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Abstract— This paper proposes a technique to evaluate the
numerical stability and accuracy of the Partitioned-Solution
Method (PSA) for the time domain integration of the Differential
Algebraic Equations (DAEs) that are used for power system angle
and voltage stability analyses. The partitioned approach consists
in solving differential equations and algebraic constraints sepa-
rately. While efficient, this technique introduces a “mismatch”
between state and algebraic variables. The paper states the
formal analogy of such a mismatch with a time delay of algebraic
variables. Then a Small-signal Stability Analysis (SSSA) for Delay
Differential Algebraic Equation (DDAE) is applied to define the
numerical stability of the PSA as a function of the integration
time step. Results are tested using the IEEE 14-bus system as
well as a 1,479-bus model of the all-island Irish system.

I. INTRODUCTION

Time domain integration is the most important tool for the

stability analysis of power systems. This paper discusses a

novel application of the stability analysis of DAEs. Based

on the SSSA discussed in [1], the paper proposes a tool to

evaluate the numerical stability of the well-known PSA for

time-domain integration of power systems [2]. The paper

provides a systematic quantitative tool to evaluate how precise

such an approach is.

In recent years, there has been a growing interest in the

modelling of time delays for power system dynamic analysis

and control applications. Such an interest in mainly due to the

increasing relevance of wide area control systems as well as

of phasor measurement units for which communication delays

of control signals cannot be ignored.

The focus of most research papers on time delays is, as

natural, devoted to the design of robust controllers that are able

to reduce the impact of communication delays. The following

papers are recent contributions to the robust control of wide

area control schemes [3]–[7]. The main goal of such papers

is to improve the effect of power system stabilizers to damp

inter-area oscillations. Another emerging area where delays

are relevant is the load frequency control [8], [9].

Another, less common, category of papers focus on the

evaluation of the small-signal stability of large DDAEs. Delays

transform the classical problem of finding the roots of the

state matrix of the system at the equilibrium point into the

solution of a transcendental characteristic equation, with in-

finitely many roots. Since an explicit solution cannot be found

in general, the spectrum can be only approximated based on

some discretization scheme [10]–[12]; bounded using based on

the definition of a Lyapunov function [13]; or reformulated as

the solution of a linear matrix inequality (LMI) problem [14],

whose demanding computational burden can be acceptable for

some applications [15].

Based on the experience matured in previous works [1],

[16], this paper will use the Chebyshev discretization that

has proven to be very accurate, to scale well with size of

the system and to have a reasonable computational burden.

The latter, however, increases more than linearly with the

size of the problem. Hence proper numerical schemes and

implementations have to be used. This paper exploits a GPU-

based numerical library, namely, MAGMA, that provides an

efficient parallel implementation of LAPACK functions and QR

factorization for solving the linear eigenvalue problem [17].

The contributions of the paper are twofold, as follows.

• Identify a formal analogy between the PSA for the time

domain integration of power systems modelled as DAEs

and a set of DDAEs where the delay is the time step of

the integration method.

• Provide a quantitative tool to define both the numerical

stability of the PSA as well as its accuracy in terms of

capturing the modes of the system dynamics. Such a tool

is based on the SSSA analysis of the equivalent DDAE

above.

The proposed technique allows taking advantage of the ef-

ficiency of the PSA while preventing numerical instabilities.

The tool also allows understanding whether the PSA is not

adequate – e.g., because the time step has to be too small to

maintain the accuracy at the desired level – and hence helps

decide whether other approaches, e.g., an iterative predictor-

corrector method or the Simultaneous-Solution Method (SSA),

has to be preferred.

II. PARTITIONED-SOLUTION APPROACH

The conventional power system model for voltage and

transient stability analyses consists of a set of DAEs as follows:

ẋ = f(x,y) (1)

0 = g(x,y)

where f (f : Rn+m
7→ R

n) are the differential equations, g

(g : Rn+m
7→ R

m) are the algebraic equations, x (x ∈ R
n)

are the state variables, and y (y ∈ R
m) are the algebraic

variables. Discrete events in (1) are not included explicitly but

modelled as if-then rules that changes the structure of the DAE

while preserving its continuity and differentiability [18].

There is a huge variety of numerical integration methods.

However, only a few are adequate to solve the DAEs that

model power systems. Such DAEs, in fact, proves to be highly



nonlinear and stiff, i.e., the time constant span several orders

of magnitude. A comprehensive discussion on this topic is

provided in [19].

