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Abstract: The article presents a mathematical model that simulates the elastic and plastic

behaviour of discrete systems representing isotropic materials. The systems consist of one

lattice of nodes connected by edges and a second lattice with nodes placed at the centres

of the existing edges. The derivation is based on the assumption that the kinematics of the

second lattice is induced by the kinematics of the first, and uses stored energies in edges of

both lattices to derive a edge forces in the first lattice. This leads to a non-linear system

of algebraic equations describing elasticity and plasticity in lattices. A numerical solution to

the non-linear system is proposed by providing a matrix formulation necessary for software

implementation. An illustrative example is given to justify the formulation and demonstrate

the system behaviour.
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1 Introduction

The modelling of solids with lattices has been initially developed for failure
analysis of quasi-brittle materials, such as concretes and rocks [1], [2]. This has
been dictated by the need to represent the generation of micro-cracks and their
coalescence into macro-cracks leading to material failure in a computationally
efficient manner. The emergence of a micro-crack, i.e., of two internal surfaces,
dissipates stored/elastic energy and from a mathematical perspective is a topo-
logical evolution of the analysed material domain. Describing this process is
outside the remit of the classical continuum mechanics which is a thermody-
namic bulk theory. A widely used approach to overcome this limitation using
existing numerical methods for continuum mechanics problems, such as the fi-
nite element method, is the cohesive zone modelling [3]. This requires insertion
of special cohesive elements between standard finite elements that allow for gen-
eration of new surfaces but make the analysis both mesh size dependent and
computationally demanding. In contrast, lattice modelling is less demanding
and particularly suitable for quasi-brittle materials as they are characterised
by initial generation of a large population of randomly distributed micro-cracks
[4]. Under tension, these materials are elastic-brittle, where energy is dissipated
almost entirely by generation of new surfaces. This simplifies the formulation of
the lattice behaviour. However, under compression the micro-crack generation
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is in competition with local plasticity for dissipating stored energy [5]. The
competition between plasticity and surface generation is most pronounced in
metallic materials, where energy is dissipated predominantly by plasticity prior
to surface generation [6]. The development of lattice models with elastic-plastic
material behaviour will be beneficial for failure analysis in such cases.

Lattice models contain nodes connected by edges, i.e., they are mathematical
graphs embedded in R2 or R3 depending on the required analysis. The models
are intended to represent a continuous solid by a discrete system. Specifically,
the stored energy in any lattice region is required to be equivalent to the stored
energy in the corresponding continuum region. This is used to derive a link be-
tween the elastic properties of lattice elements, e.g., edge stiffness coefficients,
and the macroscopic properties of the material, but such a derivation is chal-
lenging for general graphs. For graphs with some regularity, the link can be
established exactly. For example, isotropic materials, whose macroscopic be-
haviour is described by two elastic constants, can be represented by 2D graphs
based on hexagonal structure, e.g. [7], and by 3D graphs based on truncated
octahedral structure [8], [9]. Other regular and semi-regular 3D graphs can
represent materials with cubic elasticity, i.e., whose macroscopic behaviour is
described by three elastic constants, but not isotropic elasticity typical for most
engineering materials [10]. Nevertheless, lattices are being used to represent
failure in materials, albeit not always with exactly calibrated local properties.

A mathematically rigorous treatment of lattices can be achieved when they
are analysed as graphs [11], using elements of the discrete exterior calculus (DEC)
[12]. However, the standard DEC has been developed for problems involving
conservation of scalar quantities, such as energy, mass, and electric charge. In
such case, the problem unknown is a discrete scalar field over the nodes (a 0-
cochain), e.g., temperature, pressure, concentration, etc. The variation of this
field providing fluxes via a constitutive relation is a scalar field over the edges
(a 1-cochain), and the conservation/balance is established at nodes. Details of
this formulation and its software implementation can be found in [13]. An alter-
native to DEC for conservation of scalar quantities that respects given discrete
structure exactly has been recently developed using Forman’s combinatorial
differential forms [14]. In contrast, the conservation of linear and angular mo-
menta required for mechanical problems is rather more difficult as the problem
unknown is a vector-valued nodal field, namely displacement vectors assigned
to each node. One possibility is to work with discrete sharps and flats, similar
to the ones suggested in [12], and build a discrete analogue of the continuum
mechanics in terms of kinematics, constitutive relations and balance of momenta
[15]. While this approach is acceptable, it is still computationally demanding
and for large discrete structures the modelling with lattices remains attractive.

In a previous work [16] we have developed a simple representation of plas-
ticity and damage in 3D lattices using elements of DEC and attributing the
elastic-plastic behaviour to the individual lattice elements (edges). However, it
has been recognised that such an approach does not correspond directly to the
classical continuum plasticity where plastic flow is independent of the hydro-
static stress component and is controlled by the deviatoric stresses only. In a
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subsequent work [17] we have proposed a structure comprising the main graph
and a complementary graph that allows for better representation of the internal
forces and have analysed its elastic behaviour. The aim of the present work
is to build upon the past works and develop a graph-theoretical approach to
elasto-plasticity of graphs. In Section 2 we construct a model containing a main
graph with nodes and edges and a second graph with nodes placed at the centres
of the main edges. The construction represents the initial state of the material.
We then consider the kinematics of the second graph to be induced by the kine-
matics of the main one. Using a force-based approach and the stored energy
associated with the bonds in both graphs we arrive at a non-linear system of
algebraic equations describing the elasticity and plasticity of the material. In
Section 3 we provide a numerical method for the solutions of the non-linear
system, a method appropriate for software implementation. Section 4 contains
a numerical example based on our theory. We close the paper with the section
of conclusions.

