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2ETH Zürich, Switzerland

∗Corresponding author

Email: ioannis.dassios@ucd.ie

Address: Room 157b Engineering and Material Science Centre University College Dublin
Belfield, Dublin 4, Ireland
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1 Introduction

In the last few decades many authors have studied dynamical networks formed by curves
in motion. The studies focus on the differential geometry of the problem, see [10], [12],
[14], [18], [22], numerical methods for dynamical systems, see [2], [9], [16], [19], [24], [25],
and the stability of the network, see [3], [5], [6], [26], [27].

Focus has also been given on the mathematical modelling and applications in material
science and engineering, see [1], [11], [15], [23].

In this article we study a bounded network of curves that are in motion and intersect
at a junction. We consider a parametric form of two variables for each curve and form
a system of non-linear partial differential equations (PDEs) that describes the motion of
the network. We also consider the equation of the curve that describes the boundary of
the domain that bounds the network. The system of non-linear PDEs is subject to four
conditions. Intersection, angle conditions at the junctions and at the boundary of the
domain that are formed using properties from differential geometry.

In Section 2 we form the boundary value problem (BVP), in Section 3 we linearize the
non-linear PDEs and reformulate efficiently the conditions of the problem, and in Section 4
we define the linear operator used for the linearization of the BVP, and by studying the
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eigenvalues of this operator we conclude that the stability of the steady states of the
network depends on the sign of the curvature of the boundary of the domain. The results
in this article aim to bring new ideas and insights that can be applied to other types
of networks, such as hexagonal dynamical networks as they appear for example in soap
bubbles, honeycomb, grain growth etc, see [4], [13], [17], [21], and also update geometrical
properties that are used in applications in engineering such as the structure of electrical
circuits and studies of elasticity, plasticity in material science, see [7], [8], [20].

2 Problem formulation

We will consider a dynamical network of three curves in motion in R2 that meet at a
junction and are bounded from the boundary ∂Ω of a domain Ω = Ω1 × Ω2 ⊂ R2.

Definition 2.1. With Ti(x, t) we denote the unit tangent vector of curve i at x and
time t, and with Ni(x, t) the unit normal vector of curve i at x and time t.

Let ui(x, t) = (ui1(x, t), ui2(x, t)), i = 1, 2, 3, be a parametric form of curve i with

ui : [0, 1]× [0,+∞) → Ω, i = 1, 2, 3,

and
uij : [0, 1]× [0,+∞) → Ωj , i = 1, 2, 3, j = 1, 2.

With uix = ∂ui

∂x , uixx = ∂2ui

∂x2 we will denote the partial derivatives of first and second

order, respectively, of ui in respect to x, while with uit =
∂ui

∂t we will denote the partial
derivative of first order of ui in respect to t.

Let ki(x, t), ki : R2 → R be curvature of curve i. At the steady states, ki = 0. For
these curves, by taking into account that normal velocity equals to curvature we get:

∂ui

∂t
Ni = ki, i = 1, 2, 3,

where dependencies on x and t have been omitted for simplicity in notation. Furthermore

kiNi =
|uixx × uix|

|uix|3
1

|uixx|
uixx.

Equivalently

kiNi =
1

|uix|
uixx,

because |uixx × uix| = |uixx||uix|. Hence

uit =
1

|uix|
uixx, i = 1, 2, 3, (1)

which is a non-linear system of PDEs. We will now focus on the conditions.
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The three curves meet at a junction. Thus for each parametric form ui(x, t) of curve
i, i = 1, 2, 3, and if we consider that each curve meets the other at one end at x = 0, the
following relation holds:

u1(0, t) = u2(0, t) = u3(0, t). (2)

At x = 0, curve 1 forms an angle θ1,2(t) = θ1,2 with curve 2, and curve 2 forms an
angle θ2,3(t) = θ2,3 with curve 3. Curve 3 forms an angle 2π− θ1,2− θ2,3 rad with curve 1.
Then

T1(0, t)T2(0, t) = cos θ1,2, T2(0, t)T3(0, t) = cos θ2,3,

or, equivalently,

u1x(0, t)

|u1x(0, t)|
u2x(0, t)

|u2x(0, t)|
= cos θ1,2,

u2x(0, t)

|u2x(0, t)|
u3x(0, t)

|u3x(0, t)|
= cos θ2,3,

or, equivalently,

u1x(0, t)u2x(0, t) = st1x(1)s
t
2x(1) cos θ1,2, u2x(0, t)u3x(0, t) = st2x(1)s

t
3x(1) cos θ2,3. (3)

At the steady states we will have θ1,2 = θ2,3 = 2π
3 rad. Where sti denotes the arc length

parameter, with

sti := sti(x) =

∫ x

0

|uix(ξ, t)|dξ,

and consequently,
stix = |uix(x, t)|.