In order to numerically integrate (1), the first issue that has

to be solved is how to handle algebraic constraints g. There

are mainly two approaches [2]:

1) Partitioned-solution approach (PSA). Variables x and y

are updated sequentially.

2) Simultaneous-solution approach (SSA). Variables x and

y are solved together in a single step using a solver such

as the Newton method.

As expected, both approaches have advantages and drawbacks.

The features of the PSA are briefly outlined below.
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Modify equation coefficients
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No

Compute f(xi,yi) and estimate xi+1

Solve equations g(xi+1,yi+1) = 0

Solve equations g(xi,yi) = 0

Disturbance?

ti = ti + h

End
EndSimulation?

Fig. 1: Partitioned-solution approach for time domain integration.

In the partitioned approach, x and y are updated indepen-

dently (see Fig. 1). Hence, any numerical integration method

can be used. Due to its lower computational burden, the

PSA was the first to be adopted for power system analysis

and was typically used combined with explicit numerical

methods, e.g., Runge-Kutta’s formulæ, which do not require

computing and factorizing the Jacobian matrix f
x

. However,

the partitioned approach introduces a mismatch between x and

y. In fact, for a generic step i, while computing xi+1, algebraic

variables are frozen to the old value yi. Moreover, the state

variables xi+1 are not modified when computing yi+1. To

avoid the mismatch between xi and yi, a possible solution

is to iterate over xi and yi for each time step. A typical

solution is to use a predictor-corrector method as discussed

in [20]. However, iterative processes, apart from being time

consuming, can lead to numerical instabilities, e.g., cycling.

Another, common solution consists in reducing the integration

step length. Clearly, in this way, the computational burden

increases but the advantage is that the PSA is numerically

stable if the time step is sufficiently small.

To update algebraic variables requires the solution of the

algebraic constraints, namely g = 0. This is a set of linear

equations if the current-injection formulation and standard

transmission line and transformer models are used. However,

in general, g = 0 are nonlinear, e.g., if under-load tap changers

are considered, and thus require computing and factorizing

iteratively the Jacobian matrix g
y

. With this aim, to reduce

the computational effort, one can use a “dishonest Newton

method”, which consists in updating the Jacobian matrix only

whenever the number of iterations required to solve g = 0

increases beyond a given threshold or whenever a structural

change of the system occurs, e.g., a fault. Such a threshold is

typically defined based on heuristics.

III. SMALL-SIGNAL STABILITY OF DELAYED POWER

SYSTEMS MODELS

The DDAE formulation is obtained by introducing time

delays in (1). Let

xd = x(t− τ), yd = y(t− τ) (2)

be the retarded or delayed state and algebraic variables,

respectively, where t is the current simulation time, and τ

(τ > 0) is the time delay. In the remainder of this paper, since

the main focus is on SSSA, time delays are assumed to be

constant.

If some state and or algebraic variables in (1) are affected

by a time delay as in (2), one obtains:

ẋ = f(x,y,xd,yd) (3)

0 = g(x,y,xd)

which is the index-1 Hessenberg form of DDAE given in

[21]. Note that g do not depend on yd. This allows obtaining

a closed form for the small-signal stability analysis and, as

discussed in [1], (3) is adequate to model, without lack of

generality, power system models.

Differentiating (3) at the stationary solution yields:

∆ẋ = f
x
∆x+ f

xd
∆xd + f

y
∆y + f

y
d
∆yd (4)

0 = g
x
∆x+ g

xd
∆xd + g

y
∆y (5)

where, neglecting without loss of generality singularity-

induced bifurcation points, it can be assumed that g
y

is non-

singular. Substituting (5) into (4), one obtains:1

∆ẋ = A0∆x+A1∆x(t− τ) +A2∆x(t− 2τ) (6)

where:

A0 = f
x
− f

y
g−1
y

g
x

(7)

A1 = f
xd

− f
y
g−1
y

g
xd

− f
y
d
g−1
y

g
x

(8)

A2 = −f
y
d
g−1
y

g
xd

(9)

The first matrix A0 is the well-known state matrix that is

computed for standard DAEs of the form (1). The other two

matrices are not null only if the system is of retarded type.