2 Model with Calculus on Discrete Manifolds

Consider a lattice G containing a set of n nodes connected by m edges via the
algebraic system:

AN = E,

where A is the incidence matrix, containing m rows and n columns:

A = [aij ]
j=1,2,...,n
i=1,2,...,m ∈ Rm×n,

with coefficients given by

aij =

 0, if node j is not a node of edge i
1, if node j is the first node of edge i

−1, if node j is the second node of edge i

In discrete calculus, A is an algebraic representation of both the topology and
the co-boundary operator that maps a 0-cochain (a function over the nodes)
to a 1-cochain (a function over the edges), see [11]. The nodal coordinates are
presented as a discrete vector-valued function over nodes encoded by the matrix

N =


N1

N2

...
Nn

 ∈ Rn×3, where Ni =
[
Ni1 Ni2 Ni3

]
∈ R1×3, i = 1, 2, ..., n.

The discrete vector-valued function over edges obtained from N by the map A
is given by the matrix

E =


E1

E2

...
Em

 ∈ Rm×3, where Ei =
[
Ei1 Ei2 Ei3

]
∈ R1×3, i = 1, 2, ...,m
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and contains vectors along edges from where the lengths of all edges Ei, i.e. |Ei|,
i = 1, 2, ...,m, are calculated.

Consider now a second lattice Ĝ with n̂ nodes, placed exactly at the centres
of the existing edges, i.e. the number of these nodes is n̂ = m, and m̂ secondary
edges connecting secondary nodes corresponding to existing edges with common
exiting nodes. The topology of the second lattice is described by an incidence
matrix Â, containing m̂ rows and n̂ = m columns. Its structure depends on the
existing lattice, i.e., on A.

The coordinates of the secondary nodes are N̂i = 1
2 (Nj + Nk), where i is

the index of the secondary node (equal to the index of the primary edge) and
j, k are the indices of the primary nodes at the ends of edge i. Let the nodal
coordinates of the secondary lattice be represented by a discrete vector-valued
function over secondary nodes

N̂ =


N̂1

N̂2

...

N̂n̂

 ∈ Rn̂×3, where N̂i =
[
N̂i1 N̂i2 N̂i3

]
∈ R1×3, i = 1, 2, ..., n̂.

This is obtained from the coordinates of the existing nodes by

N̂ = SN

where

S = [sij ]
j=1,2,...,n
i=1,2,...,m ∈ Rm×n, sij =

{
0, if node j is not a node of edge i.
0.5, if node j is a node of edge i.

The discrete vector-valued function over secondary edges obtained from N̂
by the map Â is given by the matrix

Ê =


Ê1

Ê2

...

Êm̂

 ∈ Rm̂×3, where Êi =
[
Êi1 Êi2 Êi3

]
∈ R1×3, i = 1, 2, ..., m̂,

and contains vectors along secondary edges from where the lengths of all edges
Êi, i.e. |Êi|, i = 1, 2, ..., m̂ are calculated. The matrix Â, which has m̂ rows and
n̂ = m columns, satisfies the equation:

ÂN̂ = Ê.

When the incidence matrices A, Â derive from a Voronoi tessellation of space by
connecting the centres of cells with common faces with an edge, they are very
sparse matrices – very far from full graph based on the two node sets (primary
and secondary).
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A boundary value problem is formulated by prescribing boundary conditions
at the nodes of G. These can be either Neumann, i.e. prescribed external forces,
or Dirichlet, i.e. prescribed new coordinates due to nodal displacements. As
a result, the geometry of the structure changes, so that the nodes of G and Ĝ
attain new coordinates. Let

X =


X1

X2

...
Xn

 ∈ Rn×3, where Xi =
[
Xi1 Xi2 Xi3

]
∈ R1×3, i = 1, 2, ..., n.

be the new nodal coordinates of G, and

X̂ =


X̂1

X̂2

...

X̂n̂

 ∈ Rn̂×3, where X̂i =
[
X̂i1 X̂i2 X̂i3

]
∈ R1×3, i = 1, 2, ..., n̂.

be the new nodal coordinates of Ĝ. We require that

X̂ = SX,

i.e., that the positions of the secondary nodes relative to the existing ones do not
change; in other words the deformation of Ĝ is consistent with the deformation
of G.

The action of A on X provides the matrix

Y =


Y1

Y2

...
Ym

 ∈ Rm×3, where Yi =
[
Yi1 Yi2 Yi3

]
∈ R1×3, i = 1, 2, ...,m.

containing vectors along the existing edges in the deformed state, from where
their lengths are readily calculated:

AX = Y. (1)

The action of Â on X̂ provides the matrix

Ŷ =


Ŷ1

Ŷ2

...

