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Abstract: In this paper, we define and study a class of linear hybrid dynamical sys-

tems characterized by differential-difference equations. We introduce two operators that

facilitate the analysis of these systems and derive explicit formulas for their solutions.

We examine the transfer function matrix and characteristic polynomial to assess stabil-

ity. Our theoretical findings are supported by numerical examples, demonstrating their

application in power systems stability analysis. Specifically, we substantiate our theory

within the context of power systems stability analysis, incorporating elements of discrete
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1 Introduction

A hybrid dynamical system is a system that involves functions of two vari-
ables. One variable is continuous, while the other is discrete. Hybrid models
appear in many physical processes and systems. For example, it is rele-
vant to mention electrical power systems include continuous devices, e.g.,
electrical machines; discrete events, e.g., faults; and devices with discrete
variables, e.g., under-load tap changers, automatic generation control and
power electronic converters [3, 29]. In this vein, in [19], the author develops
the concept of hybrid automaton as a systematic approach model hybrid
power system models. The control and stability analysis of hybrid systems
is particularly challenging because the methodologies and techniques avail-
able for fully continuous or fully discrete systems do not apply to hybrid
systems [18]. A usual approach is relaxing the discrete variables approxi-
mating them as continuous ones. This is, for example a common solution for
the small-signal stability analysis of power systems [27]. However, in this
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way, some unstable phenomena that may arise from the interactions be-
tween continuous and discrete variables are lost. Relevant example of such
instabilities are discussed, for example, in [15] and [22]. Hybrid systems also
arise as a byproduct of control hard limits, e.g., grazing phenomena [14]
and Filippov approach for discontinous right-hand side [32], or of nonlinear
control approaches, e.g., model predictive control [7], reset control [5], and
sliding-mode control [36]. Finally, it is also relevant to note that hybrid
continuous-discrete arise in stochastic systems [8]. An example of these sys-
tems are, again, electric power systems where the discrete random events,
such as load variations and line disconnections can trigger system dynam-
ics [26], or continuous disturbances, such as wind generation fluctuations,
trigger the variations of discrete variables, such as tap-changer positions
[33].

The dynamic behavior of a hybrid dynamical system can be described
using both differential and difference equations, allowing for greater flexibil-
ity in modeling dynamic phenomena. The concept of a hybrid dynamical
system and the study of its solutions were first introduced in [17], followed
by several interesting works, as seen in [16, 20, 21, 23, 35, 37]. Additionally,
there are other notable works in the literature that investigate solutions,
stability, controllability, and more, as documented in [6, 25, 34].

Despite the extensive research on hybrid systems, there remains a signif-
icant gap in the literature concerning the analysis and stability of systems
that integrate both continuous and discrete dynamics in a seamless man-
ner. Traditional methods often approximate discrete variables as continuous,
which can overlook critical instability phenomena arising from the interac-
tion of these variables. This paper aims to bridge this gap by defining and
studying a class of linear hybrid dynamical systems of differential-difference
equations, providing a more accurate representation of hybrid systems.

Our scientific contributions are threefold:

1. Definition and Analysis: We define a novel class of linear hybrid
dynamical systems characterized by differential-difference equations,
providing a robust framework for their analysis.

2. Operator Development: We introduce two new operators that fa-
cilitate the study of solutions to these hybrid systems, enhancing an-
alytical capabilities.

3. Stability Investigation: We explore the transfer function matrix
and characteristic polynomial of these systems, offering new insights
into their stability properties.
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We substantiate our theoretical developments within the context of power
systems stability analysis, highlighting how our approach can capture dis-
crete behaviors often overlooked by conventional methods.

By addressing these challenges and contributing new methodologies, our
work advances the understanding and control of hybrid dynamical systems,
particularly in applications such as power systems where discrete and con-
tinuous dynamics are inherently intertwined.

In this article we are initially interested in studying the solutions of the
system:

d
dtxk(t) = Axk(t) +Byk(t) + uk(t),

yk+1(t) = Cxk(t) +Dyk(t) + vk(t).

(1)

subject to given initial conditions xk(0), y0(t). Where xk(t) ∈ Rr×1 and
yk(t) ∈ Rm×1 are unknown vectors of functions of two variables supported
on [0,+∞] × N∗, i.e., t ∈ [0,+∞] and k ∈ N, meaning t is a continuous
variable and k is a discrete variable. In addition, A ∈ Rr×r, B ∈ Rr×m,
C ∈ Rm×r, and D ∈ Rm×m are constant known matrices, and uk(t) ∈ Rr×1

and vk(t) ∈ Rm×1 are known vectors of functions of two variables supported
on [0,+∞]× N∗.

