
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2020 1

Robust Nonlinear Controller to Damp Drivetrain
Torsional Oscillation of Wind Turbine Generators
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Abstract—This paper develops a novel nonlinear controller
for the mitigation of drivetrain torsional oscillations of wind
turbine generators following large disturbances. The key idea is
to integrate differential geometry theory with an extended state
observer. Differential geometry allows transforming the wind
turbine generator nonlinear model into a simple second-order
Brunovsky system, whereas the extended state observer can ac-
curately estimate the states of the transformed Brunovsky system
and compensate unknown disturbances. Simulation results show
that, under various conditions in different test systems, the pro-
posed controller achieves significant enhancements with respect
to conventional approximate linearization-based controller and
nonlinear sliding mode control-based method.

Index Terms—Drivetrain torsional oscillation, extended state
observer, nonlinear controller, power system dynamics, power
system stability control, wind turbine generator.

NOMENCLATURE

C Capacitance of DC bridge
Dsh Damping coefficient of WTG drivetrain
Hg Inertia constant of wind generator in second
Ht Inertia constant of the wind turbine in second
Ksh Stiffness coefficient of WTG drivetrain
idr d-axis current of wind generator rotor
ids d-axis current of wind generator stator
iqr q-axis current of wind generator rotor
iqs q-axis current of wind generator stator
Lm Mutual inductance between wind generator stator and

rotor
Lr Self inductance of wind generator rotor
Ls Self inductance of wind generator stator
Rr Resistance of wind generator rotor
Rs Resistance of wind generator stator
Te Electromagnetic torque of wind generator
Tm Mechanical torque of wind generator
vdc Votage of DC bridge
vdr d-axis voltage of wind generator rotor
vds d-axis voltage of wind generator stator
vqr q-axis voltage of wind generator rotor
vqs q-axis voltage of wind generator stator
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Vcutin The cut-in wind speed of WTG
Vcutout The cut-out wind speed of WTG
Vrated The rated wind speed of WTG
θsh Torsional angle between the wind turbine and gener-

ator rotor
λdr d-axis flux of wind generator rotor
λds d-axis flux of wind generator stator
λqr q-axis flux of wind generator rotor
λqs q-axis flux of wind generator stator
ω Angular velocity of the rotating dq reference frame
ωB Nominal angular velocity of WTG rotor
ωg Angular velocity of wind generator rotor in rad/s
ωwt Angular velocity of wind turbine

I. INTRODUCTION

The integration of wind generators into power system has
significantly increased in the past two decades [1]. This brings
several challenges for secure system operation and control.
Among these, the drivetrain torsional oscillation (DTTO)
of wind turbine generator (WTG) is a particularly relevant
phenomenon in the presence of large disturbances. Since the
model of wind turbine equivalent shaft is relatively softer
than the practical turbine shaft [2], the drivetrain of the wind
turbine should be described with a two-mass model [3], or
three-mass model [4]. Therefore, there exists the phenomenon
of WTG DTTO. The DTTO of WTG is mainly caused
by (i) the perturbations of electromagnetic torque following
a grid-side fault [5]–[7] or the ancillary frequency support
provided by the wind power plants [8], [9]; and (ii) the sudden
variations of the mechanical torque of WTG resulted from
the intrinsic intermittent behavior of wind speed [10]. If not
properly damped, DTTO causes the mechanical fatigue of
WTG drivetrain, leading to a significant reduction of WTG
service life. This in turn causes economic losses and system
security concern.

FACTS devices can be used to damp WTG DTTO [11],
[12]. For instance, a gate-controlled series capacitor containing
a pair of switches in parallel with a capacitor can help damp
DTTO via adjusting the effective reactance of transmission line
[11]. However, this only works for the DTTO resulted from
variations of the electromagnetic torque of the WTG, such as a
grid fault. DTTO caused by the change of mechanical torque,
such as the wind speed variations, cannot be addressed with
this technique.