Ŷm̂

 ∈ Rm̂×3, where Ŷi =
[
Ŷi1 Ŷi2 Ŷi3

]
∈ R1×3, i = 1, 2, ..., m̂.

containing vectors along the existing edges in the deformed state, from where
their lengths are readily calculated:

AX̂ = Ŷ .
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Solid materials accommodate strain from external loading by reversible (elas-
tic) rearrangement, giving rise to internal stresses, and by dissipating energy via
slip (plasticity) or separation (surface generation). In the graph framework, the
stress is a vector-valued function over the edges (not a tensor as in contin-
uum mechanics) acting along their current (deformed) orientation. Let Yi

|Yi| ,

i = 1, 2, ...,m, be the unit vectors along edges of lattice G, where |Yi|, are the
new edge lengths. For G, the edge forces Fi, ∀i = 1, 2, ...,m, are given by

1

|Fi|
Fi =

1

|Yi|
Yi, i = 1, 2, ...,m,

which can be summarised for the whole G by

F = g(Y )Y, where g(Y ) = diag

{
|F1|
|Y1|

,
|F2|
|Y2|

, . . . ,
|Fm|
|Ym|

}
∈ Rm×m. (2)

Similarly for lattice Ĝ, the edge forces F̂i, ∀j = 1, 2, ..., m̂, are given by

1

|F̂j |
F̂j =

1

|Ŷj |
Ŷj , j = 1, 2, ..., m̂.

which can be summarised for the whole Ĝ by

F̂ = g(Ŷ )Ŷ , where g(Ŷ ) = diag

{
|F̂1|
|Ŷ1|

,
|F̂2|
|Ŷ2|

, . . . ,
|F̂m̂|
|Ŷm̂|

}
∈ Rm̂×m̂.

For the lattice G, Fi are related to the edge elongations, |Yi| − |Ei|, via a

ai bi ci di

ki

li

|Fi|

|Yi| − |Ei|

âi b̂i ĉi d̂i

k̂i

l̂i

|F̂i|

|Ŷi| − |Êi|

Figure 1: On the left the plot of the non-smooth function that relates |Fi| with |Yi| −
|Ei| of G. On the right the plot of the non-smooth function that relates |F̂i| with
|Ŷi| − |Êi| of Ĝ.

potentially non-smooth function as illustrated in Fig. 1 (left). Similarly, for the
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lattice Ĝ, F̂j are related to the edge elongations, |Ŷj | − |Êj |, via potentially a
non-smooth function as illustrated in Fig. 1 (right).

Upon deformation, the edges of G and Ĝ store energy, Ui, for i = 1, 2, ...,m
and Ûj , for j = 1, 2, ..., m̂, respectively. These energies are dependent on the

length changes |Yi| − |Ei|, i = 1, 2, ...,m and |Ŷj | − |Êj |, j = 1, 2, ..., m̂, respec-

tively. Taking into account that the deformation of Ĝ is induced by X̂ = SX,
it is clear that the system unknowns (nodal coordinates) are associated with
the nodes of G only and correspondingly the system reaction (edge forces) need
to be associated with the edges of G only. To achieve this, we associate the
stored energy of the system only with the edges of G, making the total energy
of G-edge i equal to the sum of its internal energy, Ui, and half of the energies
in the Ĝ-edges incident with the Ĝ-node centred at G-edge i. This can be writ-
ten as 1

2

∑m̂
j=1 Ûj , where the sum is over the Ĝ-edges incident with the Ĝ-node.

Thus, the gradient of the total energy with respect to the change of edge length,
provides the magnitude of the force in the G-edge, i.e. for |Yi| − |Ei| we have

1

2
|Fi|

(
|Yi| − |Ei|

)
= Ui +

1

2

m̂∑
j=1

Ûj , i = 1, 2, ...,m. (3)

Let

B =


B1

B2

...
Bn

 ∈ Rn×3, where Bi =
[
Bi1 Bi2 Bi3

]
∈ R1×3, i = 1, 2, ..., n,

be the external forces at the nodes of G, either provided as Neumann boundary
conditions, or arising as reactions to essential boundary conditions, and let

B̂ =


B̂1

B̂2

...

B̂n̂

 ∈ Rn̂×3, where B̂i =
[
B̂i1 B̂i2 B̂i3

]
∈ R1×3, i = 1, 2, ..., n̂.

be the external forces at the nodes of Ĝ.
Since the balance of angular momentum is automatically fulfilled at all nodes,

the equilibrium of the system with the boundary conditions is ensured by the
balance of linear momentum at all nodes. This is given by

A⊺F = B, (4)

where A⊺ ∈ Rn×m is the transpose of the incidence matrix A, a boundary
operator on edges of G. By substituting (2) into (4), we get

A⊺g(|Y |)Y = B,
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which incorporates the contribution of Ĝ. By substituting (1) into this non-
linear system, we arrive at the general description of the system elasticity in
terms of positions and forces of nodes in G:

[A⊺g(|AX|)A]X = B. (5)