In mathematical analysis, a function f(x) is indeed said to be continuous
at x0 if the limit of f as x tends to x0 is equal to f(x0). This notion of
continuity refers to the property that small changes in the input x result in
small changes in the output f(x).

In the context of hybrid dynamical systems, when we refer to a ”con-
tinuous variable,” we mean a variable that can take any value within a
given range, typically representing physical quantities that change smoothly
over time. For example, in our system, the variable t represents time and
is considered continuous because it can take any non-negative real value
(t ∈ [0,+∞]).

On the other hand, a ”discrete variable” is one that can only take dis-
tinct, separate values, usually integers. In our system, the variable k is
discrete because it represents distinct events or states indexed by integers
(k ∈ N).

Thus, the term “continuous variable” aligns with the broader mathemat-
ical understanding of continuity but is used here to differentiate between
variables that vary smoothly over time (continuous) and those that change
in discrete steps (discrete).

The equations (1) are differential–difference equations. If we discard the
variable yk+1(t) then (1) would be an hybrid system in a form of differential–
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algebraic equation:

d
dtxk(t) = Axk(t) +Byk(t) + uk(t),

0n,1 = Cxk(t) +Dyk(t) + vk(t).

(2)

Additionally if we discard the variable d
dtxk(t) then (1) would be an hybrid

system in a form of difference–algebraic equation:

0n,1 = Axk(t) +Byk(t) + uk(t),

yk+1(t) = Cxk(t) +Dyk(t) + vk(t).
(3)

The differential–equation (2) is subject to given initial conditions xk(0),
yk(0) while the difference–equation (3) is subject to given initial conditions
x0(t), y0(t). Where xk(t), yk(t), and A,B,C,D, uk(t), vk(t) are defined as
previously for (1). In the rest of this paper, we will denote the n × n
identity matrix as In, the n×n zero matrix as 0n, and the n×1 zero column
vector as 0n,1. However, in some cases, the identity matrix will be denoted
as I with appropriate dimensions for better readability.

In Section 2, we present explicit solution formulas for equations (1)
through (3), along with a discussion on the stability and characteristic equa-
tions of these systems. Section 3 includes numerical examples and an ap-
plication of our theoretical findings to the practical problem of hierarchical
frequency control utilized in high-voltage electrical power systems. We il-
lustrate how the operation of discrete elements can lead to instability and
demonstrate the relevance of our approach in addressing these issues.

2 Main Results

In this Section we present our main results. We give first a definition.

Definition 2.1. We define with JA,B the operator:

JA,Bxk(t) =

∫ t

0
eA(t−s)Bxk(s)ds, (4)

and with SA,B the operator:

SA,Bxk(t) =
k−1∑
j=0

Ak−1−jBxj(t). (5)
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Where xk(t) ∈ Rm×1 is unknown vector of functions of two variables sup-
ported on [0,+∞]× N∗, and A ∈ Rr×r, B ∈ Rr×m.

We now state the following Theorem:

Theorem 2.1. We consider the operators JA,B and SA,B as defined in
(4) and (5), respectively. Let

wk(t) = C
[
eAtxk(0) + JA,Iuk(t)

]
+ vk(t),

ωk(t) = B
[
Dky0(t) + SD,Ivk(t)

]
+ uk(t),

and
Ã = CJA,B +D, Â = A+BSD,C .

Then, two equivalent solutions of the differential-difference equation (1) with
given initial conditions, the sequence xk(0), and the function y0(t) are given
by:

xk(t) = eAtxk(0) + JA,B[Ãky0(t) + SÃ,Iwk(t)] + JA,Iuk(t),

yk(t) = Ãky0(t) + SÃ,Iwk(t),

(6)

and

xk(t) = eÂtxk(0) + JÂ,Iωk(t),

yk(t) = Dky0(t) + SD,C [eÂtxk(0) + JÂ,Iωk(t)] + SD,Ivk(t).

(7)

Proof. By solving the differential equation in (1) we get

xk(t) = eAtxk(0) +

∫ t

0
eA(t−s)[Byk(s) + uk(s)]ds,

or, equivalently, by using (4),

xk(t) = eAtxk(0) + JA,Byk(t) + JA,Iuk(t).

By substituting the above expression into the difference equation of (1) we
get

yk+1(t) = C[eAtxk(0) + JA,Byk(t) + JA,Iuk(t)] +Dyk(t) + vk(t),
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or, equivalently,

yk+1(t) = [CJA,B +D]yk(t) + wk(t).

