2]
provides a two-step eigenvalue analysis method of (3): (i)
evaluating the initial guesses for the critical eigenvalues, (ii)
solving (4) through Newton iterations [14]. Note this method
requires an analyzable PDF of the delay to construct the
characteristic equation for Newton iterations, which limits the
application of this method.

Proposition 2. The DDS:

ẋ(t) = A0x(t) + A1

∫ τmax

τmin

π(ξ)x(t− ξ)dξ , (6)

has the same eigenvalues as the comparison system:

ẋ(t) = A0x(t) + A1Kh lim
zm→∞

zm∑
z=0

π(Ξz)x(t− Ξz) , (7)

where

h =
τmax − τmin

zm
,

Ξz = τmin + z h ,

and K is a weight parameter decided by the interpretation
method.

Remark 2: Proposition 2 discusses only the single delay
case. The interested reader can find details on the extension to
the multiple delay case in [16]. In numerical implementations,
zm has to be truncated to a finite number without affecting
the convergence of the critical eigenvalues from (7) to (6).
Moreover, for a finite zm, the eigenvalues of this MCDS can
be solved through the Chebyshev discretization techniques
described in [18], [14] and [15].
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A numerical integration approximation approaches can be
utilized to minimize the value of zm. With an interpolation
method, equation (7) can be reformulated as

ẋ(t) = A0 x(t) + A1

zm∑
z=1

pk
π(Ξz)

zm
x(t− Ξz) , (8)

where pz = Khπ(Ξz). The optimal value of zm depends on the
selected interpolation method. The most common interpolation
methods are quadratic and cubic [22]. The cubic interpolation
is utilized in the remainder of the paper.

III. STABILITY MARGINS OF DIFFERENT DELAYS

This section aims at studying the delay margin of a second-
order simplified power system with constant and time-varying
delays through an analytical technique.

A. Simplified Power System Model

Let us consider the well-known simplified per-unit elec-
tromechanical model of a synchronous machine [23] con-
nected to an infinite bus:

Ω−1b δ̇ = ω − 1 ,

2Hω̇ = pm − pe(δ, e′q) ,
(9)

where ω is the rotor speed; Ωb is the reference angular speed in
rad/s; H is the machine inertia constant; pm is the mechanical
power; and the electromagnetic power pe is a function of the
rotor angle position δ and the machine internal emf e′q .

Assuming pe ∝ e′q sin(δ) and that the inclusion of a Power
System Stabilizer (PSS) makes e′q ∝ δ̇ in (9), reference
[17] deduces the characteristic equation of the linearized
electromechanical model as follows:

λ2 +Aλe−τλ +K = 0 , (10)

where A is a function of the PSS control gain; K = ∂pe/∂δ
evaluated at the equilibrium point at which (9) is linearized;
and τ is the delay of the signal ω that is used as the input of
the PSS. We assume that the system is stable for τ = 0. In
this case, the characteristic roots of (10) are:

λ =
−A±

√
A2 − 4K

2
.

The system is asymptotically stable if and only if <(λ) > 0.
Therefore, to ensure that the system is stable without delay,
A,K > 0 must hold.

B. Constant Delay

If the delay τc is constant, at the delay margin τmc , the
characteristic equation (10) has a pair of pure imaginary roots
λm = ±jβ, β ∈ R+. Substituting λ = jβ into (10), and
considering that e−jτβ = cos(−τβ)+j sin(−τβ), one obtains:

0 = −β2 +Aβ sin(τmc β) +K , (11)
0 = jAβ cos(τmc β) . (12)

The general solution of (12) is τmc = rπ
2β , where r = 1, 3, 5 . . .

Since the delay margin focuses on the smallest delay that

fulfills the pure imaginary eigenvalues, one can limit the
analysis only to the case r = 1.

Then, substituting β = π
2τm

c
into (11), one has:

−(
π

2τmc
)2 +A

π

2τmc
+K = 0 , (13)

from where one can deduce the delay margin as:

τmc =
π

A+
√
A2 + 4K

. (14)

C. Square-Wave Delay

Let us consider that (10) includes a fast time-varying delay
τv(t) and that the delay margin is τ̄v(t) = τmv . Since a fast
time-varying delay can be transformed into multiple constant
delays (see Section II), one can deduce the following set of
equations:

−β2 +Aβ

im∑
i=1

pi sin(τiβ) +K = 0 ,

jAβ

im∑
i=1

pi cos(τiβ) = 0 .

(15)

where
∑im
i=1 pi = 1 holds and the delays τ1 < τ2 <

· · · < τim form an arithmetic series and satisfy the condition
1
im

∑im
i=1 τi = τmv .