The application of boundary conditions to system (5) requires a separation
of the nodal coordinate directions into two groups: directions with prescribed
Neumann condition – a force component, which may be zero (free boundary),
and directions with prescribed Dirichlet condition – a new coordinate value
which also may be zero (fixed boundary). This separation can be represented by
the following expressions for nodal positions and forces, and a correspondingly
re-arranged incidence matrix

X =



X1

X2

...
Xp

Xp+1

Xp+2

...
Xp+q


∈ Rn×3, B =



B1

B2

...
Bp

Bp+1

Bp+2

...
Bp+q


∈ Rn×3,

with Xp+q, Bp+q we denote Xn, Bn respectively. Where
X1

X2

...
Xp

 ∈ Rp×3, and


Bp+1

Bp+2

...
Bn

 ∈ Rq×3,

are vectors of the unknown coordinates and the known corresponding forces,
and 

Xp+1

Xp+2

...
Xp+q

 ∈ Rq×3,


B1

B2

...
Bp

 ∈ Rp×3,

are vectors of the known coordinates and the unknown corresponding forces.

3 Main Results

System (5) is a non-linear system. This is because of the diagonal matrix
g(|AX |) defined in (1). We provide the following theorem:

Theorem 3.1. Consider the non-linear system (5). Then an effective lineariza-
tion of the system is given by

ÃX = B. (6)
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Where Ã = A⊺K̃A with K̃ = diag[K̃i]1≤i≤m and

• For ai ≤ ri ≤ bi, âj ≤ r̂j ≤ b̂j :

K̃i =
(ai + bi)li +

(
2li +

∑m̂
j=1

( âj

2bi
+

b̂j
2ai

)
l̂j
)
|Ei|+

∑m̂
j=1

(aiâj

2bi
+

bib̂j
2ai

)
l̂j

2(ai + |Ei|)(bi + |Ei|)

• For bi ≤ ri ≤ 0, b̂j ≤ r̂j ≤ 0:

K̃i =
|Fi|
|Yi|

∼=
1

2bi

[
li(1−

|Ei|
bi + |Ei|

) +
1

|Ei|

m̂∑
j=1

l̂j b̂j
]

• For 0 ≤ ri ≤ ci, 0 ≤ r̂j ≤ ĉj :

K̃i
∼=

1

2ci

[
ki(1−

|Ei|
ci + |Ei|

) +
1

|Ei|

m̂∑
j=1

k̂j ĉj
]
.

• For ci ≤ ri ≤ di, ĉj ≤ r̂j ≤ d̂j :

K̃i
∼=

(ci + di)ki +
(
2ki +

∑m̂
j=1

( ĉj
2di

+
d̂j

2ci

)
k̂j
)
|Ei|+

∑m̂
j=1

( ciĉj
2di

+
did̂j

2ci

)
k̂j

2(ci + |Ei|)(di + |Ei|)
.

Where ri = |Yi| − |Ei|, r̂j = |Ŷj | − |Êj |. Let

Ã =

[
Ã11 Ã12

Ã21 Ã22

]
.

Where Ã11 ∈ Rp×p, Ã12 ∈ Rp×q, Ã21 ∈ Rq×q, Ã22 ∈ Rq×q. Then system (11) can
be divided into the following subsystems

Ã11


X1

X2

...
Xp

 =


B1

B2

...
Bp

− Ã12


Xp+1

Xp+2

...
Xp+q

 (7)

and 
Bp+1

Bp+2

...
Bn

 = Ã21


X1

X2

...
Xp

+ Ã22


Xp+1

Xp+2

...
Xp+q

 . (8)
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From the above systems only (7) has to be solved. Then


X1

X2

...
Xp

 can be replaced

in (8) and


Bp+1

Bp+2

...
Bn

 is easily computed.

Proof. We consider (5) and will seek optimal bounds for |Fi|
|Yi| , ∀i = 1, 2, ...,m.

For ai ≤ ri ≤ bi, âj ≤ r̂j ≤ b̂j and (3) we have

|Fi| = li +
1

2(|Yi| − |Ei|)

m̂∑
j=1

[
l̂j
(
|Ŷj | − |Êj |

)]
, li, l̂j < 0,

From Fig. 1 we have that

âj ≤ |Ŷj | − |Êj | ≤ b̂j ,

or, equivalently,
âj l̂j ≥ r̂j l̂j ≥ b̂j l̂j ,

or, equivalently,

1

2bi

m̂∑
j=1

âj l̂j ≤
1

2ri

m̂∑
j=1

r̂j l̂j ≤
1

2ai

m̂∑
j=1

b̂j l̂j ,

or, equivalently,

li +
1

2bi

m̂∑
j=1

âj l̂j ≤ |Fi| ≤ li +
1

2ai

m̂∑
j=1

b̂j l̂j ,

and consequently

li +
1
2bi

∑m̂
j=1 âj l̂j

bi + |Ei|
≤ |Fi|

|Yi|
≤

li +
1

2ai

∑m̂
j=1 b̂j l̂j

ai + |Ei|
.

Hence

|Fi|
|Yi|

∼=
(ai + bi)li +

(
2li +

∑m̂
j=1

( âj

2bi
+

b̂j
2ai

)
l̂j
)
|Ei|+

∑m̂
j=1

(aiâj

2bi
+

bib̂j
2ai

)
l̂j

2(ai + |Ei|)(bi + |Ei|)
.