The solution of the above difference equation is:

yk(t) = [CJA,B +D]ky0(t) +

k−1∑
j=0

[CJA,B +D]k−1−jwj(t),

or, equivalently, by using (5),

yk(t) = [CJA,B +D]ky0(t) + SCJA,B+D,Iwk(t).

Additionally,

xk(t) = eAtxk(0) +JA,B[(CJA,B +D)ky0(t) +SCJA,B+D,Iwk(t)] +JA,Iuk(t).

If we set Ã = CJA,B + D we arrive at (6). We now solve the difference
equation in (1):

yk(t) = Dky0(t) +

k−1∑
j=0

Dk−1−j [Cxj(t) + vj(t)]

or, equivalently, by using (5),

yk(t) = Dky0(t) + SD,Cxk(t) + SD,Ivk(t).

By substituting the above expression into the differential equation of (1) we
get

d

dt
xk(t) = Axk(t) +B[Dky0(t) + SD,Cxk(t) + SD,Ivk(t)] + uk(t)

or, equivalently,

d

dt
xk(t) = [A+BSD,C ]xk(t) + ωk(t).

The solution of the above differential equation is:

xk(t) = e[A+BSD,C ]txk(0) +

∫ t

0
e[A+BSD,C ](t−s)ωk(s),

or, equivalently, by using (4),

xk(t) = e[A+BSD,C ]txk(0) + JA+BSD,C ,Iωk(t).
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Additionally,

yk(t) = Dky0(t) + SD,C [e[A+BSD,C ]txk(0) + +JA+BSD,C ,Iωk(t)] + SD,Ivk(t).

If we set Â = A+BSD,C we arrive at (7). The proof is completed.

Note that (1) is a differential–difference equation. As mentioned in the intro-
duction if we discard the variable yk+1(t) then (1) can be written in the form
of (2) which is an hybrid system in the form of differential–algebraic equa-
tion. Additionally if we discard the variable d

dtxk(t) then (1) can be written
in the form of (3) which is an hybrid system in the form of difference–
algebraic equation.

Lemma 2.1. The hybrid system (2) can be written as

E
d

dt
Yk(t) = A0Yk(t) + Vk(t),

where

E =

[
I 0n
0n 0n

]
, A0 =

[
A B
C D

]
,

and

Yk(t) =

[
xk(t)
yk(t)

]
, Vk(t) =

[
uk(t)
vk(t)

]
.

For E =

[
0n 0n
0n I

]
an equivalent form of the hybrid system (3) is given

by:
EYk+1(t) = A0Yk(t) + Vk(t).

Proof. The hybrid system (2) is in the form of differential–algebraic equa-
tion and can be written as:[

I 0n
0n 0n

] [
d
dtxk(t)
d
dtyk(t)

]
=

[
A B
C D

] [
xk(t)
yk(t)

]
+

[
uk(t)
vk(t)

]
,

or, equivalently,

E
d

dt
Yk(t) = A0Yk(t) + Vk(t).

The hybrid system (3) can be written as:[
0n 0n
0n I

] [
xk+1(t)
yk+1(t)

]
=

[
A B
C D

] [
xk(t)
yk(t)

]
+

[
uk(t)
vk(t)

]
,
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or, equivalently,
EYk+1(t) = A0Yk(t) + Vk(t).

The proof is completed.

Since in both cases E is a singular matrix we will use in our next result
matrix pencil theory. The pencil sE − A0 is regular for which there exist
regular square matrices P , Q such that:

PEQ = Ip ⊕Hq,

PA0Q = Jp ⊕ Iq.
(8)

Where p+ q = n, with p being the sum of the algebraic multiplicities of the
finite eigenvalues of the pencil, Hq a q × q nilpotent matrix with index q∗,
with q being the algebraic multiplicity of the infinite eigenvalue, and Jp the
p×p Jordan matrix constructed from the finite eigenvalues of the pencil and
their algebraic multiplicities. Furthermore

P =

[
P1

P2

]
, Q =

[
Qp Qq

]
, (9)

with P1, P2 being p×n, q×n matrices respectively, and Qp, Qq being n×p,
n × q matrices respectively. The matrices P1, Qp are constructed by left,
right respectively linear independent eigenvectors of the finite eigenvalues
while matrices P2, Qq are constructed by left, right respectively linear in-
dependent eigenvectors of the infinite eigenvalues. We state the following
Theorem:

Theorem 2.2. Consider the hybrid systems (2), (3) as written in Lemma
2.1. Then the solution of (2) is given by:

Yk(t) = Qp[e
JptXp

k(0) + JJp,P1Vk(t)]−QqP2Vk(t), (10)

and the solution of (3) is given by:

Yk(t) = Qp[J
k
pX

p
0 (t) + SJp,P1Vk(t)]−QqP2Vk(t). (11)

where Jp, Hq Jordan matrices of the finite, infinite eigenvalues of the pencil
sE −A0 respectively and Q, P matrices related to the eigevectors of the fi-
nite, infinite eigenvalues of the pencil sE−A0 respectively as defined in (8),
(9). The operators JA,B, SA,B are defined in (4), (5), and Xk(t) = Q−1Yk(t),
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with Xk(t) =

[
Xp

k(t)
Xq

k(t)

]
.

Proof. Using Lemma 2.1, (2) can be written as:

E
d

dt
Yk(t) = A0Yk(t) + Vk(t).

Let Yk(t) = QXk(t) with Xk(t) =

[
Xp

k(t)
Xq

k(t)

]
. Then by using this expression

and multiplying by P we get

PEQ
d

dt
Xk(t) = PA0QXk(t) + PVk(t),

whereby using the properties of the pencil we arrive at two subsystems

d

dt
Xp

k(t) = JpX
p
k(t) + P1Vk(t),

and

Hq
d

dt
Xq

k(t) = Xq
k(t) + P2Vk(t).

These two subsystems have the following solutions, see [9, 10]:

Xp
k(t) = eJptXp

k(0) + JJp,P1Vk(t),

and

Xq
k(t) = −

q∗−1∑
j=0

Hj
qP2V

(j)
k (t).

In our case and because of the structure of E we have q∗ = 1. Hence the
solution of (2) is:

Yk(t) = QXk(t) = QpX
p
k(t) +QqX

q
k(t),

or, equivalently,

Yk(t) = Qp[e
JptXp

k(0) + JJp,P1Vk(t)]−QqP2Vk(t),

Additionally, (2) can be written as

EYk+1(t) = A0Yk(t) + Vk(t).

or, equivalently,

PEQXk+1(t) = PA0QXk(t) + PVk(t),
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whereby using the properties of the pencil we arrive at two subsystems

Xp
k+1(t) = JpX

p
k(t) + P1Vk(t),

and
HqX

q
k+1(t) = Xq

k(t) + P2Vk(t).

These two subsystems have the following solutions, see [9, 10]:

Xp
k(t) = Jk

pX
p
0 (t) + SJp,P1Vk(t),

and

Xq
k(t) = −

q∗−1∑
j=0

Hj
qP2Vk+j(t).

In our case and because of the structure of E we have q∗ = 1. Hence the
solution of (3) is:

Yk(t) = Qp[J
k
pX

p
0 (t) + SJp,P1Vk(t)]−QqP2Vk(t).

The proof is completed.

Next, we will provide the characteristic polynomial of two variables for the
hybrid dynamical system (1). We state the following Proposition.

Proposition 2.1. The characteristic polynomial of two variables for (1)
is given by:

p(s, ŝ) =

∣∣∣∣(ŝ− 1)A− s(ŝ− 1)Ir (ŝ− 1)B
(ŝ− 1)C (ŝ− 1)D + (ŝ+ 1)Im

∣∣∣∣ , (12)

where (s, ŝ) ∈ C2, and ŝ 6= 1.

Proof. Let L be the Laplace transform, and Z the Z-transform. If we
apply the Laplace and Z-transform to (1) while discarding the initial condi-
tions xk(0), y0(t), etc we get:

sX(s, z) = AX(s, z) +BY (s, z) + U(s, z),

zY (s, z) = CX(s, z) +DY (s, z) + V (s, z),

or, equivalently,

(sIr −A)X(s, z)−BY (s, z) = U(s, z),

−CX(s, z) + (zIm −D)Y (s, z) = V (s, z),
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or, equivalently,[
sIr −A −B
−C zIm −D

] [
X(s, z)
Y (s, z)

]
=

[
U(s, z)
V (s, z)

]
.

Hence, a characteristic equation of (1) is given by:∣∣∣∣ sIr −A −B
−C zIm −D

∣∣∣∣ = 0. (13)

By using z = ŝ+1
1−ŝ , with ŝ 6= 1, see [11], the characteristic equation of (1)

takes the form:∣∣∣∣(ŝ− 1)A− s(ŝ− 1)Ir (ŝ− 1)B
(ŝ− 1)C (ŝ− 1)D + (ŝ+ 1)Im

∣∣∣∣ = 0,

and the pencil of (1) is given by:[
(ŝ− 1)A− s(ŝ− 1)Ir (ŝ− 1)B

(ŝ− 1)C (ŝ− 1)D + (ŝ+ 1)Im

]
.

