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Abstract— This paper presents a comprehensive and detailed B. Functions

study of an optimization-based approach to identify and anfyze
saddle-node bifurcations (SNB) and limit-induced bifurcaions
(LIB) of a power system model, which are known to be directly
associated with voltage stability problems in these systesn
Theoretical studies are presented, formally demonstratig that

solution points obtained from an optimization model, which is
based on complementarity constraints used to properly repgsent
generators’ voltage controls, correspond to either SNB or LB

points of this model. These studies are accomplished by pring

that optimality conditions of these solution points yield he
transversality conditions of the corresponding bifurcation points.
A simple but realistic test system is used to numerically illstrate
the theoretical discussions.

Index Terms— Saddle-node bifurcations, limit-induced bifur-
cations, transversality conditions, optimization method, voltage
stability, maximum loadability.

I. NOMENCLATURE

A. Variables

x € R™=: Vector of state variables.
y € R": Vector of algebraic variables.
z = (z,y) € R™=: Vector of state and algebraic variables.

f() iR x R™ x RT x R™ — R"=: Nonlinear vector field
associated with the state variables.

g(-) : R x R™ x RT x R™ — R": Nonlinear algebraic
constraints.

F() = (f(),9(-)) : R* x Rt x R"™ +~— R": Nonlinear
differential-algebraic power system model.

G(-) : R* x Rt x R»  R": Standard power flow
equations (2 equations per bu&),C g.

§(-) : R x R™ x Rt x R™ — R": Power flow equations
that do not include actuation limit equatiorisC G.

() : R™ x R™ x Rt x R™ +— R": Actuation limit
functions, i.e. nonlinear functions of the generator neact
power flow equationss C G.

h(-) : R* x R™ x RT x R™ — R": All actuation limit
equationss C h.

C. Subscripts

o: denotes equilibrium/initial point.
c: denotes bifurcation/optimal point.

z2 = (Z,7) € R™: Vector of voltages and angles at all buses,

and reactive power at generation buses, z.

Z € R™=: Vector of voltages and angles at all busgs; Z.
power generation in this paper.

X € R*: Loading factor.

7 € R": Vector of actuation limit variables, i.e. reactive

Il. INTRODUCTION

OLTAGE stability (VS) has become rather important in
modern power systems, due to the fact that systems are
being operated close to their VS limits, as demonstrated by

p € R™: Vector of controllable parameters associated witfiany recent major blackouts which can be directly associ-

control settings.

ated with VS problems. Furthermore, the implementation and

p € R": Vector of generation voltage levels and base actiapplication of open market principles have exacerbates! thi

power injectionsp C p.

[1: Vector of Lagrange multipliers.

©: Normalized zero right eigenvector.
w: Normalized zero left eigenvector.
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problem, since security margins are being reduced to re&spon
to market pressures [1]-[3]. Consequently, the prediction
identification and avoidance of voltage instability poiptay a
significant role in power system planning and operation.Non
linear phenomena, particularly saddle-node bifurcat{@NB)

and limit-induced bifurcations (LIB) have been shown to be
directly associated with VS problems in power systems [4],
and are hence the main concern in the current paper. It is
important to highlight the fact that other types of bifuioas

in power systems, such as Hopf bifurcations (HB), associ-
ated with oscillatory instabilities [5], and Singularityduced
bifurcations (SIB), associated with differential-algaisrmod-

els [4], [6], [7], are not considered in this paper, sincesthe
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types of bifurcations have not been shown in practice to IV model correspond to either SNB or LIB points; this is
directly related to VS problems [4]. accomplished by showing that the optimality conditions of
Continuation Power Flow (CPF) and Optimal-Power-Flowthese solution points yield the transversality conditiohshe
based Direct Methods (OPF-DM) are two different techniquesrresponding bifurcation points. A simple but realististt
that are used in practice to compute VS margins. The maststem example is used to numerically illustrate the ptesen
widely used method is the CPF, which is a technique thtiteoretical discussions.
consists in increasing the loading level until a voltageremnt This paper is structured as follows: Section Il presents
or voltage stability limit is detected in a power flow modeida a concise but thorough description of the VS problem, the
it is based on a predictor-corrector scheme to find the campl@ower system model used to study it, and its mathematical
equilibrium profile or bifurcation manifold (PV curve) of acharacterization through bifurcation theory. The optiatian
set of power flow equations with respect to a given scalarodels used for the OPF-DM studies of interest to this paper
variable. This scalar parameter is typically referred to ase discussed in detail in Section IV. Section V concentrate
the bifurcation parameter or loading factor, as it is used tm formally showing that the solution points of an optimiaat
model changes in system demand [8], [9]. In [10], it is showmodel described in the previous section correspond toreithe
that this method can be viewed as a Generalized Redu&dB or LIB points, based on optimality conditions and
Gradient (GRG) approach for solving a maximum loadabilitthe corresponding bifurcation transversality conditiofite
optimization problem. theoretical discussions are illustrated with the help oftaus
The OPF-DM is an optimization-based method that consigdesst system in Section VI. Finally, in Section VII, the main
in maximizing the loading factor, while satisfying the pawecontributions of the paper are highlighted.
flow equations, bus-voltage and generators’ reactive power
limits, and other operating limits of interest (e.g. tramssion- [1l. DEFINITIONS

line thermal limits) [11], [12]. A variety of OPF models base  \pltage stability is associated with the capability of a pow
on this problem definition have been proposed; for examplgstem to maintain steady acceptable voltages at all buses,
the authors in [13]-[15] propose a multi-objective OPF foRot only under normal operating conditions, but also after
maximizing both the social welfare and the loading factobeing subjected to a disturbance [21]. It is a well estabtish
This type of optimization problems can be solved by meafsct that voltage collapse in power systems is associated
of Interior-Point Methods (IPM), which have been shown tg;ith system demand increasing beyond certain limits, a$ wel
be computationally efficient for power system studies [16]. 55 with the lack or reactive power support in the system
An important difference between the CPF and the mOghysed by limitations in the generation or transmission of
popular implementations of the OPF-DM is that, in the CPRgactive power. System contingencies such as generator or
the voltage is kept constant at generation buses while thgife unexpected outages exacerbate, if not trigger, the VS
reactive power output is within limits (PV bus mod(_el). In th%roblems [4], [22]. Usually, VS analysis consist in detaring
“standard” OPF-DM, generator voltages and reactive powgffe system conditions at which the equilibrium points of a
are allowed to change within limits, so that “optimal” opera dynamic model of the power system merge and disappear;

ing conditions are obtained. These different approaches mgese points have been associated with certain bifurcatién
lead to different solutions; an interesting discussionuattiois  he corresponding system models [4].