(9)

For bi ≤ ri ≤ 0, b̂j ≤ r̂j ≤ 0 we have

|Fi| =
li
bi
(|Yi| − |Ei|) +

1

2(|Yi| − |Ei|)

m̂∑
j=1

[ l̂j
b̂j

(
|Ŷj | − |Êj |

)2]
, li, l̂j < 0,
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or, equivalently,

|Fi|
|Yi|

=
li
bi
(1− |Ei|

|Yi|
) +

1

2|Yi|(|Yi| − |Ei|)

m̂∑
j=1

[ l̂j
b̂j

(
|Ŷj | − |Êj |

)2]
, i = 1, 2, ...,m.

From Fig. 1 we have that

b̂j ≤ |Ŷj | − |Êj | ≤ 0,

or, equivalently,

0 ≤
m̂∑
j=1

l̂j

b̂j
r̂2j ≤

m̂∑
j=1

l̂j b̂j ,

or, equivalently,

1

2|Ei|ri

m̂∑
j=1

l̂j b̂j ≤
1

2|Yi|ri

m̂∑
j=1

l̂j

b̂j
r̂2j ≤ 0,

or, equivalently,

li
bi
(1− |Ei|

|Yi|
) +

1

2|Ei|ri

m̂∑
j=1

l̂j b̂j ≤
|Fi|
|Yi|

≤ li
bi
(1− |Ei|

|Yi|
),

or, equivalently,

li
bi
(1− |Ei|

bi + |Ei|
) +

1

2|Ei|ri

m̂∑
j=1

l̂j b̂j ≤
|Fi|
|Yi|

≤ 0,

because

1− |Ei|
bi + |Ei|

≤ 1− |Ei|
|Yi|

≤ 0.

Consequently

|Fi|
|Yi|

∼=
1

2bi

[
li(1−

|Ei|
bi + |Ei|

) +
1

|Ei|

m̂∑
j=1

l̂j b̂j
]
. (10)

For 0 ≤ ri ≤ ci, 0 ≤ r̂j ≤ ĉj we have

|Fi| =
ki
ci
(|Yi|−|Ei|)+

1

2(|Yi| − |Ei|)

m̂∑
j=1

[ k̂j
ĉj

(
|Ŷj |−|Êj |

)2]
, ki, k̂j > 0, i = 1, 2, ...,m.

or, equivalently,

|Fi|
|Yi|

=
ki
ci
(1− |Ei|

|Yi|
) +

1

2|Yi|(|Yi| − |Ei|)

m̂∑
j=1

[ k̂j
ĉj

(
|Ŷj | − |Êj |

)2]
, i = 1, 2, ...,m.
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From Fig. 1 we have that

0 ≤ |Ŷj | − |Êj | ≤ ĉj ,

or, equivalently,

0 ≤
m̂∑
j=1

k̂j
ĉj

r̂2j ≤
m̂∑
j=1

k̂j ĉj ,

or, equivalently,

0 ≤ 1

2|Yi|ri

m̂∑
j=1

k̂j
ĉj

r̂2j ≤ 1

2|Ei|ri

m̂∑
j=1

k̂j ĉj ,

or, equivalently,

ki
ci
(1− |Ei|

|Yi|
) ≤ |Fi|

|Yi|
≤ ki

ci
(1− |Ei|

|Yi|
) +

1

2|Ei|ri

m̂∑
j=1

k̂j ĉj ,

or, equivalently,

0 ≤ |Fi|
|Yi|

≤ ki
ci
(1− |Ei|

ci + |Ei|
) +

1

2|Ei|ri

m̂∑
j=1

k̂j ĉj ,

because

0 ≤ 1− |Ei|
|Yi|

≤ 1− |Ei|
ci + |Ei|

.

Consequently

|Fi|
|Yi|

∼=
1

2ci

[
ki(1−

|Ei|
ci + |Ei|

) +
1

|Ei|

m̂∑
j=1

k̂j ĉj
]
. (11)

For ci ≤ ri ≤ di, ĉj ≤ r̂j ≤ d̂j and (3) we have

|Fi| = ki +
1

2(|Yi| − |Ei|)

m̂∑
j=1

[
k̂j
(
|Ŷj | − |Êj |

)]
, ki, k̂j > 0, i = 1, 2, ...,m.