Let us consider the simplest case of (15), namely:

im = 2 , and p1 = p2 =
1

2
,

which implies a periodic square-wave delay (see [16] for de-
tails). In this scenario, assume the two delays are τ1 = τmv −κ
and τ2 = τmv + κ. Since the delays are positive, it must hold
τmv > κ > 0. According to (15), one has:

−β2 +Aβ
1

2

(
sin(β(τmv − κ)) + sin(β(τmv + κ))

)
+K = 0 ,

jAβ
1

2

(
cos(β(τmv − κ)) + cos(β(τmv + κ))

)
= 0 .

(16)

Similar to the constant delay case, from (16), one can deduce
that at the delay margin, β = π

2τm
and, thus, equation (16)

can be rewritten as:

−
(

π

2τmv

)2

+A
π

2τmv
cos

(
π κ

2 τmv

)
+K = 0 . (17)

Although the analytic solution of (17) cannot be obtained,
by comparing (17) and (13), with K,A, τmv , τ

m
c > 0 and

cos( π κ
2 τm

v
) ∈ (0, 1], one can deduce that τmv > τmc must hold.

D. Gamma Distributed Delay

Let us consider a Gamma distributed delay system:

λ2 +Aλ

∫ ∞
0

ξb−1e−ξ/a

abΓ(b)
x(t− ξ)dξ +K = 0 , (18)

where a is the scale factor and b is the shape factor.
Proposition 1 indicates that the characteristic equation of

(18) is in the form of (4), where h(λ) = (1 + aλ)−b [2].
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The mean value of the Gamma distributed delay is:

τ̄g = ab . (19)

Consider specific delays for b = 2, then one has:

a =
τ̄g
2
. (20)

At the delay margin τ̄g = τmg , it must have an eigenvalue
λ = jβ. With this condition, one can deduce following
equations:

0 = −β2 − 2Aβ2a

(1− β2a2)2 + 4β2a2
+K , (21)

0 = 1− β2a2 . (22)

According to (20)-(22), with A,K, τmg > 0, one can deduce:

τmg =
8

A+
√
A2 + 16K

. (23)

Comparing (23) with (14), assume a function:

φ(A,K) =
A+
√
A2 + 16K

A+
√
A2 + 4K

. (24)

There is τmg ≥ τmc , if and only if:

φ(A,K) ≤ 8

π
. (25)

Since A,K > 0, one has the maximal value of φ(A,K)
when A = 0:

φ(A,K)max = 2 <
8

π
. (26)

Thus, the system must hold τmg > τmc .

E. Remarks

The examples discussed above show the existence of cases
for which, if the system is stable with a constant delay, it
is also stable for the time-varying delays that have the same
average as the constant delay. For these cases, solving the
stability analysis with the constant time delay provides a
conservative delay margin.

The main limitation of the analytical approach is that it
is not general and the stability properties of the system can
be deduced only with the full information on the parameters
and delay distribution. The complexity of such an analytical
approach increases rapidly with the order of the system and
the complexity of the delay distribution function. Since a
general analytical solution is still missing, we propose below a
numerical approach to study the delay margins of large-scale
power systems with realistic-modeling delays.

IV. GENERALIZED EIGENVALUE ANALYSIS APPROACH
FOR TVDSS

This section proposes a generalized eigenvalue analysis
method for Time-Varying Delay Systems (TVDSs) based on an
interpolation approach that computes the critical eigenvalues
and improves the one currently available in the literature [2],
as follows.

The first step is to obtain the PDF or, if it is not available,
the probability distribution, say π(τ), of the time-varying delay
τ(t). According to Propositions 1 and 2, a TVDS can be
transformed into a MCDS, if π(Ξz) is available for each
interpolation point Ξz . If the analytic PDF of the delay is
not available, one can deduce the approximated PDF through
the historical data of the delay, which is feasible for real-world
power systems since the time stamp of the measurements of
WAMS can be recorded with a relatively high sampling rate
[21].

Fig. 2 illustrates the histogram of the magnitudes of a
Gamma distributed delay that a = 0.3187 and b = 2. This
histogram and the other PDFs deduced on measurement data
that are utilized in the remainder of the paper are obtained
based on 2000 s time series with 100 Hz sampling rate.
The points ιz are the mid-points of each bin. Using the
set of ιz = (Ξz, π(Ξz)), the original systems with Gamma
distributed delay can be transformed into the comparison
MCDS and the critical eigenvalues can be calculated with
the Chebyshev discretization techniques discussed in [14],
[18]. Moreover, if the analytic PDF is available, the obtained
eigenvalues can be further corrected with the Newton iterations
proposed in [2].
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Fig. 2: Histogram of a Gamma distributed delay with a =
0.3187 and b = 2.