Various torque compensation-based methods for WTG via
the converters have been developed, aiming at providing
damping torque, inertial torque, or other compensation torque
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by means of reactive power modulation. The additional torque
is superimposed to the normal electromagnetic torque for the
mitigation of WTG DTTO. In [13], a small ripple at the
drivetrain frequency is added to the generator torque control
and the effect of the resonance is counteracted by the adjusted
phase, leading to the improvement on oscillation damping.
Torsional oscillations caused by a grid fault are significant
if no damping controller is in place. To deal with this issue,
[5] proposes a model-based active damping controller for the
torsional vibration using the linear-quadratic-Gaussian (LQG)
algorithm. The damping control for the torsional oscillations
can be done with STATCOM/BESS as well [6]. [7] develops
a control scheme for active oscillation damping of WTG,
where a corrective signal is obtained from the torque damping
controller and further added to the reference torque such that
the DTTO of WTG is reduced. [10] investigates the drivetrain
dynamics under different operating regions of the power-
speed curve and develops a DFIG drivetrain stabilizer, where
additional damping torque is achieved by a state feedback
from the rotor speed to the referenced electromagnetic power.
In [14], a band-trap filter is proposed to eliminate periodic
torque disturbance of the generator torque control loop. This
enables the controller to weaken the exciting input of the
drivetrain and subsequently damp the DTTO. In [15], [16],
a virtual inertial controller is developed for DTTO mitigation,
where the first-order derivative of the angular speed about wind
generator rotor is used as the input signal to provide an ad-
ditional electromagnetic torque component via the generator-
side converter. In [17], a torsional oscillation damping control
scheme based on model predictive control is proposed. With
the state feedback control strategy and the model-based torque
estimation, the controller compensates shaft torque difference
of WTG at the torsional frequency for the active damping
of DTTO. In order to maximize the energy production of
WTG without fatigue damages induced by torsional vibration
within the drivetrain subsystem, a receding horizon optimal
control framework [18] is developed. Note that the ancillary
frequency control of WTG may induce DTTO or deteriorate
their damping [9]. To this end, an adaptive damping control
scheme based on reactive power modulation of WTG is
proposed in [19]. By means of modulating active current
component of WTG, a damping torque is produced according
to the drivetrain speed [20].

The aforementioned methods are mainly developed on the
first order Taylor series expansion approximation around its
equilibrium point. However, the truncation of the Taylor se-
ries expansion may result in large error in the presence of
large disturbances. To solve this issue, a nonlinear controller
called sliding mode control (SMC) has been adopted for
the mitigation of DTTO [21]. SMC is able to damp DTTO
following a large disturbance but suffers from the well-known
chattering phenomenon caused by its discontinuous behavior
[22]. It is worth noting that SMC is likely one of the most
effective nonlinear control techniques in the literature that are
able to handle the WTG DTTO following large disturbances.
Actually, an effective approach for dealing with such issue is
the nonlinear control theory [23].

In the past decades, differential geometry theory [24] has

been widely applied into nonlinear control [25]. Relevant
engineering applications of this theory are robot arm control
[26], automatic flight control [27] and power systems [28],
[29]. The key idea of differential geometry-based nonlin-
ear control is to transform the original nonlinear system
into a completely or partially cascade integral system by
calculating Lie derivatives. However, differential geometry
poses a significant challenge of computational complexity for
systems whose mathematical model exceeds the third order.
Furthermore, since such controller is in fact related to the
system parameters, it does not have good capability of being
resistance to model parameter uncertainties. Coincidentally,
the extended state observer (ESO) has the ability of directly
estimating a cascade integral system according to the system
output function without relying on the system parameters, and
simultaneously accounting for the external disturbance [30].

This paper aims to develop a new controller to damp
WTG DTTO originated by large disturbances. The specific
contributions of this paper are as follows:
• Motivated by differential geometry theory, the nonlin-

ear WTG integrated system can be transformed into a
simple second-order Brunovsky system via a nonlinear
coordinate transformation. This allows designing a state
feedback-based nonlinear controller of the transformed
second-order Brunovsky system. It significantly reduces
the complexity of the controller and, at the same time,
circumvents the large truncation error that occurs in
conventional approximate linearization-based controllers.

• An ESO is developed to estimate the states of the second-
order Brunovsky system and the overall disturbance,
including the uncertainties of model parameters and the
external disturbance. This highly reduces the computa-
tional burden of the calculation of Lie derivatives required
by the transformation above and significantly enhances
the performance in suppressing the WTG DTTO by
effectively compensating the disturbances.

The proposed controller has the following features: (i) leads
to a simple controller; (ii) enhances robustness with respect to
WTG model parameter uncertainty; and (iii) damps effectively
WTG DTTO in presenc of large disturbance. A comprehensive
set of test cases and comparisons with conventional approxi-
mate linearization-based controllers and SMC-based nonlinear
controllers demonstrate the enhanced control performance of
the proposed method under various conditions.

The remainder of this paper is organized as follows. In
Section II, a nonlinear controller of the WTG is proposed
to mitigate DTTO in the presence of large disturbances.
Extensive simulation results are carried out and analyzed in
Section III. Finally, Section IV draws relevant conclusions and
outlines future work.

II. PROPOSED NONLINEAR CONTROLLER OF WTG DTTO

In this section, the ESO is embebbed with differential
geometry theory to design a novel nonlinear controller. Math-
ematical derivations are discussed first. Then, the WTG dy-
namic model is presented, followed by the development of
the proposed nonlinear controller.
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A. Differential Geometry Theory

Unlike the first-order Taylor series expansion-based lin-
earization that may have large truncation error in the pres-
ence of strong nonlinearity, i.e., large disturbance encountered
nonlinear system, differential geometry provides the “exact”
linearization. It can, in fact, exactly transform a nonlinear
system into a linear system or a partial linear system by
means of a nonlinear coordinate transformation [31]. Since
the former is a special case of the latter, only the partially
exact linearization approach is introduced below.