The characteristic polynomial of two variables of (1) is given by (12). The
proof is completed.

We consider the solution (6) of system (1). To have asymptotic stability
for system (1), the solutions xk(t) and yk(t) have to exist and not be infinite
as k and t tend to infinity. Let’s first focus on the solution xk(t) in (6),
which can be written in the form:

xk(t) = eAtxk(0) + JA,Byk(t) + JA,Iuk(t).

Obviously, we need the terms eAtxk(0), JA,Byk(t), and JA,Iuk(t) to exist
and not be infinite as k and t tend to infinity. If λ is an eigenvalue of A then
eAtxk(0) converges to 0r,1 as k, t→∞ if xk(0) is bounded, i.e. there exists
µ1 > 0 such that

‖xk(0)‖ < µ1,

and if
Re(λ) < 0.

Under this assumption JA,Byk(t),JA,Iuk(t) converge to 0r,1 as k, t → ∞ if
uk(t) is bounded, i.e. there exists µ2 > 0 such that

‖uk(t)‖ < µ2,
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and if yk(t) is bounded. We have

yk(t) = Ãky0(t) + SÃ,Iwk(t).

If λ̃ is an eigenvalue of the operator Ã then Ãky0(t) converges to 0m,1 as
k, t→∞ if y0(t) is bounded, i.e. there exists µ3 > 0 such that

‖y0(t)‖ < µ3,

and if
|λ̃| < 1.

Under this assumption SÃ,Iwk(t), converges to 0m,1 as k, t → ∞ if wk(t) is
bounded, or, equivalently, if vk(t) is bounded, i.e. there exists µ5 > 0 such
that

‖vk(t)‖ < µ4.

If λ̃ is an eigenvalue of the operator Ã and ũ eigenfunction then:

λ̃Ã = λ̃ũ,

or, equivalently from (6),

(λ̃Im −D)ũ = CJA,Bũ,

whereby under the assumption that Re(λ) < 0 and ũ is bounded we have
that CJA,Bũ tends to 0m,1 as k, t→∞. In this case we have that

(λ̃Im −D)ũ = 0m,1,

or, equivalently,
λ̃ũ = Dũ,

which means that in this case λ̃ is eigenvalue of D. We proved the following
Theorem:

Theorem 2.3. Consider system (1) with bounded initial conditions xk(0),
y0(t) and bounded input vectors uk(t), vk(t). Let λ be an eigenvalue of A
and λ̃ an eigenvalue of D. Then (1) is asymptotically stable if:

Re(λ) < 0, |λ̃| < 1. (14)

Having investigated a hybrid system of differential-difference equations
represented by (1) and its solutions, as well as exploring the stability and
characteristic equation of (1), it would be interesting as a future work to ex-
tend other types of differential or difference equations into hybrid equations.
These could include fractional differential operators, both discrete and con-
tinuous (see [12, 13]), and stochastic differential equations (see [1, 2, 30, 31]).
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3 Numerical Examples

Electrical power systems are among the most complex modern systems. Due
to their intricate nature and unique operational characteristics, they have
been the focus of extensive research. Power system stability is defined as
”the ability of an electric power system, for a given initial operating con-
dition, to regain a state of operating equilibrium after being subjected to
a physical disturbance, with most system variables bounded so that practi-
cally the entire system remains intact” [24]. In this section, we will showcase
compelling examples to substantiate and support our theoretical framework.

Example 1 We consider the hybrid system of differential–difference equa-
tions (1) with uk(t) = 0, vk(t) = 02,1, and

A = −1, B =
[

2 0
]
, C =

[
0
3

]
, D =

1

4

[
1 0
0 2

]
.

The initial conditions of (1) are:

xk(0) =
1

k2 + 1
, y0(t) =

[
sin(t)
cos(t)

]
.

Based on (6), we can solve (1) by following these steps. We first compute
wk(t):

wk(t) =
e−t

k2 + 1

[
0
3

]
.

Then Ã:

Ã =

[
0
3

]
J−1,

[
2 0

] +
1

4

[
1 0
0 2

]
.

Hence we have

yk(t) = Ãk

[
sin(t)
cos(t)

]
+

k−1∑
j0

e−t

j2 + 1
Ãk−1−j

[
0
3

]
,

and

xk(t) =
e−t

k2 + 1
+

∫ t

0
e−(t−s)

[
2 0

]
yk(s)ds.