issue can be found in [2]. An OPF-DM model that is shown
empirically to produce similar results to the CPF approaachA <tem Moddl
presented and discussed in [17], where PV buses are model'edg’/ em Models . . .
using complementarity constraints; the latter are showre he Power systems are typically modeled with nonlinear
to be particularly important to demonstrate the equivajesfc differential-algebraic equations (DAE), which are a clags

CPF and OPF-DM approaches. nonlinear systems, as follows:

The current paper presents a detailed theoretical analysis P £z, y, M p)
of the application of OPF-DM to the study of SNBs and o | = | ’ ’)\’ ) =F(z,A,p) 1)
LIBs in power systems. Previous works have formally shown I\& Y, AP

that optimization methods can be used to compute SNBsvilmere z € R"= is a vector of the state variables which
power system models, and that these methods are basicedlgresents the dynamic states of generators, loads arasyst
equivalent to more “classical” computational approacii€s.[ controllers;y € R™ is a vector of algebraic variables that
Also, some issues associated with the application of OPFs-DMpically results from neglecting fast dynamics, such adlo
to the computation of LIBs are discussed in [18], and tHaus voltages magnitudes and angles;= (z,y) € R"z;
structure of the loadability surface is studied in [19] @sin\ € R stands for a slow varying “uncontrollable” parameter,
similar optimization methods. In [20], fold bifurcationsea typically used to represent load changes that move therayste
also studied based on an optimization model. However, upftom one equilibrium point to another; apde R"» represents
now, to the authors’ knowledge, the links between solutiofisontrollable” parameters associated with control sggin
of OPF-DMs and SNBs and LIBs have not yet been deatch as Automatic Voltage Regulator (AVR) set points. The
with in the technical literature as formally and systermaltic function f : R® x R™ x Rt x R" +— R"= is a nonlinear
as it is done here. Hence, the present paper concentratevector field directly associated with the state variableand
demonstrating that solution points obtained from a givelrOPrepresenting the system differential equations, such aseth
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associated with the generator mechanical dynamics;gand Hence, bifurcation analysis is usually associated withsthey
R™ xR" x RT x R™ — R™ represents the system nonlineaof equilibria of the nonlinear system model [4].
algebraic constraints, such as the power flow equations, andn power systems, SNBs and some types of LIBs are basi-
algebraic constraints associated with the synchronousimac cally characterized by the local merging and disappearafice
model. power flow solutions as certain system parameters, paatigul

If the Jacobianvgg(-) of the algebraic constraints issystem demand, slowly change; this phenomenon has been
invertible, i.e. nonsingular along a “solution path” of (ihe associated with VS problems [4]. These kinds of bifurcation
behavior of the system is mainly defined by the followingre also referred to in the technical literature as fold oming

Ordinary Differential Equation (ODE) model points.
) _1 1) Saddle-Node Bifurcations (SNB): These types of
&= f(z,y” (2, A\, p),A,p) codimension-1 (single parameter), generic bifurcatioosuo

were y—(z, \, p) results from applying the Implicit Func- when twq equilib.rium points, typicglly one stable and one
tion Theorem to the algebraic constraints along the systéfstable in practice, merge and disappear as the parameter
trajectories of interest [10], [23]. The interested reader A slowly changes, as illustrated in the PV curves of F|g‘s. 1(a)
referred to [24] for a detailed discussion whei g(-) is not and 1(b), whereV, and Qg stand for a generatof's
guaranteed to be invertible; this problem is associateth wi¢rminal voltage magnitude and reactive power, respdgtive
SIBs, which are beyond the scope of the present paper, sifft@thematically, the SNB point for the power flow model (2)

this phenomenon is not directly related to V'S problems f§ & solution point(z., Ac,,) where the JacobialVi G|
practice [4]. has a simple zero eigenvalue, with nonzero eigenvectoils [26

Equilibrium pointsz, = (z,,y,) of (1) are defined by the [28]. The following transversality conditions can be used to
solutions of the nonlinear equations: characterize and detect SNBs [10]:

VTGL;@ =V;:Glab =0 (3)
F (o, Yo, Aoy Do) F
F(Zm)\ovpo) = =0 A
[ g(xoa Yo, )\07p0) . QY)\Glc w#0 (4)
0 Vi Glco| D 0 5
It is important to highlight the fact that the system equikib w { : G ”} o F (%)

are in practice obtained from a subset of equations: where? andw@ € R™: are normalized right and left eigenvec-
R R tors of the Jacobiav? G|.. The first condition implies that

G (%0, Xo1Po) = Glo =0 C Flz0,40,p0) = Flo =0 (2) 0 3ac0bian matrix iszsin|gular; the second and thilrad cimmdit
where G|, = 0 stands for the power flow equations, withensure that there are no equilibria néar, A, po) for A > A
G C g, 2, € R* C z is the set of voltage and angles afor A < A, depending on the sign of (5)). Note that the
all buses as well as the reactive power of the generator (PRMPScript is used throughout the paper to denote a bifurcation
buses; angh, € R™» C p usually represents the voltage level§0INt.
and “base” active power injections at PV buses, “base” activ 2) Limit-Induced Bifurcations (LIB): These types of
and reactive power injections at load buses, transformedfix codimension-1 (single parameter), generic bifurcations i
tap settings and other controller settings. power systems were first studied in detail in [29], and can

Power flow models have been used in practice for voltag€ typically encountered in these systems, since as the load
collapse studies, since these models form the basis foringfinincreases, reactive power demand generally increaseslis we
the actual system operating conditions [4]. However, oéld thus reactive power limits of generators or other veltag
should be aware that the solutions of the power flow equatioi@gulating devices are reached. These bifurcations résult
do not necessarily correspond to system equilibria, since@gduced VS margins, and in some cases the operating point
solution of G|, = 0 does not imply thaf'|, = 0, even though “disappears” causing a voltage collapse [4], as illusttate
this is not a significant issue in practice. Therefore, irs thfFig. 1. Mathematically, the LIBs associated with power flow
paper, actual SNBs and LIBs of (1) are assumed to correspdR@dels are solution points, A, p,) where all the eigenval-
to similar “bifurcation” points of the power flow equationsU€s of the corresponding Jacobisr G|. have nonzero real
which is the case of certain power system models [25], [26)arts, i.e. the power flow Jacobian is nonsingular [30].