Considering the following nonlinear system:

ẋ = f (x) + g (x)u ,
y = h (x) ,

(1)

where x ∈ Rn is the state vector; f and g are n × 1
dimensional nonlinear functions of the state and the input,
respectively. The output nonlinear function h(x) satisfies:{

LgLf
ih (x) = 0 i < r − 1 ,

LgLf
r−1h (x) 6= 0 ,

(2)

where r ≤ n and r ∈ N. The operator Lkη(x)λ(x) denotes
the k-order Lie derivative of a scalar field λ(x) along with a
vector field η(x) [32], operating as follows:

Lη(x)λ (x) = ∂λ(x)
∂xT η (x) =

n∑
i=1

∂λ(x)
∂xi

ηi (x) ,

L2
η(x)λ (x) =

∂Lη(x)λ(x)

∂xT η (x) ,
...

Lkη(x)λ (x) =
∂Lk−1
η(x)

λ(x)

∂xT η (x) .

(3)

Thus, we have LgLf ih (x) =
∂Li
f(x)h(x)

∂xT g (x).
If one applies the following nonlinear coordinate transfor-

mation:

z1 = h (x) , z2 = Lfh (x) , . . . , zr = Lr−1f h (x) ,

zr+1 = ϕr+1 (x) , . . . , zn = ϕn (x) ,
(4)

where Lgϕi (x) = 0 (r + 1 ≤ i ≤ n, n ∈ N) holds, the origi-
nal nonlinear system (1) can be transformed into:

ż1 = z2, ż2 = z3, . . . , żr = a (x) + b (x)u ,
żr+1 = qr+1 (x) , . . . , żn = qn (x) ,

(5)

where a(x) = Lrfh (x), b (x) = LgL
r−1
f h (x), and qi(x) =

ϕ̇i(x) (r + 1 ≤ i ≤ n).
Note that if one lets a (x)+b (x)u = ξ, the first r equations

of (5) form a simple Brunovsky standard system, which is a
completely controllable linear system in the cascade integral
form. Hence, the linear control theory, such as the linear
quadratic optimal theory [33] can be adopted to obtain ξ

ξ =

r∑
j=1

−kjzj (6)

Thus, the control strategy of the nonlinear system (1) can
be derived as:

u =

−a (x)−
r∑
j=1

kjzj

b (x)
. (7)

In order to obtain (4), we should enforce these Lie deriva-
tives as follows: Lkfh (x) (k = 0, 1, . . . , r) and LgLr−1f h (x).
However, the Lie derivatives are computational expensively
because of burdensome higher-order derivatives, see the com-
putation procedure shown by (3). To address this issue, the
extended state observer (ESO) is developed in the next section
to estimate these Lie derivatives with high accuracy, resulting
in the reduction of controller complexity. Furthermore, distur-
bances can be taken into account to enhance the performance
of the controller.

B. Extended State Observer (ESO) Design

Considering the external disturbance and the uncertainties
of model parameters, denoted by w(t), the aforementioned r-
order cascade integral system in (5) can be rewritten as:

ż1 = z2, ż2 = z3, . . . , żr = c(x, u) + b0u+ w (t) , (8)

where c(x, u) = a(x) + (b(x) − b0)u; b0 is the coefficient
describing the influence from u to the cascade integral system.

An ESO treats d(x, u) = c(x, u)+w(t) as another variable,
which is referred as “overall disturbance.” Thus, for the r-
order system (8), the r + 1-order ESO is used to estimate
z1, z2, . . . , d(x, u). Assuming that the output function of sys-
tem (8) is the same as that of system (1), i.e., y = h(x) = z1,
the ESO can be expressed as [34]:

e = y −m1 ,
ṁ1 = m2 − β01g1 (e) ,
ṁ2 = m3 − β02g2 (e) ,
...
ṁr = mr+1 − β0rgr (e) + b0u ,
ṁr+1 = −β0,r+1gr+1 (e) ,

(9)

where m1,m2, . . . ,mr+1 represent the state variables
of ESO; β01, β02, . . . , β0,r+1 are the coefficients and
g01(e), g02(e), . . . , g0,r+1(e) are nonlinear functions of the
error e. Note that ESO takes the error of output y and
control input u as the inputs and outputs the values of
m1,m2, . . . ,mr+1, which are the estimates of z1, z2, . . . , zr
and overall disturbance d(x, u), respectively.

Using (7), (8) and (9), we can derive the following nonlinear
controller:

u =

−mr+1 −
r∑
j=1

kjmj

b0
. (10)

This controller only relies on the outputs of ESO and thus
separates the parameter mismatch error of the original system
model. On the other hand, the estimation of overall disturbance
mr+1 enables the controller to compensate for the system
disturbance.