If, for instance, we wish to obtain xk(t) and yk(t) for k = 1, 2, we can proceed
as follows. For k = 1:

y1(t) = Ã

[
sin(t)
cos(t)

]
+ e−t

[
0
3

]
13



or, equivalently,

y1(t) = (

[
0
3

]
J−1,

[
2 0

] +
1

4

[
1 0
0 2

]
)

[
sin(t)
cos(t)

]
+ e−t

[
0
3

]
,

or, equivalently,

y1(t) =

[
0
3

]
J−1,

[
2 0

] [ sin(t)
cos(t)

]
+

1

4

[
sin(t)

2 cos(t)

]
+

[
0

3e−t

]
,

or, equivalently,

y1(t) =

[
0
3

] ∫ t

0
e−(t−s)

[
2 0

] [ sin(s)
cos(s)

]
ds+

[
1
4 sin(t)

2cos(t) + 3e−t

]
,

or, equivalently,

y1(t) =

[
0
3

] ∫ t

0
2e−(t−s) sin(s)ds+

[
1
4 sin(t)

2 cos(t) + 3e−t

]
,

or, equivalently,

y1(t) =

[
0

6e−t

] ∫ t

0
es sin(s)ds+

[
1
4 sin(t)

2 cos(t) + 3e−t

]
,

or, equivalently,

y1(t) =

[
0

6e−t

](
et

2
(sin(t)− cos(t)) +

1

2

)
+

[
1
4 sin(t)

2 cos(t) + 3e−t

]
,

or, equivalently,

y1(t) =

[
y
(1)
1 (t)

y
(2)
1 (t)

]
=

[
1
4 sin(t)

3(sin(t) + cos(t))− 3e−t + 2 cos(t) + 3e−t

]
.

For x1(t) we have:

x1(t) =
e−t

2
+

∫ t

0
e−(t−s)

[
2 0

]
y1(s)ds,

or, equivalently,

x1(t) =
e−t

2
+
e−t

2

∫ t

0
es sin(s)ds,
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or, equivalently,

x1(t) =
e−t

2
+
e−t

2

(
et

2
(sin(t)− cos(t)) +

1

2

)
,

or, equivalently,

x1(t) =
e−t

4
+

1

4
(sin(t)− cos(t)).

For k = 2 and (1) we have:

y2(t) =

[
0
3

]
(
e−t

4
+

1

4
(sin(t)− cos(t)) +

1

4

[
1 0
0 2

]
y1(t),

or, equivalently,

y2(t) =

[
y
(1)
2 (t)

y
(2)
2 (t)

]
=

[ 1
16 sin(t)

e−t

2 + sin(t) + cos(t) + 3
4 cos(t)e−t

]
.

For x2(t) we have:

x2(t) =
e−t

5
+

∫ t

0
e−(t−s)

[
2 0

]
y2(s)ds,

or, equivalently,

x2(t) =
e−t

5
+
e−t

8

∫ t

0
es sin(s)ds,

or, equivalently,

x2(t) =
e−t

5
+
e−t

8

(
et

2
(sin(t) + cos(t))− 1

2

)
,

or, equivalently,

x2(t) =
11e−t

80
+

1

16
(sin(t) + cos(t)).

The response of the states in time, for k = 1, is shown in Figure 1.
For the eigenvalue analysis, we consider the characteristic equation (13)

of this system: ∣∣∣∣sIr −A −B
−C zIm −D

∣∣∣∣ = 0,

15



Figure 1: Plot of solutions for k = 1, 2 in Example 1

or, equivalently, ∣∣∣∣∣∣
s+ 1 −2 0

0 z − 1
4 0

−3 0 z − 1
2

∣∣∣∣∣∣ = 0,

or, equivalently,
(2z − 1)(4z − 1)(s+ 1) = 0.

The roots of this equation are:

z1 =
1

4
, z2 =

1

2
, s1 = −1.

Thus, s1 < 0, and |z1|, |z2| < 1, and the system is asymptotically stable.

Example 2 We consider now the following hybrid system:

2 d
dtxk(t) = 5xk(t)− yk(t) + 2kt,

0n,1 = −xk(t) + yk(t) + 2k + 2t,

16



with initial conditions xk(0) = yk(0) = k. Equivalently, in matrix form:[
1 0
0 0

]
d

dt
Yk(t) =

1

2

[
5 −1
−1 1

]
Yk(t) +

[
kt
k + t

]
,

which is the hybrid system (2) given in the form in Lemma 2.1. The pencil
sE −A0 is given by:

sE −A0 =

[
s− 5

2
1
2

1
2 −1

2

]
.