Definition 2.2. With f = 0, f : R2 → R, we denote the equation of the boundary ∂Ω of Ω.

The network that the curves form is bounded by Ω, i.e. each curve meets ∂Ω at x = 1.
Hence since f = 0 is the equation of ∂Ω, we get:

f(ui(1, t)) = 0, i = 1, 2, 3. (4)

Definition 2.3. With N i
∂Ω := N∂Ω(ui(1, t)) = ∇f(ui(1,t))

|∇f(ui(1,t))| we denote the unit normal

vector of the boundary ∂Ω of Ω at ui(1, t), and with Ki
∂Ω is the curvature of the boundary

∂Ω of Ω at ui(1, t).

Each curve meets the boundary Ω with π
2 rad i.e at the point that they meet, the unit

tangent of the curve and the unit tangent of the boundary are orthogonal. Hence

uix(1, t)

|uix(1, t)|

(
0 1
−1 0

) ∇f(ui(1, t))

|∇f(ui(1, t))|
= 0, i = 1, 2, 3,

or, equivalently,

uix(1, t)

(
0 1
−1 0

)
N i

∂Ω = 0, i = 1, 2, 3. (5)

To sum up, we have the system of non-linear PDEs (1) and its conditions (2)–(5).
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3 Linearization

The system of PDEs (1) is non-linear. In this subsection we will linearize effectively (1).

Theorem 3.1. We consider the system of non-linear PDEs (1) and its conditions (2)–(5).
Then a linearization of this BVP consists of the linear system of PDEs:

vit = vixx, i = 1, 2, 3. (6)

and the conditions:

1. Conditions for intersection at the junction at x = 0:

v1(0, t) = v2(0, t) = v3(0, t). (7)

2. Angle conditions at the junction at x = 0:

v11x(0, t)− v21x(0, t) = 0, v21x(0, t)− v31x(0, t) = 0. (8)

3. Conditions for intersection at the boundary ∂Ω at x = 1:

vi(1, t)∇f = 0, i = 1, 2, 3. (9)

4. Angle conditions at the boundary ∂Ω at x = 1:

[Ki
∂Ωvi(1, t)− vix(1, t)]Ni = 0. (10)

Where ũi(x, t) := ûi(s
t
i, t), s

t
i = sti(x), solution of (1). Where ûi(s

t
i, t) is parametric form

of curve i with arc length parameter sti, i.e.

sti := sti(x) =

∫ x

0

|uix(ξ, t)|dξ, stix = |uix(x, t)|.

In addition:
vi(x, t) = vi1(x, t)Ni + vi2(x, t)Ti, (11)

with

vi : [0, 1]× [0,+∞) → Ω, vij : [0, 1]× [0,+∞) → Ωj , i = 1, 2, 3, j = 1, 2.

Furthermore Ti := Ti(s
t
i(x), t), Ni := Ni(s

t
i(x), t), and Ki

∂Ω the curvature of the boundary
∂Ω of Ω at ũi(1, t).

Proof. Let
ui(x, t) = ũi(x, t) + ϵivi(x, t), 0 < ϵi ≪ 1, (12)

with ũi(x, t) := ûi(s
t
i, t), s

t
i = sti(x), solution of (1). Where ûi(s

t
i, t) is parametric form of

curve i with sti arc length parameter, i.e.

sti := sti(x) =

∫ x

0

|uix(ξ, t)|dξ, stix = |uix(x, t)|.
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Furthermore let
vi(x, t) = vi1(x, t)Ni + vi2(x, t)Ti,

with

vi : [0, 1]× [0,+∞) → Ω, vij : [0, 1]× [0,+∞) → Ωj , i = 1, 2, 3, j = 1, 2.

By substituting (12) into (1) we get

ũit + ϵivit =
1

|ũix + ϵivix|2
(ũixx + ϵivixx), i = 1, 2, 3.

Let

F (ϵi) =
1

|ũix + ϵivix|2
(ũixx + ϵivixx), i = 1, 2, 3,

whereby
F (ϵi) = F (0) + ϵiF

′(0) +O(ϵ2i ), i = 1, 2, 3.

