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Abstract: This paper discusses the numerical solution of the generalized non-Hermitian eigenvalue
problem. It provides a comprehensive comparison of existing algorithms, as well as of available free
and open-source software tools, that are suitable for the solution of the eigenvalue problems that
arise in the stability analysis of electric power systems. The paper focuses in particular on methods
and software libraries that are able to handle the large-scale, non-symmetric matrices that arise in
power system eigenvalue problems. These kind of eigenvalue problems are particularly difficult
for most numerical methods to handle. A review and fair comparison of existing algorithms and
software tools is thus a valuable contribution for researchers and practitioners interested in power
system dynamic analysis. The scalability and performance of the algorithms and libraries are duly
discussed through case studies based on real-world electrical power networks. These are a model of
the All-Island Irish Transmission System with 8,640 variables; and a model of the European Network
of Transmission System Operators for Electricity, with 146,164 variables.

Keywords: Eigenvalue analysis, large non-Hermitian matrices, numerical methods, open-source
libraries.

1. Notation

a vector
A matrix
AH matrix conjugate transpose (Hermitian)
C complex numbers
H Hessenberg matrix
Ir identity matrix of dimensions r× r
 unit imaginary number
J Hankel matrix
R upper triangular matrix of QR decomposition
R real numbers
s complex Laplace variable
T upper triangular matrix of Schur decomposition
u right eigenvector
w left eigenvector
x vector of state variables
y vector of algebraic variables
z spectral transform
γ center of circular contour in the complex plane
λ eigenvalue
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µ moment associated to matrix pencil
ν spectral anti-shift
ρ radius of circular contour in the complex plane
σ spectral shift
ψ contour integrals associated to matrix pencil
0n,m zero matrix of dimensions n×m

2. Introduction

Eigenvalue analysis is a fundamental component of electric power system Small-Signal Stability
Analysis (SSSA). It is utilized to determine the stability of the operating points of the system [1,2],
design controllers [3], determine machine clusters and reduced equivalent models [4] and evaluate
the properties of the transmission grid [5]. On the other hand, there is a rich literature on numerical
algorithms that determine the full or a partial solution of a given eigenvalue problem. Relevant
monographs on the topic are, for example, [6] and [7]. However, not all available algorithms are
suitable for the SSSA of power systems.

The vast majority of numerical algorithms, in fact, solve exclusively symmetric, Hermitian or
tridiagonal Hermitian eigenvalue problems, which arise in many engineering, physics and computer
applications. Such algorithms are, for example, the Davidson [8], the implicitly restarted Lanczos [9]
and the locally optimal block preconditioned conjugate gradient [10] methods. However, the matrices
that describe a linearized power system model are typically non-symmetric. Compared to symmetric
problems, non-symmetric eigenvalue problems are more difficult and computationally demanding to
solve. This is also due to the fact that symmetric eigenvalue problems are generally well-conditioned,
while non-symmetric eigenvalue problems are not. Consequently, available free and open-source
software libraries that solve non-symmetric eigenvalue problems are a small subset of all existing
libraries.

The scalability of the numerical solution of eigenvalue problems is also very important since,
real-world electrical power networks are large-scale dynamic systems. Unfortunately, the most reliable
methods to find the full spectrum of an eigenvalue problem are dense-matrix methods, and their
computational complexity and memory requirements increase more than quadratically (in some cases
even cubically) as the size of the matrix increases. As a matter of fact, the largest ever eigenvalue
analysis with a dense algorithm to date was the solution of a 106 × 106 problem in about 1 hour, and
was carried out in 2014 by the Japanese K computer in Riken. To be able to obtain this result, the K
computer includes 88,000 processors which draw a peak power of 12.6 MW, while its operation costs
annually US$10 million. Even using sparse matrices and limiting the search to a subset of the spectrum,
the solution of large-scale power system eigenvalue problems is challenging.