This pencil has a finite eigenvalue s = 2 and an infinite. In addition

P =

[
1 1
0 2

]
, Q =

[
1 0
1 1

]
.

The solution of (2) is given by (10) with

Xk(0) = Q−1Yk(0) =

[
k
0

]
, Xp

k(0) = k.

In addition since Jp = 2:

JJp,P1Vk(t) =

∫ s

0
e2(t−s)

[
1 1

] [ ks
k + s

]
ds =

∫ s

0
e2(t−s)(ks+ k + s)ds,

or, equivalently,

JJp,P1Vk(t) =
3k + 1

4
e2t − (2t+ 3)k + (2t+ 1)

4
.

Hence from (10) we have:

Yk(t) =

[
1
1

]
[e2tk+

3k + 1

4
e2t− (2t+ 3)k + (2t+ 1)

4
]−
[

0 0
1 2

] [
kt
k + t

]
,

or, equivalently,

Yk(t) =

[
7k+1
4 e2t − (2t+3)k

4 − 2t+1
4

7k+1
4 e2t + (5−2t)k

4 + 6t−1
4

]
,

or, equivalently,

xk(t) = 7k+1
4 e2t − (2t+3)k

4 − 2t+1
4 ,

yk(t) = 7k+1
4 e2t + (5−2t)k

4 + 6t−1
4 .
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Figure 2: Plots of solutions for xk(t), yk(t) in Example 2

For a better perception of the states’ behavior, Figure 2 graphically repre-
sents their response in time, where the system’s instability can be observed.

For the eigenvalue analysis, we consider the characteristic equation (13)
of this system given by: ∣∣∣∣sIr −A −B

−C zIm −D

∣∣∣∣ = 0.

or, equivalently,

sz − 5z

2
− s+ 2 = 0.

The response of the eigenvalues s and z follows Figure 3, which illustrates
the system’s instability, evident through the presence of positive s values
and |z| greater than one.

Example 3 In this example, we consider the power system dynamic model
exposed in Figure 4. This represents the so called “single node model” and it
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Figure 3: Eigenvalue Response of Example 2

has been proposed to study dynamic performance of primary and secondary
frequency regulation in conventional power systems the dynamics of which
are dominated by the synchronous generators [4]. In Figure 4, the generator
is represented through its rotating inertia (M), the primary regulation is
a simple low pass with gain k1 and time constant T and the secondary
frequency control is an integrator with gain k0.

K1
1+sT

1

sM

K0
s

Δω
ref

Δω

ΔPm

ΔPe GeneratorPrimary Reg.

Δω

Δ
P
agc

Secondary Reg.

Δω
ref

Δω

Figure 4: AGC Model

The focus of this example is on the modelling of the secondary frequency
control, usually called Automatic Generation Control (AGC). The objective
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of the AGC is to restore the system frequency to its nominal value following
a contingency. This is obtained by changing the power set point of the
synchronous machine through the signal (∆Pagc). Without the AGC, the
primary control is unable to restore the initial frequency as it is not, in
general, a perfect tracking control. Figure 5 illustrates the effect of the
primary control alone and the combined action of primary frequency control
and AGC. We note that, while the AGC is able to restore the nominal
frequency of the system, the gain K0 has to be properly tuned to avoid
the overall system becoming unstable. If K0 is too high, in fact, the AGC
dynamic can couple with that of the primary frequency control and lead to
unstable oscillations [27].

Modelling the AGC as a continuous perfect-tracking controller is a sim-
plification. In practice, however, as it is relatively slow and centralized and
the signal ∆Pagc has to be transmitted over long distances, the AGC is im-
plemented as a discrete controller that updates its output at regular time
intervals. Figure 5 shows the different trajectories of the system frequency
as obtained with the continuous and the discrete AGC models, both with
a gain K0 = 5, and for the discrete AGC an updating time of 5 s. The
contingency is a step-negative variation of the electrical load ∆Pe(t). We
note that, for discrete AGC, the instability can arise as a combination of
the gain K0 and the time interval with which the signal ∆Pagc is updated
[22], as observed Figure in 6.
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q
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u
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No AGC

AGC continuous

AGC discrete

Figure 5: AGC within a Power System
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Figure 6: System response to different time updates of Discrete AGC

The continuous AGC model is practical for small-signal stability analysis
as it allows calculating the eigenvalues of the system using the conventional
state matrix. However, the dynamic response of the discrete AGC model has
a more complex behavior than the continuous linear one as the instability
depends on the combined effect of K0 and T . We show in this example
that, with the proposed technique, it is possible to analyze the small-signal
stability of the power system model while retaining the discrete model of
the AGC.