The matrix A1 is found in any delay differential equations,

while A2 appears specifically in DDAEs, although it can be

1The interested reader can find in [1] the details on how to determine (7)-(9)
from (4) and (5).



null if either f does not depend on yd or g does not depend

on xd. The substitution in (6) of a sample solution of the form

eλtυ, with υ a non-trivial possibly complex vector of order

n, leads to the characteristic equation:

det ∆(λ) = 0 (10)

where

∆(λ) = λIn −A0 −A1e
−λτ

−A2e
−2λτ (11)

is called the characteristic matrix. In (11), In is the identity

matrix of order n. The solutions of (11) are called the char-

acteristic roots or spectrum, similar to the finite-dimensional

case. The stability of (6) can be defined based on the sign of

the roots of (11), i.e., the stationary point is stable if all roots

have negative real part, and unstable if there exists at least one

eigenvalue with positive real part.

Equation (11) is transcendental and, hence, shows infinitely

many roots. In general, the explicit solution of (11) is not

known and only approximated numerical solutions of a subset

of the roots of (11) can be found. The case study is based

on the Chebyshev discretization approach proposed in [10].

Such a discretization leads to solve an eigenvalue problem

of an augmented matrix of order (n · N) × (n · N) where

n is the dynamic order of the DDAE and, hence, the size of

matrices A0, A1 and A2; and N is the number of points of the

Chebyshev grid. The interested reader can find further details

on this technique in [1].

IV. PROPOSED NUMERICAL STABILITY ANALYSIS

The purpose of this section is twofold. The formal analogy

between the PSA and a DDAE system with the structure given

in (3) is stated first. Then the implications on the numerical

stability of the PSA in terms of the small-signal stability

analysis outlined in Section III are outlined. It is important

to note that the proposed technique discusses exclusively the

properties of the steady-state operating point since it is based

on a small-signal stability analysis. Numerical instabilities due

to transient phenomena during the time domain integration

cannot be captured using the technique described below and

are beyond the scope of this paper.

Let’s consider the flowchart shown in Fig. 1. The estimation

of xi+1 based on f(xi,yi) can be viewed as the standard nu-

merical integration of a set of ordinary differential equations.

Algebraic variables, in fact, are constant and equal to yi, i.e.,

the value obtained at the previous step. One may argue that

also state variables xi used to evaluate f are obtained from the

previous step of the algorithm. However, since any integration

scheme can be used to estimate xi, the accuracy with which

xi+1 can be estimated depends only on the properties of such a

scheme. Algebraic variables yi, on the other hand, are implicit

functions of the state ones but this functional dependence is

neglected. The following step of the partitioned approach is

the solution of 0 = g(xi+1,yi+1), which allows determining

the new value of the algebraic variables. In this step, the state

variables xi+1 are constant. Their value is not exact as they

are estimated for an old value of the algebraic variables, but

since xi+1 will be the value used to evaluate the next step, i.e.,

xi+2, one can assume that the solution of 0 = g(xi+1,yi+1)
provides the right value of the algebraic variables at the (i+1)-
th step. Based on the discussion above, the PSA is formally

equivalent to the following DDAE:

ẋ = f(x,yd) (12)

0 = g(x,y)

where yd = y(t− h), with h the integration time step of the

PSA. Linearizing (12), one has:

∆ẋ = f
x
∆x+ f

y
d
∆yd (13)

0 = g
x
∆x+ g

y
∆y

where f
y
d
= f

y
of (1), as all algebraic variables are assumed

to be delayed by h. From (13) one can deduce the following

matrices of the characteristic equation (11):

A0 = f
x
, A1 = −f

y
g−1
y

g
x
, A2 = 0 (14)

The numerical stability of the PSA can be thus evaluated based

on the spectrum of (6). Moreover, the accuracy of the PSA can

be also defined based on the comparison of the eigenvalues of

(12) versus the eigenvalues of the original DAE (1).

It is important to note that the stability of the PSA depends

on both the stability of the numerical integration method

and the time step h. The eigenvalue analysis of (12) defines

the stability related to the sole h. If A-stable numerical

methods are utilized, e.g., the implicit trapezoidal method,

the integration method does not affect results. But, if other

integration methods are used, e.g., an explicit Runge-Kutta

formula, these can be unstable for values of h lower than that

indicated by the proposed analysis.

V. CASE STUDY

This case study discusses the numerical stability and ac-

curacy of the PSA through two power systems, namely the

well-known IEEE 14-bus system and a dynamic model of the

all-island Irish transmission system. Simulations are obtained

using Dome, a Python-based power system analysis toolbox

[22]. The Dome version used for in this case study is based on

Python 3.4.2, Nvidia Cuda 7.5, Numpy 1.9.2, CVXOPT 1.1.8,

MAGMA 1.6.1, and has been executed on a 64-bit Linux Fedora

21 operating system running on a two Intel Xeon 10 Core 2.2

GHz CPUs, 64 GB of RAM, and a 64-bit Nvidia Tesla K20X

GPU.