A coarse taxonomy of existing algorithms for the solution of non-symmetric eigenvalue problems
is as follows:

• Vector iteration methods, which, in turn, are separated to single and simultaneous vector iteration
methods. Single vector iteration methods include the power method [11] and its variants, such
as the inverse power and Rayleigh quotient iteration. Simultaneous vector iteration methods
include the subspace iteration method [12] and its variants, such as the inverse subspace method.
Regarding the application of vector iteration methods in power systems, the inverse power
iteration was first discussed in [13]. A Rayleigh quotient iteration based algorithm was proposed
in [14,15], while recent studies have provided subspace accelerated and deflated versions of the
same algorithm [16–18]. Finally, simultaneous vector iteration methods were studied in [19,20].

• Schur decomposition methods, which mainly include the QR algorithm [21], the QZ algorithm [22],
and their variants, such as the QR algorithm with shifts. Schur decomposition based methods
have been the standard methods employed for the eigenvalue analysis of small to medium size
power systems [23,24].
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• Krylov subspace methods, which basically include the Arnoldi iteration [25] and its variants, such
as the implicitly restarted Arnoldi [26] and the Krylov-Schur method [27]. In this category belong
also preconditioned extensions of the Lanczos algorithm, such as the non-symmetric versions of
the Generalized Davidson and Jacobi-Davidson method. In power systems, different versions of
the Arnoldi method were proposed in [19,28,29], while a parallel version of the Krylov-Schur
method was implemented very recently, in [30]. The Jacobi-Davidson method and an inexact
version of the same method were discussed in [31] and [32], respectively.

• Contour integration methods, which basically include a moment-based Hankel method [33] and
a Rayleigh-Ritz-based projection method [34] proposed by Sakurai; and the FEAST algorithm
[35]. Contour integration for power system eigenvalue analysis was discussed only very recently,
[36,37].

The main objective of this paper is to provide a state-of-art reference of eigenvalue numerical
algorithms that can be actually utilized for the analysis of large power system models. To this aim, we
have carefully selected only methods for non-Hermitian matrices for which open-source numerical
libraries are available and that we were able to test and which were successful to solve relatively “large”
eigenvalue problems. In particular, the paper provides a fair comparison of algorithms that have been
proposed for power system analysis only very recently, such as versions of the parallel Krylov-Schur
and contour integration methods discussed in [30] and [37], as well as of state-of-art implementations
of standard algorithms for unsymmetric dense and sparse matrices, such as the QR and Arnoldi
method. The paper provides an overview and comparison of the state-of-art open-source libraries that
solve the non-symmetric eigenvalue problem. These are Linear Algebra PACKage (LAPACK) [38] and
its GPU-based version, namely Matrix Algebra for GPU and Multicore Architectures (MAGMA)
[39]; ARnoldi PACKage (ARPACK) [40]; Anasazi [41]; Scalable Library for Eigenvalue Problem
computations (SLEPc) [42]; FEAST [43]; and z-PARES [44].

The remainder of the paper is organized as follows. Section 3 provides the background and
problem formulation of power system eigenvalue analysis and a description of matrix pencil spectral
transforms. The most relevant numerical algorithms for the eigenvalue analysis of power systems
are outlined in Section 4. Open-source libraries that implement state-of-art implementations of these
methods Section 5. The examined algorithms are comprehensively tested through two real-world
power system models in the case studies discussed in Section 6. Finally, conclusions are drawn in
Section 7.

3. Background

3.1. Power System Model

Electric power system models for transient stability analysis can be formulated as a set of
non-linear Differential Algebraic Equations (DAEs), as follows [45]:[

F 0n,m

G 0m,m

] [
ẋ
ẏ

]
=

[
f (x, y)
g(x, y)

]
, (1)

where f : Rn+m → Rn, g : Rn+m → Rm; x = x(t), x ∈ Rn, are the state variables, y = y(t), y ∈ Rm,
are the algebraic variables; F ∈ Rn×n, G ∈ Rm×n, are assumed to be constant matrices; and t ∈ [0, ∞)

is the simulation time. Finally, 0n,m denotes the zero matrix of dimensions n×m. For the purpose of
analysis, and for sufficiently small disturbances, (1) can be linearized around an equilibrium (xo, yo),
as follows: [