The continuous model of the system presented in Figure 4 is described
by the following set of equations:

M∆ω̇(t) = ∆Pm(t)−∆Pe(t) + ∆Pagc(t),

T∆Ṗm(t) = K1(∆ω
ref −∆ω(t))−∆Pm(t),

∆Pagc = K0(∆ω
ref −∆ω(t)),

(15)

which describe, respectively, the generator, the primary frequency control
provided by the turbine governor of the machine, and the AGC. If we model
the AGC as a discrete controller, (15) becomes an hybrid system, as follows:
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M∆ω̇(t) = ∆Pm(t)−∆Pe(t) +H(t− kT )∆Pagc,k

+(1−H(t− kT ))∆Pagc,k−1,

T∆Ṗm(t) = K1(∆ω
ref −∆ω(t))−∆Pm(t),

∆Pagc,k = K0(∆ω
ref −∆ωk),

(16)

where T is the sampling period of the AGC signal; ωk = ω(kT ) is the
sampled value of the system frequency; k ∈ N+; and H(t) is the Heaviside
step function:

H(t) =

{
0 if t < 0,

1 if t ≥ 0,

The dashed line in Figure 5 shows the dynamic performance of model (16).
Rewriting the system equations using the notation introduced in this

work leads to:

H(t− kT )∆Pagc,k + (1−H(t− kT ))∆Pagc,k−1 =
K0H(t− kT )∇ωk +K0(∆ω

ref −∆ωk−1).

Then, let us define:

uk(t) =

[
1
M (K0H(t− kT )∇ωk +K0(∆ω

ref − δωk−1))
K1
T ∆ωref

]
.

By using the notation of (1), we have:

ẋ(t) = Ax(t) + uk(t),

yk+1 = vk(t),

where:

xk(t) := x(t) =

[
ω(t)

∆Pm(t)

]
, yk(t) := y(t) = ∆Pagc,k,

and

A =

[
0 1

M

−K1
T − 1

T

]
, vk(t) := vk = K0(∆ω

ref −∆ωk+1).

Compared to (1) we have B = 02,1, C = 01,2, D = 02,2. From (12) the
characteristic polynomial of (15) is given by:

p(s, ŝ) =

∣∣∣∣(ŝ− 1)A− s(ŝ− 1)I2 02,1
01,2 ŝ+ 1

∣∣∣∣ .
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where
(ŝ− 1)A− s(ŝ− 1)Ir = (ŝ− 1)[A− sIr],

or, equivalently,

(ŝ− 1)A− s(ŝ− 1)Ir = (ŝ− 1)

[
−s 1

M

−K1
T − 1

T − s

]
.

Hence

p(s, ŝ) =

∣∣∣∣∣∣
−s 1

M 0

−K1
T − 1

T − s 0
0 0 ŝ+ 1

∣∣∣∣∣∣ ,
where ŝ 6= 1. For the eigenvalue analysis, we consider the characteristic
equation p(s, ŝ) = 0 of this system, or, equivalently:

(s2 +
1

T
s+

K1

MT
)(ŝ+ 1) = 0.

The roots of this equation are:

s1,2 = − 1

2T
± 1

2

√
1

T 2
− 2K1

MT
, ŝ1 = −1.

If 1
T −

2K1
M < 0 then, Re(s1,2) < 0, and ŝ1 < 0, and the system is asymp-

totically stable. If 1
T −

2K1
M > 0, since −2K1

MT < 0 we have
√

1
T 2 − 2K1

MT < 1
T ,

hence, Re(s1,2) < 0, and ŝ1 < 0, and the system is asymptotically stable.

Conclusions

In this paper, we investigate a hybrid system of differential-difference equa-
tions represented by (1) and derive formulas for its solutions. We explore
the stability and characteristic equation of (1), and conclude by providing
numerical examples to illustrate our theory. Our analysis includes applica-
tions demonstrating the relevance of the proposed methodology in modeling
devices and controllers within electric power systems.

In future work, our objectives include the incorporation of fractional
operators, both discrete and continuous, into the system described by (1),
leading to the construction of a class of fractional hybrid dynamical sys-
tems. Additionally, we plan to delve deeper into the stability analysis of
electrical networks modeled as hybrid systems. Another promising direction
is to employ operator theory, such as semigroups and resolvents, instead of
matrices for a more general case. This approach could potentially extend
the applicability and robustness of our results in more complex and diverse
hybrid dynamical systems.
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