thus, the paper concentrates on the analysis of SNBs and LIBd hese bifurcations are divided into two types, namely,timi
of (2). induced dynamic bifurcations (LIDB), and limit-induce@tt

bifurcations (LISB). In the case of LIDBs, the equilibrium
) ) ) points continue to exist after being reached as the bifimeat
B. Bifurcation Analysis parameter\ changes, as illustrated in Figs. 1(b) and 1(d). On
Bifurcation theory yields tools that are able to classifithe other hand, LISBs are somewhat similar to SNBs in the
study, and give qualitative and quantitative informatidioat sense that these correspond to points at which two solutions
the behavior of a nonlinear system close to bifurcation onerge and disappear as the bifurcation parametenanges,
“critical” equilibrium points as system parameters chaf&j@. as depicted in Fig. 1(c); thus, LISBs also are associateld wit
The parameters are assumed to change “slowly”, so that theximum loadability margins in power flow models.
system can be assumed to “move” from one equilibrium In general, the limits that trigger LIBs can be categorized
point to another with these changes (quasi-static assanmjpti into three basic types of limits, namely, actuation limgtgte
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Fig. 1. Main bifurcations observed in PV curves: (a) SNB withQ¢a
limits; (b) LIDB followed by an SNB; (c) LISB; (d) LISB precedl by an
LIDB.

limits and switching limits [30]. The actuation limits appe
when certain variables, which are functions of some of the
state variables encounter a limit. These limits do not diyec
affect the state variables but the overall dynamics, and can
be modeled through the use of actuation functions. In power
systems models, actuation limits typically depend on only
one state variable at a time, and one of these inequalities
becomes an equality on encountering a limit. The statedimit
have a direct effect on the state variables, and occur when a
state reaches its limit, which results in the system dimmmsi
dropping by one, since the state variable becomes a constant
in the model. These kinds of limits can be modeled by setting
the state derivative equal to zero when the limits are rechche
Finally, the switching limits are followed by pre-estabisi
actions (e.g. relaying mechanisms or protective limitarthe
physical system) that might result in a change in the whole
system, and consequently in the states. These limits can be
modeled, for instance, by introducing certain binary Jalga

that represent the internal logic of a relay element.

For the power flow model, actuation limits can be directly
associated with LIBs. Therefore, this paper focuses onethes
types of limits to analyze LIBs, using the following reprase
tation that results from the proper ordering of the power flow
equations (2), and with similar notation to the one proposed
in [30]:

AP ] =0 ©)
r— §( ) /\713)
wherez € R"z, # € R"*, 2 = (%, ), and the actuation limits
are modeled as:
fi'm,in? if S; (2, )\,]3) < /fi'm,in
Fi =19 &(Z\p), if i, <& ND) <. ()
fimw, if 8; (5, )\,]3) > fimw

Since in power flow models, LIBs of interest are typically
associated with generators reaching their maximum reactiv
power limits, at an LIB point(Z., A, Po) = (Z¢, Tes Aey Do)
the following two sets of equations apply:

G(Zes Pes Acy Do)
Ga(Zes AesPo) = | 7, — 81 (Bes Ay o) Yk #i | =0 (8)
'f‘ic - §i(§c, /\caﬁo)
g(gcafca ACvﬁo)
Go(Ze; AesPo) = | h, — 8k(Ze, Aes Do) VE#1 | =0 (9)

Tie = Timae

where (8) corresponds to the system equations “before” a
limit is reached, and (9) represents the system “after” at lim
is reached as\ increases. These system conditions can be
referred to as the system in actuation regime and in sabarati
regime, respectively, as depicted in Fig. 1. Notice that a
“critical” solution or bifurcation point must satisfy botkets

of equations, and that the difference between (8) and (9) is
only the equation corresponding to actuation limisince an

LIB occurs when a single generatoreaches its maximum
reactive power limit.
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The transversality conditions for LIBs may then be defined Based on the aforementioned variable definition and if

as follows [30]: the actuation functions (12c) are omitted, the model can be
1) Gale = Gplc =0 restated as:
i i 7T i 7T
2) Jacoblansfq =V G,|c. andJ} = V; G,|. have nonzero max (14a)
real parts, i.e. 6V, Kg
_ _ Qa,Va,A
detJ.) #0 and detJ;) #0 (10) st. G(6,Vi,Ka,Qa, Vg, A\, Ps, Pp) =0 (14b)
. ) < < ) )
3) The index: Qai,,, =W <la,, Vied (140)
det J¢ Vo, . <Va, <Vg,,. Vi€G (14d)
= = #0 (11)
det J; where G is the set of generation buses. It is important to
defines the type of LIB; thusy > 0 for an LISB, and highlight the fact that in this optimization model no other
a < 0 for an LIDB. limits such as load bus voltage magnitude limits, generator

active power limits, or power transfer limits, which are igad
operating limits considered in such OPF models, are repre-
IV. OPF-BASED DIRECT METHOD (OPF-DM) sented in this model. The reason for this is that these arel*ha

Optimization methods may be used to compute maximulimits and not actuation limits, i.e. limits that basicatigfine
loadability points of power flow models, which are directlyundesirable” operating conditions which may be assodiate
associated with SNBs and LISBs of the corresponding modith system protections rather than system controls, andée
equations, as initially proposed in [11]. Thus, based on ti§¢ not lead to LIBs. Thus, these limits would only clutter
aforementioned SNB and LIB definitions, the bifurcatiothe theoretical analyzes presented in the next sectiohpufit
point directly corresponds to the solution of the followingdding much to the discussions.

optimization model, as formally demonstrated in Section V: It has been shown that if no limits become active, the
Karush-Kuhn-Tucker (KKT) optimality conditions evaludte

max A (12a) at the solution point of (14) are equivalent to the transaitys

ER P
L conditions (3) and (4) for SNBs [10]; however, it has not yet
St {](”ﬁ’ 7:’ /\’pf’) a (12b) been formally shown for these particular types of bifurmasi
h(Z, 7, X, o) = (12¢)  that the third transversality condition (5) is also met, ethis
Prin < T < Prae (12d) an issue addressed here. It can also be argued that this model

) . may provide a different maximum loading point differentrfro
where the nonlinear functiorh is used to represent theihat obtained using the CPF technique if reactive powetsimi
actuation limit equations introduced in (6), since in theS§acome active [17]. The main problem is that (14) does not
optimization models, the actuation limits are typicallytndnclude a proper representation of PV buses, and hence there
represented explicitly, as illustrated below. The issu@l s no guarantee that the voltage at generation buses would be

constraints (12c) are actually represented in this mod®, amaintained constant while the reactive power output at such
the effect of this modeling on the solution of optimizationy,ses is within its limits, as in CPF techniques.