F 0n,m

G 0m,m

] [
∆ẋ
∆ẏ

]
=

[
f x ∆x + f y ∆y
gx ∆x + gy ∆y

]
, (2)
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where ∆x = x− xo, ∆y = y− yo; f x, f y, gx, gy, are the Jacobian matrices calculated at (xo, yo). This
system can be rewritten in the following form:

EI ż = AI z , (3)

where

z =

[
∆x
∆y

]
, EI =

[
F 0n,m

G 0m,m

]
, AI =

[
f x f y
gx gy

]
.

The linear system (2) is often reduced to a system of Ordinary Differential Equations (ODEs), by
elimination of algebraic variables. The linearized ODE power system model can be described as
follows:

∆ẋ = AS∆x , (4)

where AS = (F− f yg−1
y G)−1( f x − f yg−1

y gx) is the state matrix, and where we have assumed that gy,
F− f yg−1

y G are non-singular.

3.2. Eigenvalue Problem

In this paper, we are concerned with finding the eigenvalues of the following system:

Eẋ(t) = Ax(t) , (5)

where E, A ∈ Rr×r, x : [0,+∞] 7→ Cr×1. Matrix E in (5) can be:

• non-singular, i.e. det(E) 6= 0. This is the case of the ODE power system model (4). In particular,
(4) can be obtained from (5) for r = n, x ≡ ∆x, A ≡ AS, E ≡ Ir.

• singular, i.e. det(E) = 0. This is the case of the DAE power system model (2). In particular, (2)
can be obtained from (5) for r = n + m, x ≡ z, A ≡ AI, E ≡ EI.

The stability of (5) can be assessed by calculating its eigenvalues, which are defined as the roots
of the characteristic equation:

det(sE−A) = 0 , (6)

where s ∈ C denotes the complex Laplace variable. In (6), sE− A is called the matrix pencil and
det(sE−A) the characteristic polynomial of system (5). In this paper, we assume that det(sE−A

)
=

Π(s) 6≡ 0, where Π(s) is polynomial of order equal or less than r, in which case sE−A is called a
regular pencil [46]. In general, analytical solution of (6) is possible only if r ≤ 4. For higher degrees,
general formulas do not exist and only the application of a numerical method is possible. In addition,
algorithms that explicitly determine the characteristic polynomial det(sE−A

)
and then numerically

calculate its roots, may be extremely slow even for small problems. Alternatively, the eigenvalues of
sE−A can be found from the solution of the Generalized Eigenvalue Problem (GEP):

(sE−A)u = 0r,1 ,

w(sE−A) = 01,r ,
(7)

where u ∈ Cr×1 and w ∈ C1×r. Every value of s that satisfies (7) is an eigenvalue of the pencil sE−A,
with the vectors u, w being the corresponding right and left eigenvectors, respectively. Thus, the
solution of the GEP consists in calculating the eigenpairs, i.e. eigenvalues and eigenvectors, that satisfy
(7). Depending on the analysis that needs to be carried out, it may be required that only right (or left)
or both right and left eigenvectors are calculated. In general, the pencil sE−A has rank(sE−A) finite
eigenvalues and the infinite eigenvalue with multiplicity r− rank(sE−A). Note that, if E is singular,
the pencil will have the infinite eigenvalue with multiplicity at least one.
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In the special case that the left-hand side matrix of (5) is the identity matrix, e.g. (4)), the general
problem (7) is reduces to the following Linear Eigenvalue Problem (LEP):

(sIr −A)u = 0r,1 ,

w(sIr −A) = 01,r .
(8)

The solution of the LEP consists in calculating the r finite eigenvalues and eigenvectors of sIr −A.