From Fig. 1 we have that

ĉj ≤ |Ŷj | − |Êj | ≤ d̂j ,

or, equivalently,

1

2di

m̂∑
j=1

ĉj k̂j ≤
1

2ri

m̂∑
j=1

r̂j k̂j ≤
1

2ci

m̂∑
j=1

d̂j k̂j ,
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or, equivalently,

ki +
1

2di

m̂∑
j=1

ĉj k̂j ≤ |Fi| ≤ ki +
1

2ci

m̂∑
j=1

d̂j k̂j ,

and consequently

ki +
1

2di

∑m̂
j=1 ĉj k̂j

di + |Ei|
≤ |Fi|

|Yi|
≤

ki +
1
2ci

∑m̂
j=1 d̂j k̂j

ci + |Ei|
,

Hence

|Fi|
|Yi|

∼=
(ci + di)ki +

(
2ki +

∑m̂
j=1

( ĉj
2di

+
d̂j

2ci

)
k̂j
)
|Ei|+

∑m̂
j=1

( ciĉj
2di

+
did̂j

2ci

)
k̂j

2(ci + |Ei|)(di + |Ei|)
,

(12)
System (5) can be written as

[
Ã11 Ã12

Ã21 Ã22

]


X1

X2

...
Xp

Xp+1

Xp+2

...
Xp+q


=



B1

B2

...
Bp

Bp+1

Bp+2

...
Bp+q


,

or, equivalently,

Ã11


X1

X2

...
Xp

+ Ã12


Xp+1

Xp+2

...
Xp+q

 =


B1

B2

...
Bp

 ,

and

Ã21


X1

X2

...
Xp

+ Ã22


Xp+1

Xp+2

...
Xp+q

 =


Bp+1

Bp+2

...
Bn

 .

From the above expressions we get the subsystems (7), (8). The proof is com-
pleted.

Theorem 3.1 presents a solution for the non-linear system (5) by utilizing the
linear system (6). This method offers several advantages, including the ability
to analyze solutions of non-linear systems involving large matrices at a minimal
computational cost, thanks to the linearity of (6). Furthermore, the proposed
method proves to be user-friendly for handling non-linear systems not only in
the present context but also in various other applications, including electrical
networks [18, 19], gas networks [20], and dynamical networks [21, 22, 23].
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4 Numerical Example

In this section, we illustrate the main results of the paper through a numerical
example. In particular, we consider a system comprising a lattice G of n = 6
nodes with coordinates N = [N1 N2 . . . N6]

⊺, which are connected through m =
12 edges with vector values E = [E1 E2 . . . E12]

⊺. In addition, the midpoints
of the 12 edges of the lattice are also the coordinates N̂ = [N̂1 N̂2 . . . N̂12]

⊺

of a second lattice Ĝ with n̂ = 12 nodes. The nodes of the second lattice are
connected through m̂ = 36 edges with vector values Ê = [Ê1 Ê2 . . . Ê36]

⊺.
The values of the components of N , E, N̂ and Ê are given in Table 1. A three-
dimensional representation of the graphs of the two lattices is shown in Fig. 2a,
while a two-dimensional representation of the same graphs is given in Fig. 2b.

(a) 3D plot. (b) 2D plot.

Figure 2: Lattice G and Ĝ graphs in initial positions.

The incidence matrix corresponding to G is:

A =



1 0 0 −1 0 0
1 0 0 0 −1 0
1 −1 0 0 0 0
1 0 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 −1 0 0 1 0
0 1 −1 0 0 0
0 0 0 −1 0 1
0 0 0 0 −1 1
0 −1 0 0 0 1
0 0 −1 0 0 1



,

while the incidence matrix corresponding to Ĝ is:
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Â =



1 −1 0 0 0 0 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 0 0 0 0
1 0 0 0 −1 0 0 0 0 0 0 0
1 0 0 0 0 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 0 0 0
0 1 0 0 0 0 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 0 0
0 0 1 0 0 0 −1 0 0 0 0 0
0 0 1 0 0 0 0 −1 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 0 0 −1 0 0
1 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 1 0 0 −1 0 0 0
0 0 0 0 0 1 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 0 0 −1 0
0 0 0 0 0 0 1 0 0 −1 0 0
0 0 0 0 1 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 −1
0 0 0 0 0 0 0 0 1 −1 0 0
0 0 1 0 0 0 0 0 0 0 −1 0
0 0 0 1 0 0 0 0 0 0 0 −1
0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 0 0 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 −1 0
0 0 0 0 0 0 0 0 0 1 0 −1



,

We now assume the application of an external force to the examined struc-
ture. As a result, the geometry of the structure is deformed, and the nodes of G
and Ĝ have new coordinates X and X̂, respectively. Moreover, the new values
of the edge vectors of G and Ĝ of the deformed structure are given by Y and Ŷ ,
respectively. Then, the length change of the i-th edge of G due to the applied
force is given by ri = |Yi| − |Ei|, while the length change of the j-th edge of Ĝ
is given by r̂j = |Ŷj | − |Êj |. In the remainder of this example we consider the
following cases:
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i Ni N̂i Ei |Ei| Êi |Êi|
1 (0, 0,1) (-0.5,0,0.5) (1,0,1)