problem (12) is discussed in detail below. Note that (12d)

basically corresponds to (7).
B. OPF-DM with Complementarity Constraints

A OPF-DM in Sandard Form Ar_1 optimization model that has _been empirically shqwn
] to yield the same SNB or LISB points as a CPF technique
For a typical power flow model, leE = (6,VL, Ka), has been proposed in [17]. The authors in this paper propose

# = (Qa,Va), andp = (Ps, Pp). In this cases stands for g gptimization model that is based upon the idea that many
all the bus voltage phasor angles but one (slack bids)and  yroplems encountered in engineering, physics or econgmics
Ve correspond to the load and generator bus voltage phag@iiich behave according to different rules under different
magnitudes, respectively; anQ¢ represents the generatorgrcumstances, can be modeled using complementarity con-
reactive power output. The variablé%; and Pp define the gyraints, since these constraints can be used to model gehan
change in generation and demand powers, respectively,i@%ystem behavior. Thus, the change from a PV to a PQ
follows: bus, when a generation reactive power limit is reached, ean b
modeled using these type of constraints in the OPF problem

Pe=Pg, + (A + K¢)Ps (13) " as follows [31];
PLZPLO + A PD
Qr=Qr, + A K1 Pp 0<(Qox — Qay,,,) L Va, 20

= (QkaQGk

min

wherePg,, Pr, andQr, stand for the “base” generation and
load levels, thus defining an “initial” operating poirkt; is

a variable used to model a distributed slack bus; &ndis a 0 < (Qgy,,., —Qcy) L Vb, 20
constant used to represent a constant power factor load. = (Qa, — Qa,,,.. Vb, =0
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where V, and V, are auxiliary, nonnegative variables thaDS assumptions. If these conditions are not met, then the
allow increasing or decreasing the generator voltage dat,posolution could not be classified as an SNB or LIB point with
depending on the state @), and L is a complementarity certainty, as per the theorems proved below. However, from
operator. Thus: numerical results reported in various papers (e.g. [11])[1
_ where these types of optimization problems are solved for
if Qc. = Qa,,,, = Va, 2 0andVi, =0 a variety of small and large electrical power systems, most
if Qe, . <Qa, <Qc,.. = Vo, =Vp, =0 solutions do meet these assumptions in practice [20]. Ehis i
if Qe = Qa,,,.. = Vo, =0andV,, >0 due to the fact that in nonlinear system theory, codimengion

L . . , (single parameter) bifurcations SNBs and LIBs are consitler
This yields the following Mixed Complementarity PrOble”beneric [27], i.e. they are expected in power systems under

(MCP) [17]: typical operating conditions and modeling assumptiong.[33
max A\ The theorem below shows that an optimal solution of (15),
%ZL\?fcj\ at which a given generator is at its reactive power limit @hil

_ its terminal voltage is at its regulator set point, corregisto

st. G5, Vi, K Ve, A, Ps, Pp) =0 (15a) ' > .

(0,V2, K, Q6. Va, A P, Pp) (152) an LISB and cannot be an LIDB. This is something one can
(QGk - QGk )Vllk =0 Vke g (15b)

min intuitively deduce from Figure 1(d), if the OS assumptions a
(QGk - QkaaI)‘/bk =0 Vkeg (15C) met.
Vo, =Va, +Va, — Vi, VkeEG  (15d) Theorem 1. Let (2., \.), 2. = (2., 7c), be a local optimum
. f (15) that meets the aforementioned OS assumptions for
< < VkeG (15e) © _ o
QG < @ < Qe G (159 » = po, Where a given generatérsatisfies:

Vors Vo, 20 Vkeg (15f)
whereV, is the generator voltage regulator set point, i.e. the Qai. = @iy, } = Vo =W, =0 (16)
generator terminal voltage leveld is within limits; and the Ve, = Ve,

constraints (15b)-(15d), associated with the auxilianyaldes ;i some other generatojs£ i € G; C G satisfy:
V, andV}, are used to model the actuation limits associated I )
(e o

with the generator voltage regulators. Hence, in this model Qc. = Qq.

Z=(6,Vi,Ka,Va), # = (Qa: Va: Vo), P = (Ps, P, Va,), - o Vo >0
and g and h are contained within constraints (15a)-(15d); !
the actual representation of these two vector functions asd the rest of the generatorss j # i € G; C G are not at
discussed in detail in Section V. Observe that generator hiheir reactive power limits, i.e.

voltage limits are not included in this model, since these

VG;‘C < VG;‘D

limits would basically correspond to “hard” operating lisi Qa,,,,, < Qe <Wa,., =V, =V, =0 (18)
as previously discussed with respect to load voltage madait Vo, = Va,, ! !
limits, generator active power limits, or power transfenits

(Assumptions (17) generalizes the case where an LISB occurs
after an LIDB in A\ space, as depicted in Fig. 1(d).) Then,
(2c, A, Do) is an LISB of the power flow model defined by

V. THEORETICAL ANALYSIS OF THEOPF-DM equations (15a)-(15d).

In this section, it is formally shown that a solution to the The formal proof to Theorem 1 can be found in Appendix I.
OPF-DM model (15) corresponds to either an SNB or arhis theorem basically proves that a given local optimum of
LISB, by demonstrating that the transversality conditiofis (15) can be an LISB and not an LIDB, and that it can be
the corresponding bifurcations are met, based on the olitymapreceded by some generators reaching reactive power limits
conditions of the optimal solution. Only LIBs associatedtwi j.e. LIDBs. The following theorem shows that this local
maximum reactive power limits are analyzed here, since \6ptimum can also be an SNB.
problems in practice are typically associated with gemmesat Theorem 2: Let (2., A\c) be local optimum of (15) that

reaching these limits as the demand in the system increasggeets the abovementioned OS assumptions ferp,,, where
The following assumptions are made for the statement e&dme generators e G; C G satisfy:

the theorems and corollary presented next [32]:

in (14).