3.3. Spectral Transforms

In general, the solution of the eigenvalue problem involves finding the full or partial spectrum of
the pencil sE−A. However, depending on the applied numerical method as well as on the structure
of the system matrices, it is common that the eigenvalues are not found by using directly sE−A, but
through the pencil that arises from the application of a proper spectral transform. Spectral transforms
are utilized by eigenvalue numerical methods usually for one of the following reasons:

• To find the eigenvalues of interest. Some numerical methods, for example vector iteration-based
methods, find the Largest Magnitude (LM) eigenvalues, whereas the eigenvalues of interest in
SSSA are typically the ones with Smallest Magnitude (SM) or Largest real Part (LRP). Thus, it is
necessary to apply a spectral transform, e.g. the invert or shift & invert.

• Address a singularity issue. A GEP with singular left hand side coefficient matrix E can create
problems to many numerical methods. Applying a Möbius transform can help address singularity
issues.

• Accelerate convergence. Eigenvalues that are not very close to each other can lead to large errors
and slow convergence of eigensolvers. Spectral transforms can help magnify the eigenvalues of
interest and speed up convergence.

We describe here the Möbius transformation, which is a general variable transformation that
includes as special cases all spectral transforms used in practice by eigenvalue algorithms. The
formulation of the Möbius transformation is:

s :=
az + b
cz + d

, a, b, c, d ∈ C , ad− bc 6= 0 . (9)

The restriction in (9) is necessary because if ad = bc then s is constant which is not possible. Applying
the transform (9) in (6) we get

det
(

az + b
cz + d

E−A
)
= 0 ,

or, equivalently, by using determinant properties

det
(
(az + b)E− (cz + d)A

)
= 0 ,

or, equivalently,
det
(
(aE− cA)z− (dA− bE)

)
= 0 ,

which is the characteristic equation of a linear dynamical system

(aE− cA) ˙̃x(t) = (dA− bE)x̃(t) , (10)

with pencil z(aE− cA)− (dA− bE). System (5) will be referred as the prime system, and the family of
systems (10) will be defined as the proper “M-systems.” An important property is that the solutions
and stability properties of system (5) can be studied through (10) without resorting to any further
computations, see [47]. The utilities of the family of systems of type (10) have been further emphasized
by the features of some particular special cases. The most commonly employed Möbius transforms and
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the corresponding matrix pencils for the GEP are summarized in Table 1. The values of the parameters
a, b, c, d that lead to each of these transforms are given in Table 2. In case that σ > 0, the Cayley
transform is equivalent to the bilinear transform z := ( T

2 s + 1)/( T
2 s− 1), where T = 2

σ . The choice of
the best transform for a specific system and eigenvalue problem is a challenging task to solve, since
the selection of shift values is always more or less heuristic. Finally, note that the importance of such
spectral transforms for the eigenvalue analysis has been also identified in power system literature, see
[48,49].

Table 1. Common linear spectral transforms.

Name z Pencil s

Prime system s sE−A z

Invert 1/s zA− E 1/z

Shift & invert 1/s− σ z(σE−A) + E 1/z + σ

Cayley (s + σ)/(s− σ) z(σE−A)− (A + σE) σ(z− 1)/(z + 1)

Gen. Cayley (s + ν)/(s− σ) z(σE−A)− (A + νE) (σz− ν)/(z + 1)

Möbius (−ds + b)/(cs− a) z(aE− cA)− (dA− bE) (az + b)/(cz + d)

Table 2. Coefficients of special Möbius transformations.

M-system a b c d

Prime −1 0 0 −1
Dual 0 1 1 0
Shift & invert σ 1 1 0
Cayley σ −σ 1 1
Gen. Cayley σ −ν 1 1

4. Description of Numerical Algorithms

This section provides an overview of the following classes of eigenvalue numerical methods:
vector iteration methods, Schur decomposition methods, Krylov subspace methods, and contour
integration methods. These are, in fact, the methods implemented by the open-source software
libraries compared in Section 5 and in the case studies of Section 6 of this paper.