Where

F (0) =
1

|ũix|
ũixx,

and

F ′(0) =
vixx|ũix|2 − 2vixũixũixx

|ũix|4
.

Equivalently, since ũi is defined as a parametric form of curve i, we have |ũix| = 1, and
ũixũixx=0, we have:

F ′(0) = vixx.

Hence

F (ϵi) =
1

|ũix|
ũixx + ϵivixx +O(ϵ2i ), i = 1, 2, 3.

and equivalently a linearization of (1) is

ũit + ϵivit =
1

|ũix|
ũixx + ϵivixx, i = 1, 2, 3,

or, equivalently, since ũi is assumed solution of (1):

vit = vixx, i = 1, 2, 3.

We will now define the conditions. From (2) and by using (12) we get

ũ1(0, t) + ϵ1v1(0, t) = ũ2(0, t) + ϵ2v2(0, t) = ũ3(0, t) + ϵ3v3(0, t),

whereby, and since ũi(0, t) is solution of (1), we arrive at

v1(0, t) = v2(0, t) = v3(0, t).

From (3) and by using (12) we arrive at

[ũ1x(0, t) + ϵ1v1x(0, t)][ũ2x(0, t) + ϵ2v2x(0, t)] = st1x(1)s
t
2x(1) cos θ1,2,
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and
[ũ2x(0, t) + ϵ2v2x(0, t)][ũ3x(0, t) + ϵ3v3x(0, t)] = st2x(1)s

t
3x(1) cos θ2,3.

Equivalently, by ignoring the coefficients of ϵ1ϵ2 ∼= ϵ2, ϵ2ϵ3 ∼= ϵ2, with 0 < ϵi ≪ 1 for
i = 1, 2, 3, and by using ũ1x(0, t) = Ti, for Ti at x = 0, ∀i = 1, 2, 3:

[1+

2∑
i=1

ϵivi2x(0, t)]ũ1x(0, t)ũ2x(0, t)+ϵ1v11x(0, t)T2N1+ϵ2v21x(0, t)T1N2 = st1x(1)s
t
2x(1) cos θ1,2,

and

[1+

3∑
i=2

ϵivi2x(0, t)]ũ2x(0, t)ũ3x(0, t)+ϵ2v21x(0, t)T3N2+ϵ3v31x(0, t)T2N3 = st2x(1)s
t
3x(1) cos θ2,3.

whereby taking into account that ũi(x, t) is solution of (1), and ϵi ∼= ϵ with 0 < ϵ ≪ 1, we
have

v11x(0, t)T2N1 + v21x(0, t)T1N2 = 0,

and
v21x(0, t)T3N2 + v31x(0, t)T2N3 = 0.

Equivalently, since T1N2 = T2N3 = cos(θ1,2 +
π
2 ) and T2N1 = T3N2 = cos(θ1,2 − π

2 ):

v11x(0, t)cos(θ1,2 −
π

2
) + v21x(0, t)cos(θ1,2 +

π

2
) = 0,

and
v21x(0, t)cos(θ2,3 −

π

2
) + v31x(0, t)cos(θ2,3 +

π

2
) = 0.

Consequently:

v11x(0, t)− v21x(0, t) = 0, v21x(0, t)− v31x(0, t) = 0.

From (4) and by using (12) we arrive at

f(ũi(1, t) + ϵivi(1, t)) = 0, i = 1, 2, 3.

or, equivalently,

f(ũi1(1, t) + ϵivi1(1, t), ũi2(1, t) + ϵivi2(1, t)) = 0, i = 1, 2, 3.

or, equivalently,
f(f t

i1, f
t
i2) = 0, i = 1, 2, 3,

where
f t
i1 = ũi1(1, t) + ϵivi1(1, t), f t

i2 = ũi2(1, t) + ϵivi2(1, t).

We now differentiate in respect to ϵi and we get:

df

dϵi
= 0, i = 1, 2, 3,
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or, equivalently,
∂f

∂f t
i1

df t
i1

dϵi
+

df

∂f t
i2

df t
i2

dϵi
= 0, i = 1, 2, 3,

or, equivalently,
vi(1, t)∇f = 0, i = 1, 2, 3.