C. Dynamic Modeling of WTG

In this section, both the drivetrain model of WTG and
the active power model of wind generator are presented and
discussed.



IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2020 4

Fig. 1. Scheme of the active power control of the WTG.

1) Drivetrain Model of WTG: To investigate the DTTO,
we utilize the two-mass drive-train model provided in [35], as
follows:

2Hwtω̇wt = Tm −Kshθsh −Dsh (ωwt − ωg) ,
2Hgω̇g = Kshθsh +Dsh (ωwt − ωg)− Te ,
θ̇sh = ωB (ωwt − ωg) ,

(11)

2) Active Power Model of Wind Generator: This section
considers the following conventions: (a) WTG is modeled with
a doubly-fed induction generator (DFIG); (b) all variables are
referenced to the stator side of generator; (c) the reference
dq frame rotates at synchronous angular speed of ω; (d) the
positive power directions of stator and rotor are assumed to
be out and into the generator, respectively.

Equations (12) and (13) show the voltage-flux equations
of stator and rotor, respectively; (14) and (15) present the
corresponding flux-current equations, and the electromagnetic
torque is given by (16)

vqs = −Rsiqs + λ̇qs − ωλds ,
vds = −Rsids + λqsλ̇ds + ωλqs ,

(12)

vqr = Rriqr + λ̇qr + (ω − ωg)λdr ,

vdr = Rridr + λ̇dr − (ω − ωg)λqr ,
(13)

λqs = −Lsiqs + Lmiqr ,
λds = −Lsids + Lmidr ,

(14)

λqr = Lriqr − Lmiqs ,
λdr = Lridr − Lmids ,

(15)

Te =
Lm
Ls

(λqsidr − λdsiqr) , (16)

In the dq reference frame with the stator voltage orientation
(SVO), the d-axis is aligned with the stator voltage vector,
yielding vds = Us and vqs = 0. Neglecting stator and rotor
resistances, the steady-state stator/rotor voltage equations in
SVO frame are obtained from (12): Us = vds ≈ ωλqs and
0 = vqs ≈ −ωλds, where Us is the stator voltage magnitude
and ω = 1. This yields the approximate expressions of vds ≈
λqs and λds = 0. Therefore, from (16), one has:

Te =
Lm

Ls
λqsidr . (17)

The active power control diagram of the WTG is shown in
Fig. 1, where T ∗e and i∗dr are the reference values of electro-
magnetic torque and d-axis current of rotor, respectively.

Neglecting converter switching losses, the power balance of
the DC bridge between the back-to-back converters is given
as:

1

2C

d

dt
v2dc =

1

C
v̇dcvdc = Pi − Pr , (18)

Fig. 2. DFIG-based WTG model.

where Pi and Pr are the active power flowing into the grid-side
converter and out from the rotor-side converter, respectively.
Generally, the overall scheme of the WTG model is reported
in Fig. 2.

3) Drivetrain Torsional Oscillation of WTG: A contingency
gives raise to the variation of mechanical power or electromag-
netic torque of WTG, denoted by ∆Tm and ∆Te, respectively.
Then, the transfer function from ∆Tm or ∆Te to the torsional
angle variation, ∆θsh, can be derived from (11), yileding

∆θsh =
ωB(Hg∆Tm +Ht∆Te)

2(HtHg)s2 + aHtgs+ bHtg
(19)

where Htg = Ht + Hg , a = DshωB and b = KshωB .
From (19), it can be observed that the variation of mechanical
power or electromagnetic torque of WTG may lead to the
torsional oscillation of WTG drive train if no damping control
is provided. This is because there exists a torsional mode
with the natural frequency shown in (20) and the damping
coefficient Dsh is usually small.

ωn =

√
ωBKshHtg

2HtHg
. (20)

D. Proposed Nonlinear Controller of WTG DTTO

If the control input u of DFIG-based WTG is selected as the
electromagnetic torque, i.e., a compensation torque Te,Comp is
added to the desired electromagnetic torque formulated based
on the maximum power point tracking (MPPT) strategy [36]
(i.e., Te,MPPT), the reference electromagnetic torque Te∗ can
be given by:

T ∗e = Te,MPPT + u, (21)

where u = Te,Comp. Then, based on Section II-C, the
DFIG-based WTG model is described by a set of nonlinear
equations in the form of (1), where the state vector is x =
[θsh, ωg, ωwt, ids, iqs, idr, iqr, vdc]

T and the input functional

vector is g(x) =
[
0,− 1

2Hg
, 0, . . . , 0

]T
.