4.1. Single Vector Iteration Methods

The vector iteration or power method is the oldest and probably the simplest and most intuitive
numerical method for solving an eigenvalue problem. Consider the LEP (8) with matrix pencil sIr −A.
The main idea of the power method is that, if one starts with a vector b and repeatedly multiplies by
A, then the subsequence

Ab, A2b, A3b, . . . , (11)

converges to a multiple of the right eigenvector that corresponds to the eigenvalue of A with LM. More
strictly put, under the assumption that the magnitude of the largest eigenvalue λm is larger than that
of all other eigenvalues, (11) linearly converges to a multiple of the corresponding right eigenvector
um. To guarantee the convergence, it is also required that the initial vector is selected with a non-zero
component in the direction of λm. Applying the above idea, the method starts with an initial vector
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b(0), which is updated at each step of the iteration through multiplication with A and normalization.
The k-th step of the iteration is as follows:

b(k) =
Ab(k−1)

||Ab(k−1)||
, k = 1, 2, 3, . . . (12)

Finally, under the assumptions discussed above, b(k) converges to the vector um, which corresponds
to the eigenvalue of LM λm. Given um, an estimation of the eigenvalue λm is given by the Rayleigh
quotient. In general, given a right eigenvector ui, the Rayleigh quotient provides an estimate of the
corresponding eigenvalue λi as follows:

λ̃i(A, ui) =
uH

i Aui

uH
i ui

, (13)

where uH
i is the conjugate transpose of ui.

The power method finds an eigenvector that corresponds to the eigenvalue of LM. However, the
eigenvalue of LM typically is not of interest for SSSA. The inverse power method addresses this issue
by using (A− σIr)−1 instead of A in (12), where the spectral shift σ represents an initial guess of an
eigenvalue λi. The k-th step of the inverse power method is as follows:

b(k) =
(A− σIr)−1b(k−1)

||(A− σIr)−1b(k−1)||
, k = 1, 2, 3, . . . (14)

Provided that σ is a good initial guess of λi, b(k) converges to the corresponding right eigenvector
ui. Hence, the inverse power method is able to calculate the eigenvector corresponding to any single
eigenvalue, by computing the dominant eigenvector of (A − σIr)−1. Then, the eigenvalue λi is
approximated by the Rayleigh quotient given by (13).

Despite the ability of the inverse power method to compute any eigenpair (λi, ui), a bad selection
of the spectral shift σ leads to very slow convergence, or convergence to a different eigenvector than
the one desired. The Rayleigh quotient iteration method is an extension of the inverse power method
that updates the applied spectral shift at each step of the iteration. Starting from an initial eigenpair
guess (σ(0), b(0)), the k-th step, k = 1, 2, 3, . . ., of the Rayleigh quotient iteration is:

b(k) =
(A− σ(k−1)Ir)−1b(k−1)

||(A− σ(k−1)Ir)−1b(k−1)||
,

σ(k) =
(b(k))HAb(k)

(b(k))Hb(k)
.

(15)

Depending on the initial guess, the method is able to converge to any eigenpair (λi, ui).
For the sake of simplicity, numerical methods were presented in (12), (14), (15) for the solution of

the LEP, however, they can be modified to handle also the GEP. For example, considering the GEP (7),
the inverse power method for finding an eigenvector of the pencil sE−A can be described as:

b(k) =
(A− σE)−1Eb(k−1)

||(A− σE)−1Eb(k−1)||
, k = 1, 2, 3, . . . . (16)

The methods described above calculate a single eigenvector in one iteration, and for this reason
they are referred in the literature as single vector iteration methods. Calculating multiple eigenpairs
with a single vector iteration method is possible by applying a deflation technique and repeating the
iteration.
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4.2. Simultaneous Vector Iteration Methods

Simultaneous vector iteration or subspace method is a vector iteration method that calculates
multiple eigenvectors simultaneously in one iteration. Suppose that we want to compute the p LM
eigenvalues of the LEP (8) with pencil sIr −A. Extending the idea of the power method, consider
the subsequence (11), where now b is not a vector, but b ∈ Cr×p. As it is, the subsequence does not
converge, as we would desire, to a matrix with columns the p eigenvectors of sIr − A. However,
convergence to these eigenvectors can be achieved by ensuring that the columns of the k-th element
Akb are orthonormal vectors. Then, we say that the columns of Akb span the subspace:

Vp = span{Akb} . (17)

The steps of the subspace iteration algorithm are the following.