A. IEEE 14-bus System

The model of the IEEE 14-bus system considered in this

section is that described in [23]. If no Power System Stabilizer

(PSS) is included, such a system is poorly damped due to

the interaction between the subtransient dynamics of the

synchronous machine connected at bus 1 and its Automatic

Voltage Regulator (AVR). Table I shows how the step size h

affects the eigenvalues. Values in bold face indicate the poorly

damped mode whose real part gets closer to the imaginary axis

as h increases. For h = 0.005 s, the equivalent DDAE that



represent the PSA is unstable. Note, however, that for h =
0.001 s the dynamics of the system are already significantly

modified with respect to the original DAE. Hence an iterative

PSA is required.

Table II shows results for the IEEE 14-bus system with

inclusion of a PSS connected to the AVR of generator 1. In

this case, the original DAE is well damped. The impact of the

PSA is also much lower and the time step can be increased up

to 0.01 s without significantly affecting the time response of

the system. For higher values of the time step the PSA becomes

unstable. It is interesting to note that the stiffness of the system

with and without PSS is the same. However, the stabilizing

effect of the PSS allows a larger time step. Hence, the accuracy

of the PSA does not depend directly on the stiffness of the

system per se but, rather, on its stability margin.

B. All-island Irish System

In this subsection the robustness of the proposed technique

is tested on a relatively large real-world grid, namely the

all-island Irish system. The model includes 1, 479 buses,

1, 851 transmission lines and transformers, 245 loads, 22
conventional synchronous power plants with AVRs and turbine

governors, 6 PSSs and 176 wind power plants. The topology

and the data of the transmission system are based on the actual

real-world system provided to the UCD Energy Institute by the

Irish TSO, EirGrid, but dynamic data are guessed and based

on the knowledge of the technology of power plants.

The total number of state variables is 1, 360. The considered

system is very stiff. The eigenvalues range from about −0.1
to about −2000, which means that the time constants spans 4
orders of magnitude. For this case study, a 5 point Chebyshev

grid is used. Thus the size of the matrix used for the eigenvalue

analysis is 6, 800× 6, 800.

Table III shows a selection of the rightmost eigenvalues

for the considered dynamic model of the all-island Irish grid.

Also in this case, due to the inclusion of PSS devices, the

PSA is stable for relatively high values of the time step h. For

h = 0.01 s one mode is poorly damped (see bold value in

the fourth column of Table III). For h = 0.05 s a number of

unstable eigenvalues shows up.

The numerical method to determine the eigenvalues of the

DDAE shows some numerical issues for this large system.

In particular, extraneous positive eigenvalues appear for low

values of the time step. Such spurious eigenvalues can be

identified using a sensitivity analysis. In fact, based on the

properties of continuous functions, if an eigenvalue is physical,

small variations of h lead to small variations of the eigenvalue.

On the other hand, if an eigenvalue is originated by numerical

issues, its magnitude is volatile and tends to change erratically

for small variations of h. This property has been exploited to

identify positive eigenvalues arising from numerical issues.

VI. CONCLUSIONS

This paper proposes an application to the PSA time inte-

gration method of the small-signal stability analysis of DDAE.

The main idea of the paper relies on the fact that the PSA is

formally analogous to a DDAE where all algebraic variables

that appears within the differential equations are delayed by

a time delay equal to the integration step length. Numerical

results indicate that the stability of the system, not only its

stiffness, plays a crucial role in the numerical stability of the

PSA. This means, in turn, that the higher the stability margin

the larger the allowed integration time step.

Future work will investigate the stability of iterative PSA and

the functional relation between iterations and the time delay of

its equivalent DDAE. Another aspect that appears worth further

study is the impact of transient phenomena on the stability of

the PSA, as these cannot be captured using the steady-state

analysis proposed in this paper.
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TABLE I: Selection of relevant rightmost eigenvalues of the IEEE 14-bus system without PSS for different values of the integration time step h

No delay h = 0.0001 s h = 0.001 s h = 0.002 s h = 0.005 s

−0.01999 −0.01999 −0.01999 −0.01999 0.15555 ± 9.15342i

−0.06639 −0.06639 −0.06640 −0.06521 ± 9.25923i −0.01999

−0.22187 ± 9.32160i −0.21386 ± 9.31866i −0.14259 ± 9.29132i −0.06640 −0.06640

−0.58171 ± 0.34146i −0.58171 ± 0.34148i −0.58172 ± 0.34167i −0.58173 ± 0.34189i −0.58175 ± 0.34253i