According the controller design procedure in Sections II-
A and II-B, selecting the output function is of importance as
it determines the Brunovsky standard system in (5), which is
the cascade integral system the ESO estimates. Here, we select
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Fig. 3. The proposed nonlinear controller for WTG DTTO.

y = θsh − θsh,0, i.e., the deviation of the torsional angle, as
the output. However, the torsional angle is not measurable.
Instead, obtaining the measurements of wind turbine and
generator rotor speeds ωwt and ωg is easier to realize in
practice. Therefore, based on the third equation of (11), we
have the real-time value of the output function from:

y = θsh − θsh,0 =

∫ t

0

r(t) dt, (22)

where r(t) = ωB (ωwt − ωg) and the initial value of integra-
tion r(0) is zero.

Based on (2), we have r = 2 since:{
LgLf (θsh − θsh,0) =

ωB
2Hg

,

Lg (θsh − θsh,0) = 0 .
(23)

Combining (4) and (5) with the WTG model and consider-
ing its disturbance in the form of (8), we can also obtain the
partial exactly linearized system of the WTG in the form of
(5), shown as: ż1 = z2 = ωB (ωwt − ωg) ,

ż2 = d (ωg, ωwt, θsh, u) + b0u ,
żi = ϕ̇i (x) i = 3, 4, . . . , 8 ,

(24)

where b0 = ωB

2Hg
; the overall disturbance of the WTG

d (ωg, ωwt, θsh, u) = c (ωg, ωwt, θsh, u) + w(t), c (ωg, ωwt, u)
can be obtained based on (8); w(t) is the disturbance of the
WTG model; ϕi (x) = xi − xi,0; xi and xi,0 are the i-
th state variable of the WTG and the corresponding initial
value, respectively. Note that they satisfy Lgϕi (x) = 0,
i = 3, 4, . . . , 8. This is because

Lgϕi (x) =
∂ϕi (x)

∂xT
g (x) ,

∂ϕi (x)

∂ωg
= 0 , i = 3, 4, . . . , 8 .

Therefore, by taking the torsional angle deviation (22) and
control input u as inputs, a third-order ESO in the form of
(9) can be adopted to estimate the state variables z1, z2 and
the overall disturbance d (ωg, ωwt, θsh, u) of the WTG model
(24). Formally, we have

e = m1 − z1 ,
ṁ1 = m2 − β01e ,
ṁ2 = m3 − β02ζ (e, α1, δ) + b0u ,
ṁ3 = −β03ζ (e, α2, δ) ,

(25)

The nonlinear function ζ (e, α, δ) is expressed by:

ζ (e, α, δ) =

{ e

δ(1−α)
|e| < δ ,

sign (e) |e|α |e| ≥ δ ,
(26)

where α and δ are two parameters and the sign function
outputs 1, 0 and -1 for positive value, zero and negative values,
respectively. The interested reader can find more details on the
performance verification of ESO in [22].

Finally, according to (10), the proposed nonlinear controller
for WTG DTTO can be derived as follows:

Te,Comp = u =
−m3 − k1m1 − k2m2

b0
. (27)

The complete control diagram of the proposed nonlinear
controller for WTG DTTO is shown in Fig. 3, i.e., the closed-
loop system.

E. Stability and Robustness of the Closed-loop System

As discussed in Section II-A, the stability of the closed-
loop system is related to the differential geometry theory. The
performance of ESO (25) has been validated in [22]. Consider
z1 = θsh − θsh0 and z2 = ż1 = ωB(ωwt − ωg) as two output
variables, denoted by y1 and y2, respectively. The objective
values of the output variables are y1r and y2r and should be
as close as possible to y1 and y2 respectively. Specifically, the
idea of differential geometry theory based controller is to find
a control input u that can achieve lim

t→∞
|y1 − y1r| = 0 and

lim
t→∞

|y2 − y2r| = 0. The control quantity u can be obtained
from (1) to (7). It is interesting to note that the proposed
controller is consistent with the idea of the nonlinear control
with objective holographic feedbacks and its stability of the
closed-loop system is given in [37]. The procedures to set
up the proposed controller by objective holographic feedbacks
theory-based nonlinear control are as follows:

1) Construct a Brunovsky system:[
ẏ1 − ẏ1r
ẏ2 − ẏ2r

]
=

[
0 1
0 0

] [
y1 − y1r
y2 − y2r

]
+

[
0
1

]
v , (28)

where v = ẏ2 − ẏ2r and ẏ2 = LfωB(ωwt − ωg) +
LgωB(ωwt − ωg) = F (x) + ωB

2Hg
u; F (x) can be expressed as

ωBTm

2Hwt
+ ωBTMPPT

2Hg
+( ωB

2Hwt
+ ωB

2Hg
)(Kshθsh +Dsh(ωwt−ωg)).

2) The Brunovsky system (28) is a completely control-
lable linear system. Then, an optimal control, i.e. the linear
quadratic control proposed in [33], can be applied to obtain
v, yielding:

v =

m∑
k=1

−kiIi . (29)

3) Equations (28) and (29) lead to the following control
strategy u:

u =
−
∑2
i=1 ki(yi − yir)− F (x) + ẏ2r

ωB

2Hg

. (30)

The stability of the closed-loop system can be easily proved
following the procedure in [37]. [34], [38] show that a con-
troller designed for the nominal system can be robustified by
an ESO. This is because ESO can effectively estimate the
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Fig. 4. The schematic diagram of the wind power plants integrated power
system.