1. The iteration starts with an initial matrix b(0), b(0) ∈ Cr×p, with orthonormal columns,
i.e. (b(0))Hb = Ip.

2. At the k-th step of the iteration, k = 1, 2, 3, . . .:

(a) Matrix C, C ∈ Cr×p, is formed as:

C(k) = Ab(k−1) . (18)

(b) Matrix b(k) is updated by maintaining column-orthonormality, through QR decomposition
of matrix C:

C(k) = QR ,

b(k) = Q ,
(19)

where Q is a unitary matrix and R is an upper triangular matrix.

The columns of b(k) eventually converge to p right eigenvectors that correspond to the p LM
eigenvalues.

Note that the LM eigenvalues may not be the important ones for the needs of SSSA. Similarly to
the discussion of the inverse power method, finding the eigenvalues of smallest magnitude is possible
by forming an inverse subspace iteration.

Convergence of the subspace iteration is in general slow and thus, its use is avoided for complex
problems. Still, acceleration of the speed of convergence is possible by combining the method with the
Rayleigh-Ritz procedure. Since the utility of the Rayleigh-Ritz procedure goes far beyond the subspace
iteration, we describe it separately in the Appendix.

4.3. Schur Decomposition Methods

Schur decomposition-based methods take advantage of the fact that, for any r× r matrix A, there
always exists a unitary matrix Q ∈ Cr×r, such that:

T = QHAQ , (20)

where T, T ∈ Cr×r, is an upper triangular matrix with diagonal elements all the eigenvalues of the
pencil sIr −A. Decomposition (20) is known as the Schur decomposition of A, and matrix T as the
Schur form of A. It appears that the most efficient algorithm to compute the Schur decomposition of a
given matrix is the QR algorithm. In an analogy to previously described methods, the QR algorithm
can be understood as a nested subspace iteration, or as a nested sequence of r power iterations [50].
Starting with matrix A(0) = A, the main steps of the QR algorithm at k-th iteration, k = 1, 2, 3, . . . are:

A(k−1) = Q(k)R(k) , (21)

A(k) = R(k)Q(k) , (22)
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where Q(k) is orthogonal and R(k) is upper triangular. The QR decomposition (21) is computed by
applying Householder transformations, see [51].

If A(k) converges, say after κ steps, then A(κ) = T. The diagonal elements of A(κ) are the
eigenvalues of A. The corresponding right eigenvectors are found as the columns of the matrix:

Q = Q(1)Q(2) . . . Q(κ) , (23)

where Q ∈ Cr×r. Notice that, throughout the algorithm, matrices A(k), A(k−1) are similar and thus,
they have the same eigenvalues with the same multiplicities. The QR algorithm uses a complete basis
of vectors and computes all eigenvalues of the matrix pencil sIr −A. In practice, the QR algorithm is
typically not used as it is, but multiple shifts are applied to accelerate convergence, which leads to the
implicitly shifted QR algorithm [52].

The analog of the QR algorithm for the GEP is the QZ algorithm. The QZ algorithm takes
advantage of the fact that for any r× r matrices A, E, there always exist unitary matrices Q ∈ Cr×r,
Z ∈ Cr×r, such that:

T1 = QHAZ ,

T2 = QHEZ ,
(24)

are upper triangular, and the eigenvalues of the pencil sE−A are the ratios w1,ii/w2,ii of the diagonal
elements of T1, T2, respectively. The decomposition (24) is known as generalized Schur decomposition.
From the implementation viewpoint, the algorithm computes all eigenvalues of the matrix pencil
sE−A by first reducing A, E, to upper Hessenberg and upper triangular form, respectively, through
Householder transformations. The method can be perceived as equivalent to applying the implicitly
shifted QR algorithm to AE−1, without, nonetheless, explicitly computing E−1 [52].