−0.60521 ± 0.73574i −0.60518 ± 0.73579i −0.60488 ± 0.73629i −0.60455 ± 0.73684i −0.60355 ± 0.73849i

−0.71363 −0.71364 −0.71370 −0.71377 −0.71398

−0.74760 −0.74761 −0.74768 −0.74775 −0.74798

−0.80957 −0.80969 −0.81081 −0.81205 −0.81586

−1.00247 ± 1.39928i −1.00228 ± 1.39943i −1.00059 ± 1.40074i −0.99871 ± 1.40220i −0.99302 ± 1.40655i

−1.00250 −1.00250 −1.00248 −1.00246 −1.00240

−1.00398 −1.00398 −1.00396 −1.00394 −1.00390

−1.00437 −1.00437 −1.00436 −1.00435 −1.00433

−1.00869 −1.00868 −1.00867 −1.00865 −1.00860

−1.01665 −1.01665 −1.01662 −1.01660 −1.01653

−1.15127 ± 0.95355i −1.15121 ± 0.95367i −1.15060 ± 0.95481i −1.14992 ± 0.95606i −1.14785 ± 0.95983i

TABLE II: Selection of relevant rightmost eigenvalues of the IEEE 14-bus system with PSS for different values of the integration time step h

No delay h = 0.0001 s h = 0.001 s h = 0.01 s h = 0.05 s

−0.01999 −0.01999 −0.01999 −0.01999 3.75831 ± 2.16516i

−0.06371 −0.02616 −0.02616 −0.02616 −0.01999

−0.10852 −0.10046 −0.10046 −0.10046 −0.02615

−0.58420 ± 0.33877i −0.58147 ± 0.39222i −0.58144 ± 0.39245i −0.38509 ± 19.8256i −0.10046

−0.60543 ± 0.73556i −0.60383 ± 0.74578i −0.60351 ± 0.74629i −0.58115 ± 0.39476i −0.57955 ± 0.40512i

−0.71397 −0.71293 −0.71300 −0.60030 ± 0.75136i −0.58464 ± 0.77361i

−0.74310 ± 7.51790i −0.74644 −0.74652 −0.71367 −0.71671

−0.74886 −0.99973 −0.99974 −0.74735 −0.75113

−0.77844 −1.00243 −1.00179 ± 1.40936i −0.98405 ± 1.42227i −0.89958 ± 1.47221i

−1.00250 ± 1.39916i −1.00353 ± 1.40803i −1.00242 −0.99977 −0.99991

−1.00250 −1.00373 −1.00372 −1.00224 −1.00153

−1.00403 −1.00471 −1.00470 −1.00359 −1.00306

−1.00430 −1.01157 −1.01156 −1.00460 −1.00415

−1.00823 −1.15666 ± 0.95231i −1.15605 ± 0.95345i −1.01142 −1.01081

−1.01545 −1.80135 ± 0.65369i −1.80170 ± 0.65496i −1.14985 ± 0.96479i −1.11891 ± 1.01417i

TABLE III: Selection of rightmost eigenvalues of the all-island Irish system for different values of the integration time step h

No delay h = 0.0001 s h = 0.001 s h = 0.01 s h = 0.05 s

−0.09292 −0.09292 −0.09293 −0.09300 0.80487 ± 8.06482i

−0.10060 −0.10060 −0.10061 −0.10070 0.69993 ± 8.10911i

−0.12660 ± 0.34157i −0.12666 ± 0.34176i −0.12658 ± 0.34183i −0.12573 ± 0.34252i 0.68919 ± 8.99941i

−0.13038 ± 0.17137i −0.13125 ± 0.17577i −0.13121 ± 0.17580i −0.13087 ± 0.17603i 0.51084 ± 9.33566i

−0.15804 ± 5.24372i −0.15805 ± 5.24381i −0.15809 ± 5.24458i −0.15834 ± 5.25229i 0.48806 ± 9.19641i

−0.16693 ± 0.27365i −0.21587 −0.21593 −0.21654 0.37544 ± 7.11867i

−0.20039 ± 0.36001i −0.21767 ± 0.42686i −0.21757 ± 0.42701i −0.21655 ± 0.42858i 0.10606 ± 6.21403i

−0.21585 −0.22191 ± 0.43812i −0.22180 ± 0.43828i −0.22074 ± 0.43994i 0.09777 ± 5.73908i

−0.21769 ± 0.42685i −0.22473 −0.22479 −0.22538 0.02961 ± 6.50779i
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