Fig. 5. The MPPT power-speed curve of DFIG.

dynamic states as well as the effects of uncertainties and dis-
turbances instead of identifying their mathematical expressions
[22]. This guarantees the robustness of the proposed controller
that strategically integrates differential geometry theory with
ESO. In this paper, “robustness” means the capacity of dealing
with the uncertainty of parameters Ht, Hg, Ksh and Dsh

as well as the large external disturbance of the wind power
integrated system. The external disturbance includes the elec-
tromagnetic power disturbance caused by grid fault or the
mechanical power disturbance resulted from the instantaneous
wind speed variation.

III. CASE STUDY

The case study consists of two parts. A power system
with simplified-model small-capacity WPPs is considered in
Section III-A. Then, a power system with detailed-model
large-capacity power WPPs is tested in Section III-B.

Fig. 6. The state estimation results by ESO on the partially linearized system
of WTG.

Fig. 7. The responses of the relative angular speed and torsional angle for
different controllers.

A. System with Simplified-Model Small-Capacity WPPs

This section aims at demonstrating the effectiveness, ro-
bustness and advantages of the proposed controller for the
mitigation of WTG DTTO under various large disturbance
conditions. The scheme of the power system is presented in
Fig. 4, where N denotes the number of WPPs. Each WPP
consists of 6 DFIG-based WTGs with 1.5 MW rated power
for each DFIG. Each WPP is modelled as an aggregated WTG
model. A conventional linear controller (LC), i.e., approximate
linearization-based controller, and a nonlinear controller based
on sliding-mode control (SMC) [21] are also considered for
comparisons. Table I shows the parameters for the DFIG and
the proposed controller. Figure 5 shows the MPPT power-
speed curve of the DFIG. The electromagnetic toque com-
pensation of LC is given by:

Te,Comp = l1∆ωwt + l2∆ωg + l3∆θsh , (31)

where l1 = 2.2302, l2 = −1.3407 and l3 = −0.0304 are the
coefficients of state feedback controller for the approximately
linearized WTG drive-train system. These parameters can be
calculated on the basis of linear quadratic optimal theory.

TABLE I
PARAMETERS FOR THE DFIG AND PROPOSED CONTROLLER

DFIG
Hg 0.685 s Ht 4.32 s Dsh 1.5
Ksh 1.1 pu/rad p 3 ωB 377/3 rad/s
Rs 0.023 pu Ls 0.18 pu Lm 2.9 pu
Rr 0.016 pu Lr 0.16 pu ω 377 rad/s

Vcutin 4 m/s Vrated 13.4 m/s Vcutout 25 m/s
Proposed controller

β01 100 β02 3000 β03 5000
α1 0.9 α2 0.3 δ 0.1
k1 1 k2 1.7321

This section is organized as follows. Section III-A1 validates
the effectiveness and the robustness of the proposed controller
against parameter uncertainties via the comparisons with dif-
ferential geometry-based nonlinear controller (DGC). Section
III-A2 considers a single WPP and investigates the advantages
of the proposed controller over the LC and SMC under
different wind speeds and various disturbances. Comparison
results for multiple WPPs are shown in Section III-A3 to
demonstrate the scalability of the proposed controller. All the
simulations are implemented in Matlab/Simulink.
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Fig. 8. The compensation torques provided by proposed controller, DGC and DGCU.

1) Robustness to Parameter Uncertainty: In this example,
we assume there is a single WPP connected power system.
A three-phase fault occurs at t = 20 s on the Bus 1 of the
grid shown in Fig. 4 and is cleared at t = 20.15 s. The wind
speed is 15 m/s. Both DGC and the proposed controller are
implemented to damp DTTO in the following two scenarios:
(i) the drivetrain parameters of DFIG Hg, Ht, Dsh and Ksh

are the same as the true values shown in Table I; and (ii)
parameter uncertainties exist, where it is assumed that the
used parameters are 80% of each true value. DGCU means the
DGC considering parameter uncertainties. The states z1 and z2
obtained from the differential geometry and their estimations
m1 and m2 by ESO are shown in Fig. 6. Fig. 7 shows the
responses of the relative angular speed and torsional angle
for different methods. The compensation torques provided by
proposed controller, DGC and DGCU are given in Fig. 8.