From (5) and by using (12) we arrive at

[ũix(1, t) + ϵivix(1, t)]

(
0 1
−1 0

)
N∂Ω(ũi(1, t) + ϵivi(1, t)) = 0, i = 1, 2, 3,

whereby using Taylor expansion at ϵi = 0:

[ũix(1, t)+ϵivix(1, t)]
[( 0 1

−1 0

)
N∂Ω(ũi(1, t))+ϵi

(
0 1
−1 0

)
∇N∂Ω(ũi(1, t))vi(1, t)

]
= 0.

Equivalently, if we ignore the coefficients of ϵ2i , and by using that ũi(x, t) is a solution of
(1), we arrive at:

ũix(1, t)

(
0 1
−1 0

)
∇N t

∂Ωvi(1, t) + vix(1, t)

(
0 1
−1 0

)
N t

∂Ω = 0,

or, equivalently, and by using Goldman’s formulas, see [14], and by considering Ni at
x = 1, we arrive at:

Ki
∂ΩNivi(1, t)− vix(1, t)Ni = 0,

or, equivalently,
[Ki

∂Ωvi(1, t)− vix(1, t)]Ni = 0.

The proof is completed.

We now state the following corollary.

Corollary 3.1. We consider the linear BVP that consists of the system of linear PDEs
(6) and the conditions (7)–(10). Then at the steady states (ki = 0) the system will take
the form:

vi1t = vi1xx, vi2t = vi2xx, i = 1, 2, 3. (13)

Where vi : [0, 1]× [0,+∞) → Ω, vij : [0, 1]× [0,+∞) → Ωj , i = 1, 2, 3, j = 1, 2, as defined
in (11).

Proof. By using the Frenet formulas we get

vit = [vi1t + kivi2]Ni + [vi2t − kivi1]Ti, vix = [vi1x + kivi2]Ni + [vi2x − kivi1]Ti,

and

vixx = [vi1xx + 2kivi2x + kixvi2 − k2i vi1]Ni + [vi2xx − 2kivi1x − kixvi1 − k2i vi2]Ti.
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Thus we can write (6) in the following form

vi1t + kivi2 = vi1xx + 2kivi2x + kixvi2 − k2i vi1, i = 1, 2, 3,

and
vi2t − kivi1 = vi2xx − 2kivi1x − kixvi1 − k2i vi2, i = 1, 2, 3.

At the steady states (ki = 0) the system will take the form:

vi1t = vi1xx, vi2t = vi2xx, i = 1, 2, 3.

The proof is completed.

4 Stability

In this section we will study the stability of the steady states of (6) with conditions (7)–
(10). System (6) at the steady states takes the form of (13) which is separable and the
general solution can be expressed as

vij(x, t) = Xij(x)Yij(t), i = 1, 2, 3, j = 1, 2.

where
Xij : [0, 1] → Ωj , Yij : [0,+∞) → Ωj , i = 1, 2, 3, j = 1, 2.

For the eigenvalue problem that appears, we are interested in studying the stability and
existence of eigenvalues with λ ≤ 0. If λ < 0 we have:

vij = [cij cosh(
√
−λx) + dij sinh(

√
−λx)]eλt, i = 1, 2, 3, j = 1, 2,

while if λ = 0 we have:

vij = cij + dijx, i = 1, 2, 3, j = 1, 2.

If there do not exist eigenvalues with λ ≤ 0, then cij = dij = 0, ∀i = 1, 2, 3, ∀j = 1, 2.

Theorem 4.1. We consider the linear BVP that consists of the system of linear PDEs
(6) and the conditions (7)–(10). Then:

1. If Ki
∂Ω > 0, ∀i = 1, 2, 3, then there exist negative eigenvalues and the steady

states are unstable. The eigenvalues are given from the solutions of the algebraic
equations:

Ki
∂Ω −

√
−λ tanh(

√
−λ) = 0, i = 1, 2, 3.

The eigenfunctions are then given by:

vi1 = ci1 cosh(
√
−λx)eλt, i = 1, 2, 3,

and
vi2 = −di2[tanh(

√
−λ) cosh(

√
−λx)]eλt, i = 1, 2, 3.

Where ci1, di2 are constant.
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2. If Ki
∂Ω = 0, or, Ki

∂Ω = 1, ∀i = 1, 2, 3, then there exists the zero eigenvalue and the
steady states are neutral stable. The eigenfunctions are then given by:

• If Ki
∂Ω = 0:

vi1 = ci1, i = 1, 2, 3,

and
vi2 = −di2(1 + x), i = 1, 2, 3.