« Regularity and strict complementarity conditions must Qac,, =Qq;,,.. . Vo, =0 (19)
be met at the optimal point, i.e., there must not be Ve, < Vg, Vo, >0
degeneracy of the optimization problem at the solution

point. while the rest of the generatoys# j € G; C G, G = G;UG;,

« The solution point must be in a convex region, with th@'e not at their reactive power limits, i.e.
constraints being’? and convex at this point.
¢ P imin < Qa;, < Qay,,,

These assumptions are referred to throughout the rest of the Ve =V

. . . . G5 — G5
paper as optimality solution (OS) assumptions for conve- Te 7o
nience. It is important to highlight the fact that there is n@Assumptions (19) and (20) generalize the case where an SNB

guarantee that all possible solutions of (15) would meetegheoccurs after an LIDB in\ space, as depicted in Fig. 1(b).)

} = Vaj:‘/bjzo (20)
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Bus 3 TABLE |

(GEBESCCZJ 2 (GENCO 3) OPF-DMvs CPFFOR THE6-BUS TEST SYSTEM

@— @ LISB SNB (Q limits) SNB (no Q limits)
OPF-DM| CPF || OPF-DM| CPF || OPF-DM| CPF
BUS 6 \ Vg, 1.0500 | 1.0500{| 0.9648 | 0.9657|| 1.0500 | 1.0500
(ESCO 3) Vg, || 1.0025 |1.0026| 1.0500 |1.0500|| 1.0500 | 1.0500
(Gé‘;z% " Vi, 1.0029 | 1.0029|| 1.0500 | 1.0500|| 1.0500 | 1.0500
~ Vi, 0.8458 | 0.8458|| 0.6027 | 0.6048|| 0.5360 | 0.5360
| Vig 0.8546 | 0.8545|| 0.8586 | 0.8591|| 0.7129 | 0.7125
Bus 5 Vi 0.8687 | 0.8686|| 0.9465 | 0.9466|| 0.7679 | 0.7677
(ESCO 2) Qa, 1.5 1.5 1.5 1.5 3.1588 | 3.1600
Qa, 1.5 1.5 0.9577 | 0.9511|| 6.2724 | 6.2734
Bus 4

(ESCO 1) [ Qcs 15 15 || 1.4712 | 1.4682|| 3.5828 | 3.5856
Ac 4.4966 | 4.5049|| 1.9046 | 1.9081|| 11.1141|11.1330

Fig. 2. Six-bus test system.

. Ly i It is important to highlight the fact that the initial operas
Then, (2c, Ac, po) is an SNB of the power flow model defmedpoint is rather important, since it is used to define the geoer

by equations (15a)-(15d). .voltage set points for the optimization problem, as welltees t

The formal proof to Theorem 2 can be found in Appendlétarting point for the CPF, and it must be obtained by running

II. Finally, the following corollary argues that an optimuma - . . - .
_an initial power flow simulation. The auxiliary variableseals
of (15) can only be an LISB or an SNB. The proof to th|§ nital pow W Simuiad uxiiiary vart

_ . n the definition of the complementarity constraints must be
corollary can be found in Appendix Ill. initialized to zero
Corollary 1: Any solution point (2., A¢, p,) Of (15) that '
meets the aforementioned OS assumptions is either an LIEB

or an SNB. Numerical Results

The PV curves in Fig. 3 present three bifurcation profiles
under different operating conditions: Fig. 3(a) shows a8R.I
at A\, = 4.5049 p.u., preceded by LIDBs, for the base system

This section presents a numerical comparison between thpology; Fig. 3(b) shows an SNB at. = 1.9081 p.u.,
OPF-DM and the CPF method to illustrate some of thereceded by LIDBs, when line 2-4 is removed from the
theoretical issues discussed in the previous section., Thas system; and Fig. 3(c) shows another SNB at.a= 11.1330
maximum loading factor, voltage and reactive power levefsu. when Q-limits are ignored for the base system. Observe
obtained from solving (15) are compared with those obtainéd these plots that the bifurcations in the first two cases are
using the a standard CPF, for a variety of test cases for fpeeceded by some LIDBs in space; also, in the last case,
6-bus system shown in Fig. 2 [13], where the generatoitsie SNB occurs at a larger loading factor, with the voltages a
voltage set points and reactive power limits are assumedgenerator buses remaining constant. Notice as well thgpshar
be Vi, = 1.05 p.u. andQ¢s = £1.5 p.u., respectively. “edge” of the bifurcation manifold at the maximum loading
point defined by an LISB aA., which is a characteristic of
these types of bifurcations, and the “quadratic” shape ef th
manifolds around the SNBs, which is also typical.

The OPF-DM with complementarity constraints can be im- Table | presents a comparison of the solutions obtained
plemented in AMPL, using theonpl enent s operator [34], using the optimization model (15) as well as the equivalent
[35], which allows complementarity conditions to be difgct results obtained from the CPF, as depicted in Fig. 3. The
specified in the constraint declarations, and then solvedyusresults presented in the first and second columns correspond
solvers specifically designed for complementarity proldento the base case, and show that GENCO 1 satisfies the LISB
such as KNITRO [36]. Alternatively, the complementaritcondition Q¢,, = Qg,,,, and Vg, = Vg, at ., while
constraints can be specified as nonsmooth constraints GENCO 2 and GENCO 3 are at their reactive power limits
in (15), solving the optimization problem with nonlineawith their voltages below the corresponding set pointsthe
programming solvers such as LOQO, KNITRO or IPOPTystem has undergone 2 LIDBs before reaching an LISB in
this is the approach used here to obtain the numerical sesult space, as clearly illustrated in Fig. 3(a). The results in
discussed in this section. On the other hand, UWPFLOWe third and fourth columns, obtained by removing line 2-
[37], which is a popular and well-tested software tool with 4, show GENCO 2 and GENCO 3 within their reactive power
robust implementation of a CPF technique, was used to obtéimits and at their corresponding voltage set points, wagre
PV curves for illustrative and comparison purposes. FohboGENCO 1 has reached its maximum reactive power limit and
techniques, the generation and load variations were asgkurite voltage is below its set point, indicating the occureiné
to be defined by (13). an LIDB before the SNB in\ space, as depicted in Fig. 3(b).

VI. NUMERICAL EXAMPLES

A. Practical Implementation Issues
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0.6
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Fig. 3. Generators’ PV curves for the 6-bus test system: éspRase (LISB
preceded by LIDBs); (b) line 2-4 outage (SNB preceded by L3DEc) base

system neglecting reactive power limits (SNB).