A. Illustrative Example

The simplified power system with Gamma DDS discussed
in Section III-D serves to investigate the accuracy of the pro-
posed interpolation method. The eigenvalue analyses discussed
in the remainder of the paper are solved using the Python
software tool Dome [24].

1) Scenario I: Assume the simplified power system (18)
with A = 5, K = 2. According to (23), the delay margin of
the system is τmg = 0.6375 s. For this delay margin, one
has a = 0.3187 s, b = 2 and λm = ±j3.1375. Fig. 3
shows the variations of the real part and the absolute value

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020



0.00 20.00 40.00 60.00 80.00 100.00
zm

0.0

0.1

0.2

0.3

0.4
R
ea
l(
λ
m
)

Analytic Solution

Analytic Distribution Interpolation

Data−Driven Interpolation

0.00 20.00 40.00 60.00 80.00 100.00
zm

2.9

3.0

3.1

3.2

|Im
ag
(λ

m
)|

Analytic Solution

Analytic Distribution Interpolation

Data−Driven Interpolation

Fig. 3: Real part of the rightmost eigenvalues of (18) with
A = 5, K = 2, a = 0.3187 and b = 2 as functions of zm.

of the imaginary part of the rightmost eigenvalues of (18) as
functions of zm. In Fig. 3, “Analytic Solution” indicates the
eigenvalue is deduced by (23); “Analytic Distribution Inter-
polation” indicates the eigenvalue is solved by a comparison
MCDS that consisted by the interpolations of the analytic
PDF; and “Numerical Distribution Interpolation” considers the
interpolation points ιz .

Fig. 3 shows that, as the number of interpolation points
increases, all interpolation methods converge to the exact
eigenvalue. The data-driven interpolation method, however,
has a slower convergence rate and introduces a small offset
in the imaginary part.

2) Scenario II.: To further investigate the accuracy of the
proposed method on defining the stability margin, we consider
another scenario with K = 2, a = 0.15 and zm = 42. The
real part of the rightmost eigenvalue as a function of A is
shown in Fig. 4. Note that the “Analytic Solution” is obtained
from applying the Newton method to (18) using as initial
guess the values of the eigenvalues obtained with the “Analytic
Distribution Interpolation” method.

According to the results of Fig. 4, the two interpolation
methods find that the system becomes unstable if A > 12.5,
which is consistent with the analytic solution. These results
indicate that the interpolation methods obtain an accurate
estimation of the stability margin for systems with time-
varying delays.

V. CASE STUDY

This section investigates the delay margin for different delay
models of the IEEE 14-bus system through the proposed eigen-
value analysis techniques. The topology and parameters of the
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Fig. 4: Real part of the rightmost eigenvalues of (18) with
K = 2, a = 0.15, b = 2 and zm = 42 as a function of A.

IEEE 14-bus system can be found in [16]. The input signal
of the PSS is obtained through a WAMS, which introduces a
delay in the system. Three WAMS delay models are considered
below, namely a constant and two time-varying models.

A. Time-varying WAMS Delay Models

The two time-varying models for the WAMS delay are the
following:

1) WAMS Delay Model A with Analytical PDF: This
WAMS delay model is consisted by three components:

τWAMS,A(t) = τc + τp(t) + τs(t) , (27)

where τc is a constant delay; τp is a quasi-period delay that
describes the data delivery latency T and the data packet drop
at rate p, τs is a Gamma distributed delay. τs is updated
every T seconds and that models the stochastic behavior of
the communication system. The trajectory of this time-varying
delay with τc = 50 ms, T = 50 ms, p = 10%, a = 10 ms and
b = 2 and its PDF are shown in Fig. 5.
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Fig. 5: WAMS Delay Model A.
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Since the PDF of this delay model is analyzable, one can
deduce the characteristic equation of the power system with
inclusion of this WAMS delay in the form of (18), as follows
[2]:

h(λ) = hp(λ)

(
1 +

a

1− pλ
)−b

e−τcλ , (28)

where

hp(λ) =
p− 1

Tλ

[
1 + (p− 1)

e−λT

1− pe−λT
]
. (29)

In the following, (28) is utilized in the Newton Correction
included in the eigenvalue computations for the scenarios that
utilizes the WAMS delay model A.