Figure 6 shows that the estimated m1 and m2 match quite
well with the actual values, i.e., z1 and z2, confirming the
high estimation accuracy of ESO for the partially linearized
WTG model. The maximum relative estimation errors of z1
and z2 are 0.0096% and 1.23%, respectively. The responses
of relative angular speed and torsional angle in Fig. 7 indicate
that, independently from parameter uncertainty, the proposed
controller can achieve the desired performance of damping
DTTO. Furthermore, the DGC does not deal well with strong
drive-train oscillation and its performance worsens with pa-
rameters uncertainty (see the response of the DGCU). This is
because the proposed controller relies on the outputs of ESO
but does not depend directly on drive-train parameters. While
the DGC is determined based on the drive-train parameters
and, hence, it is sensitive to the uncertainty of such parameters.

The choice of the control input is crucial for the perfor-
mance of a controller. In this case, the control input is the
compensation torque Te,Comp. Taking a closer look at Fig. 8,
the compensation torque of the proposed controller shows less
oscillations than the DGC and DGCU. It is interesting to note
that the proposed controller and DGC strongly depend on the
transient behavior of m3 (the estimation of the overall distur-
bance of the WTG) and a(x), respectively. With this regard,
m3 and a(x) are consistent with the Te,Comp trajectories of

the proposed controller and DGC. The derivations in Section
II show that m3 and a(x) lead to the main differences between
the proposed controller and DGC. As Fig. 6 has verified the
high estimation accuracy of z1 and z2, m3 and a(x) become
the critical quantities for the proposed controller and DGC,
respectively. Furthermore, during the up-swing of the relative
angular speed and torsional angle in Fig. 7, all trajectories of
Te,Comp in Fig. 8 are in the opposite of the corresponding
swings. This is due to the fact that the proposed controller,
DGC and DGCU aim at making the oscillations of θsh and
ωB(ωwt − ωg) to be as close to θsh0 and 0 as possible,
respectively.

2) Robustness to Different Wind Speeds and Disturbances:
Two types of large disturbances are considered in this section:
(i) a three-phase fault, same as the one considered in Section
III-A1; and (ii) wind speed variations. For the fault, two wind
speeds are considered, namely, 15 m/s and 10 m/s. In the
second scenario, the wind speed is initially equal to 15 m/s
and then a sudden increment of 5 m/s from t = 20 s to
t = 23 s occurs. Since LC has poor performance of handling
large disturbance, only the comparisons between SMC and our
proposed controller are specifically analyzed.

a) Three-phase fault: Figure 9 shows the responses of
the relative angular speed and torsional angle for 15 m/s wind
speed, where the responses of relative angular speed with SMC
and proposed controller are particularly displayed in Fig. 10.
The critical quantities, i.e., a(x) for the proposed controller
and δ for SMC [21] are given in Fig. 11. Fig. 12 shows the
responses of the relative angular speed and torsional angle
when the wind speed is 10 m/s.

Figure 9 reveals that LC has a poor performance of
suppressing WTG DTTO as the truncation error for the
approximate linearization is large in the presence of large
disturbance; SMC can reduce the oscillation frequency and
magnitude to a certain extent; by contrast, the proposed
controller achieves even better performance, including lower
oscillation magnitude and faster damping speed. A closer look
at Fig. 10 shows that the oscillations last for about 10 s with
SMC while 2 s with proposed controller, thus, the proposed
controller achieves 5 times the damping of SMC. Thanks
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Fig. 9. Trajectories of the relative angular speed and torsional angle following
a three-phase fault and wind speed equal to 15 m/s.

Fig. 10. Trajectories of the relative angular speed for SMC and proposed
controller following a three-phase fault and wind speed equal to 15 m/s.

Fig. 11. Critical quantities of SMC and proposed controller following a three-
phase fault and wind speed equal to 15 m/s.

Fig. 12. Trajectories of the relative angular speed and torsional angle
following a three-phase fault and wind speed equal to 10 m/s.

Fig. 13. Trajectories of the relative angular speed following a wind speed
disturbance.

Fig. 14. Trajectories of the relative angular speed with SMC and proposed
controller following a wind speed disturbance.

to the ESO, similar to the discussion provided in Section
III-A-1), the critical quantities determine the performances
of compensation torques of SMC and proposed controller,
and better compensation torques can lead to better control
performances with respect to WTG DTTO, see Fig. 11 for
details. Fig. 12 also confirms those conclusions for the scenario
with wind speed equal to 10 m/s.

b) Wind Speed Disturbance: The trajectories of the rel-
ative angular speed for different controllers are shown in
Fig. 13. The results related to proposed controller and SMC
and their critical quantities are presented in Fig. 14 and Fig. 15,
respectively. When encountering wind speed disturbance,
Fig. 13 shows that the proposed controller can effectively
damp WTG DTTO with lower oscillation frequency and higher
recovery efficiency than LC and SMC controllers. Again,
LC has the poorest performance in handling these scenarios.

Fig. 15. Critical quantities of SMC and proposed controller following a wind
speed disturbance.
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Fig. 16. Comparing trajectories of the torsional angle of the WTG drive train
for multiple WPPs.