Where ci1, di2 are constant.

• If Ki
∂Ω = 1:

vi1 = d, i = 1, 2, 3.

and
vi2 = 0, i = 1, 2, 3.

Where d is constant.

Proof. We consider the linear system of PDEs (6) and the conditions (7)–(10). Then if
λ < 0 we have:

vij = [cij cosh(
√
−λx) + dij sinh(

√
−λx)]eλt, i = 1, 2, 3, j = 1, 2.

From (7), (11) we have
v1(0, t) = v2(0, t) = v3(0, t),

or, equivalently,
c11N1 + c12T1 = c21N2 + c22T2 = c31N1 + c32T3,

whereby we can get

c11 = c21N1N2 + c22N1T2, c21 = c31N2N3 + c32N2T3, c31 = c11N3N1 + c12N3T1,

and

c12 = c21T1N2 + c22T1T2, c22 = c31T2N3 + c32T2T3 c32 = c11T3N1 + c12T3T1.

Equivalently

c11 = −1

2
c21 −

√
3

2
c22, c21 = −1

2
c31 −

√
3

2
c32, c31 = −1

2
c11 −

√
3

2
c12,

and

c12 = −
√
3

2
c21 −

1

2
c22, c22 = −

√
3

2
c31 −

1

2
c32, c32 = −

√
3

2
c11 −

1

2
c12,

or, equivalently,

3[

3∑
i=1

ci1] +
√
3[

3∑
i=1

ci2] = 0,
√
3[

3∑
i=1

ci1] + 3[

3∑
i=1

ci2] = 0,
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and hence
3∑

i=1

ci1 =

3∑
i=1

ci2 = 0. (14)

From (8):
d11 = d21 = d31. (15)

From (9) at x = 1:
vi(1, t)Ti = 0, i = 1, 2, 3,

or, equivalently using (11),
vi2(1, t) = 0, i = 1, 2, 3,

or, equivalently,

ci2 cosh(
√
−λ) + di2 sinh(

√
−λ) = 0, i = 1, 2, 3,

or, equivalently,
ci2 + di2 tanh(

√
−λ) = 0, i = 1, 2, 3. (16)

From (10) at x = 1 we have:

[Ki
∂Ωvi(1, t)− vix(1, t)]Ni = 0,

or, equivalently using (11),

Ki
∂Ωvi1(1, t)− vi1x(1, t) = 0,

or, equivalently,

Ki
∂Ω[ci1 cosh(

√
−λ) + di1 sinh(

√
−λ)]−

√
−λ[ci1 sinh(

√
−λ) + di1 cosh(

√
−λ)] = 0,

or, equivalently,

Ki
∂Ω[ci1 + di1 tanh(

√
−λ)]−

√
−λ[ci1 tanh(

√
−λ) + di1] = 0,

or, equivalently,

[Ki
∂Ω −

√
−λ tanh(

√
−λ)]ci1 + [Ki

∂Ω tanh(
√
−λ)−

√
−λ]di1 = 0. (17)

The eigenvalue λ exists in the equations (16) and (17) but its only (17) that affects it.
Since λ < 0, in (17) we have that

Ki
∂Ω tanh(

√
−λ)−

√
−λ ̸= 0, i = 1, 2, 3.

For Ki
∂Ω ≤ 0, we have that

Ki
∂Ω −

√
−λ tanh(

√
−λ) < 0, i = 1, 2, 3.

Consequently if we use (15) and set di1 = d, ∀i = 1, 2, 3, we conclude to d = ci1 = 0. If this
would not hold, ci1 would have the opposite sign from d which is not possible from (14).
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Hence from the algebraic equations (14)–(17) we have di = cij = 0, i = 1, 2, 3, j = 1, 2.
This means that for Ki

∂Ω ≤ 0 there do not exist negative eigenvalues.
For Ki

∂Ω > 0 however there exist eigenvalues λ such that

Ki
∂Ω −

√
−λ tanh(

√
−λ) = 0.

In this case di1 = 0, ∀i = 1, 2, 3 and the algebraic system of equations (14)–(16) is
underdetermined. This means that for Ki

∂Ω ≤ 0 there exist negative eigenvalues that are
the solutions of the above equation, and the eigenfunctions are given by

vi1 = ci1 cosh(
√
−λx)eλt, i = 1, 2, 3,

and
vi2 = −di2[tanh(

√
−λ) cosh(

√
−λx)]eλt, i = 1, 2, 3.