10 12

Finally, the results presented in the last two columns, twhic
correspond to the base system without generator reactive
power limits, show all generators at their voltage set mint
as well as large reactive power outputs, i.e. there are no
LIDBs before the SNB in\ space. This table shows that
both techniques basically give the same solution; the small
differences can be attributed to numerical approximations
particularly in the case of the CPF. The execution time for
the OPF-DM was in the range of 0.12 sec, which was faster
than the CPF; the reader is referred to [17] for more numlerica
comparisons in larger systems.

The sequence of generators reaching the maximum reactive
power limit can be also obtained from the OPF-DM by
calculating the differencé\Vg, = Vg, — Vg, . Thus, the
largest difference corresponds to the first generator iegch
its maximum reactive power limit, whereas the smallest one
corresponds to last generator. If the difference is negatiiven
the generator would have reached the minimum reactive power
limit. For example, the sorted differences in descendirtgor
for the base case ar&Vg, = 0.0475, AVg, = 0.0471 and
AVg, =0, which agrees with what is observed in Fig. 3(a).

A test was carried out to study model (14) without comple-
mentarity constraints, with the condition that the maximum
voltage limit at generation buses is set equal to the voltage
set point, i.e.Vg, = Vg,,... This approach can be justified
based upon numerical results that show that the voltages
at generation buses, if not fixed, typically increase when
increasing the load. It is interesting to notice that thisgole
formulation generated the same results as those obtaiosd fr
solving (15), shown in Table I. However, this was not the
case for other test systems, since such linit . does not
accurately represent a PV bus, i.e. the constidint= Vg ..
does not guarantee th&t; is fixed when the reactive power
is within limits, which is a condition in (15).

VII. CONCLUSIONS

This paper has presented a detailed theoretical study of
an optimization method able to determine two types of fold
bifurcations directly associated with voltage instalat in
power systems. It was demonstrated that for certain opitynal
assumptions, which are typically met in practice, the tvans
sality conditions for SNBs and LISBs are met, thus proving
that the solution of the studied optimization problem yseld
the same results as those obtained with the more popular CPF
techniques used to analyze these types of bifurcationsiiepo
systems.

The advantages of stating the SNB/LIB problem as an
optimization problem are that optimization solution teicjues
can be computational more effective than CPF methods for
maximum loadability studies, particularly when using well
tested and efficient solution techniques such as InteriamtPo
Methods. Furthermore, optimization approaches are mare ve
satile than CPF techniques, since the problem can be readily
restated so that optimal control parameter values can be
calculated to increase the maximum loadability margins of a
system.
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APPENDIXI follows from (16)-(18) that:
PROOF OFTHEOREM 1

Proof: Let Q¢ = (Qg, Qc,), i.e. the generator reactive “Sk (Qcy,,,, — Q) =0 = /:Lfm =0VkeG (33)
power variables are ordered so that generatis the last fo, (Qc,. —Qc, . )=0 = g, =0VjcG; (34)
variaple; similarly forVg, V, and V4. Hence, the Lagrangian fig,, (Qc,, — Qa,,...) =0 = f[ig, >0Vj€G; (35)
function of (15) may then be expressed as: f10.(Qa, —Qe.) =0 = firg, =0 (36)

L=)\- /l,{GS(ZA/Ca /\07150) - ﬂgGQé(éca /\caﬁo) fan, (QGiC - QG“’“”) =0 = fn. >0 B (37)
_lﬁ’3GQG» (écv )\caﬁo) - ﬂ{(@@ — Q@ ) )V@ ﬂ14kc (_Vakc) =0 = ﬂ14kc >0Vkeg (38)
—ii5 (Qz — Qg,,..)Vs — 6(Qc, — Qai,,,, Wa fus, (=Vo,, ) =0 = fus,, >0Vj€ Gy (39)
—fi7(Qc, — Qc,,.. WVo, — s (Qg . — Q—) fus;, (=Vb,.) =0 = fus, =0Vjeg; (40)

R i imax ’LA Gmin G ﬂlG (—Va ): O = ﬂlG > O (41)
T c ic c
— g (Qa - Qamam) — f10 (QGimm - QGI.) A B A
y T fur.(=Vo,,) =0 = fur, >0 (42)
—H11 (Q07 - QGimaz) — K19 (Vé — Véo — sz + ‘/%))
_,[)413 (VG1 - VGio - Vai + %7) - /l,{;l(_Va) Whel’eg — gju gj
— 15 (= V) — fire(—Va,) — fr(=Va,) Now, based on (16)-(18), the following actuation regime

and saturation regime equations, evaluated at the solptior
where the functiongrs, G, andGq,, are defined as/in (3, A_ 5,), are the minimum subsets of constraints (15a)-(15f)
appropriate subsets of variables; and flsecorrespond to the that uniquely defing, for a given()., p,), since the number
Lagrange multipliers of (15). of equations and unknowns is the same, Ne= 2n; + ng,

The KKT optimality conditions state that the gradient ofvheren, is the number of system buses anglis the number
the Lagrangian function must be equal to zero at the optimugp generators:
[32]. They also state the complementarity condition. Thus:

Vslle =-VsGslcfn. — VsGaoglefiz. G0, Vee, Kae, Qac. VGC_’ Acs Ps,, Pp,)
~VsGog. |efis, =0 1) Gale = Ve, = Ve, V1€ =0 (43)
i Qg,, — Qq;,... Yi€g;
Vv, Lle ==Vv,Gslefir. — Vv, Goglefia. Vo, — Vo,
-V GQGi lefts. =0 (22) i i
VikgLle ==V Gslefn, =0 (23)
VogLle =—fi2. — Ma fia. — My_fis. + fis. — fio. =0 (24) [ G(oc, Vi, Ka..Qc., Ve, Ae, Ps,. Pp,) |
Vg, Lle=—f3. — Va;_fle. — Vb, fir. + flro. — fla1. = 0(25) Gole = Ve, — Vo, Vj§ 9 =0 (44)
Vg Lle ==VvgGslefin, — VvgGoglefia, Qe —Q6,,,, V€Y
~Vv,Gag, lefis, — firz, =0 (26) L Qoic = Qi |
Vg, Lle ==Vvg, Gslefii. — Vvg, Goglefiz,
—Vvg, Gag, lefls. — fiz, =0 27) Notice that these equations have a similar form as (8) and
VaLle ==VaGs|cin, — VaGoglefiz. (9), respectively, wheré, = (6., Vz,, Ka., Ve, ), 7e = Q.
~VGag, lefis, +1=0 (28) o= (Ps,.Pp,,Va,), 9lc = G|, and
Vv.Lle :—MQEWM fla, + fl1iz, + ft1a, =0 (29)
VvLle =-Mq,  fis, — fuaz, + fits, =0 (30) o Ve, = Vo, VI€G;
Vv, Lle =—(Qc,, ~ Qa,, Ve, + s, +ins, =0 (31) el =1 Qo ~ Qo TIEG
Vv, Lle ==(Qc,, — Qai,,,, Vir. — fnz. + fur, =0 (32) [CC