√
2 (-0.5,-0.5,0) 1/

√
2

2 (1,0,0) (0,0.5,0.5) (0,-1,1)
√
2 (-0.5,0.5,0) 1/

√
2

3 (0,-1,0) (0.5,0,0.5) (-1,0,1)
√
2 (0.5,0.5,0) 1/

√
2

4 (-1,0,0) (0,-0.5,0.5) (0,1,1)
√
2 (0.5,-0.5,0) 1/

√
2

5 (0,1,0) (-0.5,-0.5,0) (1,-1,0)
√
2 (0,0.5,0.5) 1/

√
2

6 (0,0,-1) (-0.5,0.5,0) (-1,-1,0)
√
2 (0,-0.5,0.5) 1/

√
2

7 (0.5,0.5,0) (-1,1,0)
√
2 (0.5,0,0.5) 1/

√
2

8 (0.5,-0.5,0) (1,1,0)
√
2 (-0.5,0,0.5) 1/

√
2

9 (-0.5,0,-0.5) (1,0,-1)
√
2 (0,-0.5,0.5) 1/

√
2

10 (0,0.5,-0.5) (0,-1,-1)
√
2 (0,0.5,0.5) 1/

√
2

11 (0.5,0,-0.5) (-1,0,-1)
√
2 (-0.5,0,0.5) 1/

√
2

12 (0,-0.5,-0.5) (0,1,-1)
√
2 (0.5,0,0.5) 1/

√
2

13 (0,-1,0) 1
14 (-1,0,0) 1
15 (0,1,0) 1
16 (1,0,0) 1

17 (-0.5,0,0.5) 1/
√
2

18 (0,-0.5,0.5) 1/
√
2

19 (0,0.5,0.5) 1/
√
2

20 (-0.5,0,0.5) 1/
√
2

21 (0.5,0,0.5) 1/
√
2

22 (0,0.5,0.5) 1/
√
2

23 (0,-0.5,0.5) 1/
√
2

24 (0.5,0,0.5) 1/
√
2

25 (-0.5,-0.5,0) 1/
√
2

26 (-0.5,0.5,0) 1/
√
2

27 (0.5,0.5,0) 1/
√
2

28 (0.5,-0.5,0) 1/
√
2

29 (-1,0,0) 1
30 (0,1,0) 1
31 (-1,0,0) 1
32 (0,1,0) 1
33 (0,0,1) 1
34 (0,0,1) 1
35 (0,0,1) 1
36 (0,0,1) 1

Table 1: Initial nodes, edges, and edge lengths.

• 0 ≤ ri ≤ ci, 0 ≤ r̂j ≤ ĉj , and

• ci ≤ ri ≤ di, ĉj ≤ r̂j ≤ d̂j ,

where the values of ci, di, ĉj and d̂j are given in Table 2.

First, for 0 ≤ ri ≤ ci, 0 ≤ r̂j ≤ ĉj , we find from Theorem 3.1 that K̃i =

6.44 · 10−4, i = 1, 2, . . . ,m, where the values of ki and k̂j are given in Table 2.
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i ci di ĉi d̂i ki × 104 k̂i × 104 Bi

1 0.2121 7.0711 0.1061 3.5355
√
2 1/

√
2 (0,0,0.1586)

2 0.2121 7.0711 0.1061 3.5355
√
2 1/

√
2 (0.1760,0,0)

3 0.2121 7.0711 0.1061 3.5355
√
2 1/

√
2 (0,-0.1954,0)

4 0.2121 7.0711 0.1061 3.5355
√
2 1/

√
2 (-0.2169,0,0)

5 0.2121 7.0711 0.1061 3.5355
√
2 1/

√
2 (0,0.2407,0)

6 0.2121 7.0711 0.1061 3.5355
√
2 1/

√
2

7 0.2121 7.0711 0.1061 3.5355
√
2 1/

√
2

8 0.2121 7.0711 0.1061 3.5355
√
2 1/

√
2

9 0.2121 7.0711 0.1061 3.5355
√
2 1/

√
2

10 0.2121 7.0711 0.1061 3.5355
√
2 1/

√
2

11 0.2121 7.0711 0.1061 3.5355
√
2 1/

√
2

12 0.2121 7.0711 0.1061 3.5355
√
2 1/

√
2

13 0.1500 5 1
14 0.1500 5 1
15 0.1500 5 1
16 0.1500 5 1

17 0.1061 3.5355 1/
√
2

18 0.1061 3.5355 1/
√
2

19 0.1061 3.5355 1/
√
2

20 0.1061 3.5355 1/
√
2

21 0.1061 3.5355 1/
√
2

22 0.1061 3.5355 1/
√
2

23 0.1061 3.5355 1/
√
2

24 0.1061 3.5355 1/
√
2

25 0.1061 3.5355 1/
√
2

26 0.1061 3.5355 1/
√
2

27 0.1061 3.5355 1/
√
2

28 0.1061 3.5355 1/
√
2

29 0.15 5 1
30 0.15 5 1
31 0.15 5 1
32 0.15 5 1
33 0.15 5 1
34 0.15 5 1
35 0.15 5 1
36 0.15 5 1

Table 2: Given forces on nodes and material properties.

Then, we have Ã = A⊺K̃A. Matrix Ã can be written as:

Ã =

[
Ã11 Ã12

Ã21 Ã22

]
, (13)
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where

Ã11 =


0.0026 −0.0006 −0.0006 −0.0006 −0.0006

−0.0006 0.0026 −0.0006 0 −0.0006
−0.0006 −0.0006 0.0026 −0.0006 0
−0.0006 0 −0.0006 0.0026 −0.0006
−0.0006 −0.0006 0 −0.0006 0.0026

 ,

Ã21 = Ã⊺
12 =

[
0 −0.0006 −0.0006 −0.0006 −0.0006

]
, Ã22 = 0.0026 .