Figures 14 and 15 also show that the proposed controller can
reach the steady-state condition at 27.3 s while SMC has an
unsatisfactory performance with higher oscillation frequency
and longer oscillation periods, which lasts until about 35 s. It
is also interesting to point out that the proposed controller can
reach at another steady state in the duration of disturbance, i.e.,
20 s to 23 s, while the alternatives fail to do so, see Fig. 13
to Fig. 15.

3) Extension to Multiple WPPs Integrated Power System:
This section demonstrates the scalability of the proposed
controller for multiple WPPs. In this case, we consider the
system with three WPPs, as shown in Fig. 4 and a three-
phase fault occurrs at the point of common coupling (PCC)
at t = 20 s and is cleared at t = 20.3 s. The wind speeds
of WPP1, WPP2 and WPP3 are 8 m/s, 10 m/s and 10 m/s,
respectively, and the transmission line distances of each WPP
with respect to the PCC are 50 km, 35 km and 10 km. The
positive resistance, inductance and capacitance of transmission
each line are 0.1153 Ω/km, 1.05 ·10−3 H/km and 11.33 ·10−9

F/km, respectively. The corresponding negative resistance,
inductance and capacitance are 0.413 Ω/km, 3.32 ·10−3 H/km
and 5.01 · 10−9 F/km.

The trajectories of each WPP torsional angle for different
control strategies are displayed in Fig. 16. These trajectories
show that the LC cannot properly damp the WTG DTTO
and its response curve is similar to the original one without
control. It is interesting to notice that compared with the
previous scenarios, the oscillation magnitudes for SMC and
the proposed controller are close. However, SMC still needs a
much longer time to damp out the oscillations as compared to
our controller. The general conclusion is consistent with what
we have observed before, i.e., LC has poor performance for
DTTO in the presence of large disturbance; SMC has improved
performance over LC but it takes longer time to damp out the
oscillations as compared to our proposed controller; and the
proposed controller has the smallest oscillation frequency.

B. Results with Detailed-Model Large-Capacity WPPs

This section further illustrates the advantages of the pro-
posed controller through simulations based on WPPs with
large capacity, i.e., 90 MW, and detailed model. The schematic
diagram is shown in Fig. 17, where the wind speed direction is
assumed to be perpendicular to the column of WPP. Therefore,
each column can be modeled as an aggregated WTG consist-

Fig. 17. The schematic diagram of grid with detailed-model and high-power
WPPs.

Fig. 18. Trajectories of the relative angular speed in different columns of
WPPs.

ing 15 DFIGs. The cable distance between two consequent
columns is 882 m and the length of the transmission line is 20
km. The parameters of the cables and the transmission lines are
assumed to be the same as those in Section III-A3. Considering
the wake effect of wind power, the wind speeds of each column
are 20 m/s, 16 m/s, 13 m/s and 10 m/s, respectively. A three-
phase fault occurs at the end of the transmission line at 65 s
and is cleared at 65.3 s.

Figure 18 shows that the proposed controller achieves much
better performance in suppressing DTTOs of all aggregated
WTGs than other methods. Note that without damping con-
troller, DTTO is particularly serious with wind speeds in the
constant power area, i.e., 20 m/s and 16 m/s. The system
even losses stability under 20 m/s wind speed, while WTG
working in MPPT area (i.e., 10 m/s) has a stronger capability
of damping DTTO. The best damping can be observed under
13 m/s wind speed, which belongs to the constant rotor
speed area. These results are consistent with those discussed
in [10] and can be explained as follows: the damping of
DTTOs increases with the slope of the power-speed curve
shown in Fig. 5. Note that the slope of the curve in constant
power area is null, whereas the maximum slope occurs in
the constant rotor speed area. In terms of suppressing DTTOs
under different areas, the proposed controller outperforms the
solution based on LC and SMC and leads to overall smaller
oscillations. The consistent conclusions with that of Section
III-A can be drawn in this section, further demonstrating the
scalability of the proposed controller.
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IV. CONCLUSIONS AND FUTURE WORK

The paper proposes a novel nonlinear controller to damp
WTG DTTO originated by large disturbances. The proposed
controller integrates differential geometry and ESO. In particu-
lar, the differential geometry serves to transform the nonlinear
equations of the WTG system into a simple second-order
Brunovsky system. Then, ESO allows estimating the states
of the transformed system. The resulting controller proves to
effectively compensate the oscillations caused by the distur-
bances and, thanks to the ESO, to be robust with respect to
model parameter uncertainty. Simulation results show that the
proposed controller performs better than conventional linear
and nonlinear controllers, i.e., shows higher damping under all
considered disturbances and wind speed operating conditions.

Future work will focus on exploiting differential geometry
to develop novel nonlinear controllers and investigating the
benefits of using battery energy storage for damping WTG
DTTO following large disturbances. We also aim at validating
the proposed control strategy using experimental data and/or
hardware-in-the-loop simulations.
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