4.4. Krylov Subspace Methods

The power method consists in the calculation of the products Ab, A2b, A3b and so on, until
convergence. The method utilizes the converged vector, let’s say Aκb, which corresponds to the
LM eigenvalue. However, the power iteration discards the information of all vectors calculated in
the meantime. The main idea of Krylov subspace eigenvalue methods is to utilize this intermediate
information to calculate the p LM eigenvalues of sIr −A. The Krylov subspace that corresponds to A
and vector b is defined as:

Kp(A, b) = span{b, Ab, A2b, . . . , Ap−1b} . (25)

Subspace (25) is spanned by the columns of the Krylov matrix, which is defined as:

Kp = [b Ab A2b . . . Ap−1b] . (26)

The matrix-vector multiplications typically render the columns of Kp linearly dependent. Thus, these
columns require orthonormalization. The orthonormalized vectors can be then employed to provide
approximations of the eigenvectors that correspond to the p eigenvalues of LM. The eigenvalues are
extracted by projecting A onto the Krylov subspace, typically through the Rayleigh-Ritz procedure
(see the Appendix).

4.4.1. Arnoldi Iteration

The Arnoldi iteration finds the p LM eigenvalues of sIr − A. In particular, it employs the
Gram-Schmidt process to find an orthonormal basis of the Krylov subspace. Then, the eigenvalues are
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extracted by applying the Rayleigh-Ritz procedure. Starting from an initial normalized vector q1, the
vector qk+1 at the k-th step is calculated as follows:

q̂k = Aqk −
k

∑
i=1

hi,kqi ,

qk+1 =
q̂k

hk+1,k
,

(27)

where hi,k = qH
i Aqk, hk+1,k = ||q̂k||. At the k-th step, the Arnoldi relation is formulated as follows:

AQk = QkHk + q̂keH
k , (28)

where Qk, Qk ∈ Cr×k, is the matrix with columns qk; Hk, Hk ∈ Rk×k, is in Hessenberg form and has
elements hi,j; ek denotes the k-th column of the identity matrix Ik. The algorithm stops when hk+1,k = 0,
suppose when k = p. Then, relation (28) becomes:

AQp = QpHp . (29)

where Qp = [q1, q2, . . . , qp] is an orthonormal basis of the Krylov subspace. Following the
Rayleigh-Ritz procedure, the eigenvalue λi, i = 1, 2, . . . , p, of Hp is also eigenvalue of sIr−A. Moreover,
if vi is eigenvector of Hp, the Ritz vector ui = Qpvi is eigenvector that corresponds to λi.

The Arnoldi iteration converges quickly if the initial vector q1 has larger entries at the direction
of desired eigenvalues. This is usually not the case and thus, it is common that many iterations are
required. On the other hand, the ability to compute the columns of Qp is constrained because of its
high memory requirements. For this reason, in practice, the Arnoldi iteration is typically restarted
after a number of steps, using a new, improved initial vector. The restarts can be explicit or implicit.
The idea of explicit restarts is to utilize the information of the most recent factorization to produce a
better initial vector. This is usually combined with a locking technique, i.e. a technique to ensure that
converged vectors do not change in successive runs of the algorithm. On the other hand, the idea of
the Implicitly Restarted (IR) Arnoldi iteration is to combine the Arnoldi iteration with the implicitly
shifted QR algorithm.