We consider again the linear system of PDEs (6) and the conditions (7)–(10). Then
if λ = 0 we have:

vij = cij + dijx, i = 1, 2, 3, j = 1, 2.

From (7) we have
v1(0, t) = v2(0, t) = v3(0, t).

or, equivalently,
c11N1 + c12T1 = c21N2 + c22T2 = c31N1 + c32T3,

and consequently (14) holds. From (8) we have that (15) also holds. From (9) at x = 1
we have:

vi(1, t)Ti = 0, i = 1, 2, 3,

or, equivalently using (11),
vi2(1, t) = 0, i = 1, 2, 3,

or, equivalently,
ci2 + di2 = 0, i = 1, 2, 3. (18)

From (10) at x = 1 we have:

[Ki
∂Ωvi(1, t)− vix(1, t)]Ni = 0,

or, equivalently using (11),

Ki
∂Ωvi1(1, t)− vi1x(1, t) = 0,

or, equivalently,
Ki

∂Ω[ci1 + di1]− di1 = 0,

or, equivalently,
Ki

∂Ωci1 + [Ki
∂Ω − 1]di1 = 0. (19)

If Ki
∂Ω ̸= 0, 1, then from the algebraic equations (14), (15), (18), (19) we have dij =

cij = 0, i = 1, 2, 3, j = 1, 2.
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For Ki
∂Ω = 0 however, from (19) we have that di1 = 0, ∀i = 1, 2, 3. Then the algebraic

system of equations (14)–(16) is underdetermined. This means that for Ki
∂Ω = 0 the

eigenvalue λ = 0 exists. The eigenfunctions will then be given by

vi1 = ci1, i = 1, 2, 3,

and
vi2 = −di2(1 + x), i = 1, 2, 3.

For Ki
∂Ω = 1 in (19) we have that ci1 = 0, i = 1, 2, 3. Then from the algebraic equations

(14), (18), we get di2 = cij = 0, i = 1, 2, 3, j = 1, 2. Consequently for Ki
∂Ω = 1 the

eigenvalue λ = 0 exists. If we use (15) and set di1 = d, i = 1, 2, 3, the eigenfunctions will
be given by:

vi1 = d, i = 1, 2, 3,

and
vi2 = 0, i = 1, 2, 3.

The proof is completed.

Curve 1 Curve 2 Curve 3 Boundary

−1.0 −0.5 0.0 0.5 1.0
ui1(x, t)
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−0.5

0.0

0.5

1.0

u
i2

(x
,t

)

(a) Transient condition.

−1.0 −0.5 0.0 0.5 1.0
ui1(x, t)

−1.0

−0.5

0.0

0.5

1.0

u
i2

(x
,t

)

(b) Steady state.

Figure 1: Illustration of simple network of three curves with circular boundary.

Numerical Example

For the sake of illustration, we consider the simple example of a dynamical network of
three curves with boundary the unit circle, as shown in Fig. 1. In this case, we have
that Ki

∂Ω = 1 > 0 and, thus, from Theorem 4.1, there exist negative eigenvalues of the
corresponding BVP and the steady state of the network is unstable. Indeed, calculation
of the eigenvalues from the solution of:

1−
√
−λ tanh(

√
−λ) = 0, i = 1, 2, 3,

gives that λ = −1.4392 < 0, with multiplicity equal to three.

12



Conclusions

In this article we studied a network of curves that are in motion, meet at a junction,
and are bounded. We first focused on the construction of the model which is a BVP
that consists of the system of non-linear PDEs (1) and the conditions (2)–(5). We then
linearized the PDEs, reformulated the conditions and for the new BVP that appeared,
the system of linear PDEs (6) and the conditions (7)–(10), we studied the stability of the
steady states.

We concluded that stability depends on the sign of the curvature of the boundary
of the domain at the points that the boundary meets each curve. We also provided the
negative eigenvalues and their eigenfunctions, as well as the eigenfunctions of the zero
eigenvalue. As a further extension of this article, we aim to apply the results to hexagonal
networks, and study the stability of this type of networks having also in mind applications
in soap bubbles, honeycomb, grain growth. Additionally we aim to use the techniques and
properties proved in the main results of this article to update the geometrical properties
that are used in electrical circuit theory and elasticity, plasticity problems in material
science. For all this there is already some ongoing research.
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