Observe that in this case, some of the actuation limit fomsti
where M, = diagVs ), M; = diagV; ), Mo. = are_implicit instead of explicit fgnctions o_f the corresplamg
¢ y minc ) variables?. Hence, for the optimal solution to be an LISB,

diag Q= — Q= , and Mq_ = diagQ= — Q= . o . .
g(QGc QGmm.) NS ) 9@q, QGMI one first must prove that the Jacobiaffsand .J; associated
are diagonal matrices. Also, the equality constraints nbest . )
with (43) and (44) are nonsingular.

equal to zero and the inequality constraints are less than or ) o )

equal to zero at the optimum, i.e. this point must be feasible L&t first prove thatJ; is not singular. Hence, from (21)-
The complementarity slackness condition provides an iF\P—’Z) and with the broper ordering ofyanables anq equations

dication of whether an inequality constraint is active ot. no'n (44_)' gnd assuming that; = (Vo, V7 € G5, Ve, Vi € Gj),

Hence, based on the regularity and strict complementai®y @nd similarly forQg, it can be shown that:

assumptions, which imply that. = (u1,,...,m17,) # 0 is . .

unique, andy;, > 0 VI € {Active Constraint Sét [32], it Jp &y = by (45)
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where .
;T /12c
Jy = (46) ) fis.
V6GS|C VaGQah VaGQGi |C 0 0 0 T Zq = ﬂngj
Vv, Gsle VVLGQ5|c VVLGQG,L|C 0O 010 fiog.
VieGsle 0 0 0 010 TBE_
VigGsle  VigGogle VivgGaqg, e U 010 n 0 .
0 Ing 0 0 W|o
0
0 0 1 0 0|1 0
L Vve,Gsle Vvg,Gagle Vvg,Gag,le 0 0 [0 ] T W iinag
- a - Je
_ AT e :| _Macﬂ‘lc - M50ﬂ5c + p‘sciUﬁ'QQ]’C
T
L ¢ 10 —Va, fle. — Vb, Q7. + fo, — i1,
L 0 _
’:“c Therefore, from (47)-(49), it follows that:
M2, ~
. i3, T #0 and b, #0
Tp = ~
1{12% and are both unique, yielding from (51) a nonsingulgy i.e.
fog . ‘
far, detJ;) #0 (53)
8 Thus, from (50) and (53), it is clear that the solution point
0 (2., A\, Do) Meets transversality conditions (10).
. Wi The second transversality condition (11) simply state$ tha
b = o e R the ratio of the determinants of. and J; must be positive
~Macfua, = My, fis. + fis.Ulfog,, for (2c, A¢, Po) to be an LISB. Thus, from (46) and (52), and
—Va, fioe = Vo, f7. + fio, based on Schur's Complements [38], it follows that:
L s, i _
. . . . A A det(J.) = detA)
and jig = (Mggjauggj)! H12 = (/’L12g]—7/'b129j)1 deI(Jg) — T4 1, det(A)
_ | 1Ing; _| 0 Therefore:
U= OJ ] , W= [ I, ] det(J?) 1 (54)
J o = - =
. . : . det(Jf) —eTA-le
where[,, is ann x n identity matrix.
Now, from (25), (36) and (37): Then, from (43), it follows that:
fis, = —finr, #0 (47) ViGale 02+ Vi, Gale Vg, =0
From (35) which from (52) can be rewritten as:
o, 70 (48) Alc][ o 0
And from (32) and (42) 0 ‘ 1 v - lT dve,, =0
fus, = fur. #0 (49)  wherez = (z,Vg,). This yields:
Hence, from (47)-(49), it follows that: dz = —AledVg (55)
&, #0 and b, #0 dvg, = dvg, (56)

and are both unique. Therefore, one can conclude from (48 the other hand, from (44) and (46), one has that:
that J{ is nonsingular, i.e.

| Ale dz
det(Jj) # 0 (50)

el ‘ 0 dvg,
With similar arguments, it can be readily shown that:  yhich yields (55) as well as:

0
- lT‘| dQGimaI =0

T & = b (51) dQc, = ¢ dz =dQq,,,,, (57)
where Thus, from (55), (56) and (57), it follows that:
T AT 10 dQgc,
J’L — 52 imax — _ T 4—1
a g1 ] (52) 7('“/01;0 . et A7 ¢
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which, from (54), leads to: Vv Lle :—M%mm fta, + fri2. + flia, =0 (68)
o dVGio (58) Vv, Lle :—MQémamc s, — fliz, + flis, =0 (69)
dQci,, | VviLle ==Mqg  fis, + fins. + . =0 (70)
Now, from the optimization model (15), the sensitivities of Vv, L|. =—Mqg  fr.— s, + 7. =0 (71)
the objective function with respect Q¢, . and andVg, -
evaluated at the optimal point can be stated as [39]: where M,, = diag\V;.), and similarly for M; , Mj,,
A d)\ M ; and Mg, = diagQz, — Qg,.. ), and similarly
Hiie = dQc. for Mg, MQf ~,andMq, . Furthermore, all the
ol equality constraints must be equal to zero, while the intityua
fus, = Ve constraints must be less than or equal to zero.
”’_ c From the regularity and strict complementarity OS assump-
Hence, from (37), (49), and (58), it follows that: tions, which imply a uniquew. = (p1,,...,p7,) # 0, with
fi11, i, > 0 VI € {Active Constraint Set it follows from (19)
= 0 (39)  and (20) that:
which satisfies the second transversality condition (1fhger&- B o
fore, the optimal solutior{2., A, p,) which meets the given fis;, (Qcs,,, — Qa;) =0 = Heze = 0 V{e g (12)
OS assumptions is an LISB. fio;, (Qa,, — Qc;,...) =0 = g, =0V7€G; (73)
Finally, observe that, at an LIDB, assump?iqr)s (16)-(1@) ar Hlok (Qa;,,. —Qc;.) =0 = fig;,, =0VYj€g; (74)
als_o met. Hoyvever, (59) rules out the possibility of an LIDB 1,.(Qa,. —Qa, ) =0 = ju1, >0Yjeg, (75)
being a solution of (15). ] . ~
faa,, (=Va, ) =0 = fu4, >0Vje G; (76)
APPENDIX I firs, (=Vo, ) =0 = f15, >0VYj€G; (77)
PROOF OFTHEOREM 2 fe;, (=Va;,) =0 = jue;, > 0Vj € G; (78)
Proof: Following a similar approach to the proof of fir,;, (=Vb,,) =0 = fuur,, =0Vj € G; (79)