2) WAMS Delay Model B with Non-Analytical Distribution:
This model has the same parameters as Model A, but different
formulation:

τWAMS,B(t) = τc + τ̂p(t) , (30)

where T̂ = T + τs(t). This model better describes the
stochastic effect for the digitalized communication processes
as discussed in [25], whereas the PDF of this model is
too complicated to deduced analytically. In the following
eigenvalue analysis, only the data-driven interpolation method
is utilized for the scenarios utilizing this delay model. The
trajectory and the probability distribution of this delay model
with the same parameters as the WAMS delay shown in Fig. 5
are shown in Fig. 6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time [s]

60

80

100

120

140

160

180

τ
[m

s]

0.05 0.10 0.15 0.20 0.25 0.30 0.35
τ [s]

0.0

2.5

5.0

7.5

10.0

P
ro
b
ab

il
it
y

Fig. 6: WAMS Delay Model B.

B. Delay Margin

This section evaluates the delay margin of the IEEE 14-
bus system for different values of the PSS gain Kw and three
WAMS delay models. For all scenarios, p = 10%, b = 2, τc =
50c ms, T = 50 c ms and a = 10 c ms, where c ∈ R+. The

delay margins for the three WAMS delay models as functions
of Kw are shown in Fig. 7.

Fig. 7 shows that, independently from the delay model, the
delay margin decreases as Kw increases. This implies that
the system becomes more sensitive to delays with higher Kw.
Fig. 7 also indicates that the impact of the different delay
models on the stability of the power system is similar if the
delays are small.

Compared with the time-varying delay models, the constant
delay always leads to larger delay margin that the time-varying
models. The WAMS delay model B, which is based on the
most realistic assumptions, presents the most conservative
delay margins. This result implies that if the power system
is stable with a constant delay, it is also stable with the time-
varying WAMS delays that have the mean value equal to the
constant delay.

2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00
Kw

50

100

150

τ
m
[m

s]

Constant Delay

WAMS Delay A

WAMS Delay B

Fig. 7: Delay Margin of the IEEE 14-bus system as a function
of Kw.

C. Optimal Control Gain

This section studies the optimal PSS gain of the system
for different delay models. With this aim, we consider 300
tests with Kw ∈ [0, 6]. The case of 100 ms constant delay is
compared with WAMS delay models A and B with c = 0.998
and c = 1.02, respectively, which make their mean values
equal to 100 ms. Fig. 8 shows the smallest damping ratio ζ of
the power system for different delay models as functions of
Kw. Note that, in Fig. 8, if the system is unstable, the damping
ratio is shown as 0.

Fig. 8 shows that the damping ratio of the 14-bus system
obtained with the constant delay is always the lowest among
the three delay models; while all the delay models capture the
tend: with the increase of Kw from 0, the damping ratio ζ first
increases until reaching the maximal value, which implies the
optimal control gain, and then decreases. Each delay model
shows different optimal Kw and ζ. For constant delay, the
optimal Kw is 1.4, and the corresponding ζ is 4.14%; for
the WAMS delay model A and B, the optimal Kw are 1.6
and 1.8, the maximum ζ are 5.2% and 5.5%, respectively.
These results indicate that a less precise delay model leads
to determine a suboptimal control gain. However, at least, in
this case, the differences between the three optimal gains are
relatively small.
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Fig. 8: Damping ratio ζ as a function of PSS gain Kw.

VI. CONCLUSIONS

This paper compares the impact of a variety of time-varying
delay models on power system stability through frequency-
domain analysis. A simplified second-order electromechanical
model and the IEEE 14-bus system are utilized to compare
such delay models. The delay margin of the electromechanical
model can be determined analytically, whereas the study of
larger systems require a general numerical approaches. With
this aim, the paper develops an interpolation method that
can accommodate both analytical and data-driven probability
distributions of the time-varying delays to solve the small-
signal stability of large-scale power systems.

The study of a second-order electromechanical model
proves the existence of cases for which a sufficient stability
condition for a system with a time-varying delay is that the
system is stable for the constant delay equal to the mean value
of the time-varying delay. The case study shows that also
for more detailed systems, such as the IEEE 14-bus system,
realistic WAMS delay models lead to more conservative delay
margin and higher critical damping ratio than the constant
delay. This result suggests that it is possible, under certain
conditions, to replace time-varying delays with their mean
value and obtain a conservative estimation of the delay margin
with a significant reduction of the computational burden.

Since the analytical approach is model dependent, at this
time, only a numerical technique, such as the one proposed
in this paper, can be use to solve complex systems. We are
working on generalizing the analytical approach and this will
be the focus of our future work on this topic.
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