Given the values of Bi, i = 1, 2, . . . , 5, in Table 2, and that X6 = N6 =
(0, 0,−1), we can compute the final positions X of the nodes of G through the
solution of (7):

X =


−15.89 17.59 123.2
57.77 14.66 61.6)

−13.24 −64.16 61.6
−94.83 14.66 61.6
−13.24 105.22 61.6

0 0 −1

 .

Moreover, as a byproduct, we find from (8) that B6 = (0.04,−0.05,−0.16).
Finally, the new positions X̂ of the nodes of Ĝ are computed through the

relationship X̂ = SX, where for this example:

S =



0.5 0 0 0.5 0 0
0.5 0 0 0 0.5 0
0.5 0.5 0 0 0 0
0.5 0 0.5 0 0 0
0 0 0.5 0.5 0 0
0 0 0 0.5 0.5 0
0 0.5 0 0 0.5 0
0 0.5 0.5 0 0 0
0 0 0 0.5 0 0.5
0 0 0 0 0.5 0.5
0 0.5 0 0 0 0.5
0 0 0.5 0 0 0.5



. (14)

We find:

X̂ =



−55.36 16.12 92.40
−14.56 61.41 92.40
20.94 16.13 92.40

−14.56 −23.28 92.40
−54.03 −24.75 61.60
−54.03 59.94 61.60
22.27 59.94 61.60
22.27 −24.75 61.60

−47.42 7.33 30.30
−6.62 52.61 30.30
28.88 7.33 30.30
−6.62 −32.08 30.30



.
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A three-dimensional representation of the graphs of the two lattices in their
final positions is depicted in Fig. 3a, while a two-dimensional plot of the same
graphs is depicted in Fig. 3b.

(a) 3D plot. (b) 2D plot.

Figure 3: Lattice G and Ĝ graphs in final positions (0 ≤ ri ≤ ci, 0 ≤ r̂j ≤ ĉj).

Second, for ci ≤ ri ≤ di, ĉj ≤ r̂j ≤ d̂j , from Theorem 3.1 we get that

K̃i = 0.0088, i = 1, 2, . . . ,m. Then, then Ã is given by Ã = A⊺K̃A and can be
written in the form of (13), where in this case:

Ã11 =


0.035 −0.0088 −0.0088 −0.0088 −0.0088

−0.0088 0.035 −0.0088 0 −0.0088
−0.0088 −0.0088 0.035 −0.0088 0
−0.0088 0 −0.0088 0.035 −0.0088
−0.0088 −0.0088 0 −0.0088 0.035

 ,

Ã21 = Ã⊺
12 =

[
0 −0.0088 −0.0088 −0.0088 −0.0088

]
, Ã22 = 0.035 .

The final positions X of the nodes of G are computed through the solution of
(7):

X =


−1.17 1.29 9.06
4.25 1.08 4.52

−0.97 −4.72 4.52
−6.98 1.08 4.52
−0.97 7.74 4.52

0 0 −1

 .

Moreover, from (8), we get that B6 = (0.04,−0.05,−0.19).
Finally, the new positions X̂ of the nodes of Ĝ can be found through the
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relationship X̂ = SX, where S is given by (14). We find:

X̂ =



−4.07 1.18 6.79
−1.07 4.52 6.79
1.54 1.19 6.79

−1.07 −1.71 6.79
−3.97 −1.82 4.52
−3.97 4.41 4.52
1.64 4.41 4.52
1.64 −1.82 4.52

−3.49 0.54 1.76
−0.49 3.87 1.76
2.12 0.54 1.76

−0.49 −2.36 1.76



.

Finally, a three-dimensional representation of the graphs of the two lattices
in their final positions for the case ci ≤ ri ≤ di, ĉj ≤ r̂j ≤ d̂j is presented in
Fig. 3a, while a two-dimensional plot of the same graphs is presented in Fig. 3b.

(a) 3D plot. (b) 2D plot.

Figure 4: Lattice G and Ĝ graphs in final positions (ci ≤ ri ≤ di, ĉj ≤ r̂j ≤ d̂j).

The graphs shown in this section have been generated with an ad hoc Matlab
script, which is available for download at [24].

Conclusions

In this article we proposed a mathematical model of elasticity and plasticity by
using DEC and a force-based approach, where the discrete structure of materials
is represented by two graphs. By making the kinematics of one of the graphs
induced by the kinematics of the other, we derived the governing equations
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of elasticity and plasticity, where the deformations of both graphs contribute
energy to the system, but the reaction of the system is only via forces in the
edges of latter graph. This provides a single non-linear system of governing
equations, for which we offered linearization, computational implementation,
and a simple demonstration of the model at work.

The model requires extensive testing with larger lattices to compare with
experimentally measured elastic behaviour of various materials, which is a sub-
ject of ongoing work. We anticipate that the model can be used for atomic-scale
simulations as an alternative to the currently used in molecular dynamics in-
teractions based on empirical pair and cohesive potentials. The reason for our
expectation is that the inclusion of the complementary lattice in our model
could be a suitable replacement to the cohesive potentials including those with
angular dependencies.
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