Theorem 1, letQ¢ = (QF, Qg), whereQz = (Qg, V7 €
G5, Qc, ¥j € G;), and similarly forVg, V, and V. Hence,  Now, based on (19) and (20), the following equations,
the Lagrangian function of (15) may then be expressed asevaluated at the solution poiti., A, p,), form the minimum
oy AT . ST . R subset of constraints (15a)-(15f) that uniquely defipdor a
L=A ] m GSEZC’)‘C’APO) f;? Gaglier Aes o) given (\., p,), since the number of equations and unknowns
—13G Qg (2e, Acy Do) — 11 (R — Qg,,. )Va is the same, i.eN:

i (Qz — Qz,, )V — 15 (Qz — Qg )Va
AT ~T - e
TQs—Qs, Wi—i3 (Qg,. — Q) G(0e, Viw, Koy Qcus Vaur Aes Ps,, Pp,)
~T — A _
- (e - Qg,...) — i (Qa,., ~ Q) el QVGC QVG° "
G G
’\T ’\T c max
—fi (Qa - Qém,) — iz (Vg = Vg, — Va + Vj)
—fi13 (Vg — Vg, —Va+t I/};) — it (=) Hence, for the optimf_;ll solutioTn to pe an SNB, one fir_st must
AT (V) — AT (V) — AT (V) prove that_ the Jacobiasi = V; G|, is singular with unique
15\ V) — Hig\—Va) — tir\— Vg nonzero eigenvectors, whete= (6, Vz, Ka, Vg, Qa).
From the KKT optimality conditions, it follows that: From (60)-(71) and with the proper ordering of variables
VsLle =—VsGslefir, — VsGap|ofiz, and equations in (44), it can be shown that:
—VsGq -~ cﬂfc =0 (60) 7
oo eha i V:Glob = (81)
VVL£|C :—V\/LGS|C,LL1C - VVL GQE|c,U2C
_VVL GQélcﬂSC =0 (61) Where’
VigL|le=—VKksGslcfin, =0 (62)
VogLle=—fiz. — Ma.fia, — My fis, + fis. — fio. =0 (63)  V.G|. = (82)
VogLle=—fs. — Ma fis. — Mj_fir. + flro. — a1, = 0(64) [ VeGsle  VsGogle  ViGogle 0 0 7
VVE[:'c :—VVEGS"C/]lC - VVEGQ6|C/:LQC VVL GSlc VVL GQ5|C VVL GQ(; |C 0 0
—VvgGaglefis. — iz, =0 (65) VikgGsle 0 0 0 0
Vvéﬁ|c :_VVéGS|cﬂlc - V\/@G’Qa|cﬂ2¢ VVéGS|c VVEGQélc VvéGQé |c —Ingj 0
—VvsGaglefis. — pas. =0 (66) VviGsle VviGagle VviGagle 0 0
ViaLle ==VaGs|cfir. — VaGaglefiz. 0 Ing], 0 0 0
_VAGch-'CﬂSC + 1=0 (67) L 0 0 Ingj 0 Ingj i
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[ i,
fi2,
1,{) = ﬂgc (83)
faz,
L A + Mg jig.
- 0 B}
0
A 0
b= 0
— 13,
—Ma, fia, — My _jis. + fis.—flo,
L —Ma, fie. + fi10. J
Now, from (71) and (79):
fus. = flar, =0 (84)
From (20), (72) and (73):
— Mg, j1a, — My_fis, + fis,~flg, = 0 (85)
From (19) and (74):
—Ma. fr6, + flro, =0 (86)

Hence, from (84)-(86), it follows that:
V:Gl. 0 =0

Finally, since, from the regularity and strict complemeitya
OS assumptions, it follows that;, # 0, pe, # 0, andus, #
0, asfi. # 0 and is unique. Hencep # 0 and is unique, from
which it can be concluded that the optimym, A, p,) meets
the SNB transversality condition (3).

Now, from (67), (80) and (83), it follows that:

ViLle==ViGlcw+1=0

= V)\G|C’UA)750

12

the Lagrangian function, i.e. the Jacobian of these egustio
must be nonsingular; thus:

v%ﬁ,ﬂ,k)‘c(éca Acaﬁoaw) 1Y 7& 0 Vp 7& 0 (91)
where
V2G| V:Gl. V3Gl
VignLle=—| VIG 0 v7Ia).
WTVHGle VaGle V3Gleaw
(92)

Hence, for a chosen = (¢, 0,0) # 0, from (91) one has that:
[V2G|cw] 9 # 0 (93)

since, in this casev?, G|. = V2.G|. = 0. On the other hand,
from the second-order KKT necessary optimality conditions
[32]:

(94)

Thus, from (92) and sinc¥3G|. = 0 as well, assuming =
(pz, pr) # 0, it follows that:

Pt [VEG|ed] p: 20 Vps #0 (95)
Therefore, from (93) and (95), it can be concluded that:
T [V2G|b] > 0 (96)

Finally, taking the transpose of this equation and consider
the properties of tensor products:

i [VETGM;] o> 0

PV NLle PO Vp#0

This corresponds to the third SNB transversality condif)n
[ |

APPENDIXIII
PROOF OFCOROLLARY 1

Proof: Observe that Theorem 1 proofs that an LIDB
cannot be a solution of (15). Now, notice that all possibiatli
conditions of the inequality constraints of (15) are coasidl

which corresponds to the SNB transversality condition (4). in assumptions (16)-(18) and (19)-(20) of Theorems 1 and 2,
The third SNB transversality condition (5) is now Vel’ifiedrespectively; thus, the cases of none or all generator$iregc

Thus, from assumptions (19) and (20) regarding the optimufieir limits are simply particular cases of these assumptio

(Ze5 Aes Do), @nd from (80), as well as based on the previousence, any feasible solution of (15), would either meet as-

analysis, the optimization model (15) can be restated
follows, since it would yield the same optimal solution:

max A
st G(Z,\,p,) =0

8¢mptions (16)-(18) or (19)-(20). Therefore, the soluf@int
(2c, A\, Do) can only be an LISB or an SNB. [ ]
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