4.4.2. Krylov-Schur Method

A more recently proposed idea that achieves the effect of the implicit restart technique in a
simpler way is the Krylov-Schur method, which is a generalization of the Lanczos thick restart [53] for
non-Hermitian matrices. The method considers the Arnoldi relation (28) and applies the QR algorithm
to bring matrix Hk to its Schur form, i.e. Tk = WH

k HkWk, where Tk is an upper triangular matrix with
diagonal elements the eigenvalues of Hk (Ritz values). Then, (28) becomes:

AQkWk = QkWkTk + q̂keH
k Wk , (30)

or equivalently,

ADk = DkTk + q̂kwH
k , (31)

where Dk = QkWk, wH
k = eH

k Wk. Decomposition (31) is reordered to separate undesired Ritz values
from the desired ones. The part that corresponds to the desired Ritz values is kept and the rest is
discarded:

ADk,d = Dk,dTk,d + q̂kwH
k,d , (32)
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where Dk,d, Tk,d and wH
k,d represent the parts of Dk, Tk and wH

k that correspond to the desired Ritz
values after the reordering, respectively. Then, the reduced decomposition (32) is expanded to order k.
The above process is repeated until convergence to an invariant subspace is achieved.

4.4.3. Generalized Eigenvalue Problem

Krylov subspace methods above were described for the solution of the LEP. Using Krylov
subspace methods for the solution of the GEP is usually done by employing a spectral transform. For
example, applying the shift & invert transform to the pencil sE−A, the Arnoldi relation becomes:

(A− σE)−1EQk = QkHk + q̂keH
k , (33)

where in this case it is QH
k EQk = Ik. Each eigenvalue µ obtained after the convergence of (33) to an

invariant subspace, is then transformed to find the corresponding eigenvalue λ of the original problem
as λ = 1/µ + σ.

4.5. Contour Integration Methods

Contour integration methods find the eigenvalues of the pencil sE−A that are inside a given,
user-defined domain of the complex plane. The method proposed by Sakurai and Sugiura [33] and its
variants [34,54], are the most characteristic examples of this class.

Suppose that p distinct eigenvalues λ1, λ2, . . . , λp are located inside positively oriented simple
closed curve Γ in C. The contour integration method with Hankel matrices (CI-Hankel) applies a
moment-based approach to reduce the problem of finding the p eigenvalues of sE−A to finding the
eigenvalues of a p× p matrix pencil. For a non-zero vector b, consider the moments:

µk =
1

2πi

∫
Γ
(s− γ)k(E b)T(sE−A)−1E b ds , (34)

where k = 0, 1, . . . , p− 1; γ is a user-defined point that lies in Γ. A standard case is to define Γ as a
circle with center γ and radius ρ.

The moments µk are used to construct the p× p Hankel matrices Jp := [µi+j−2]
p
i,j=1 and J<p :=

[µi+j−1]
p
i,j=1. Then, the eigenvalues of the matrix pencil sJ<p − Jp are given by λ1− γ, λ2− γ, . . ., λp− γ.

The corresponding eigenvectors are found through the contour integral:

ψk =
1

2πi

∫
Γ
(s− γ)k(sE−A)−1E b ds , (35)

where k = 0, 1, . . . , p − 1. Given the eigenvectors associated to λ1 − γ, λ2 − γ, . . ., λp − γ, the
eigenvectors of sE−A are retrieved through a simple vector manipulation. In practice, integrals (34),
(35) are approximated through a numerical integration technique. For example, using the N-point
trapezoidal rule when Γ is defined as the circle with center γ and radius ρ, the following approximations
of (34), (35) are obtained:

µk ≈
1
N

N−1

∑
j=0

(wj − γ)k+1(Eb)T(wjE−A)−1Eb , (36)

ψk ≈
1
N

N−1

∑
j=0

(wj − γ)k+1(wjE−A)−1Eb , (37)

where k = 0, 1, . . . , p− 1; wj = γ + ρ e(2πi/N)(j+1/2), j = 0, 1, . . . , N − 1. In order to compute (36), (37),
the following linear systems need to be solved:

(wjE−A)yj = Eb , j = 0, 1, . . . , N − 1 . (38)
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Systems (38) are independent for each j, and hence, they can be solved in parallel. A parallel
implementation can significantly improve computational efficiency, especially if the dimensions
of A, E are large.

In case that some eigenvalues in the defined region are very close, the accuracy of the CI-Hankel
method decreases, as the associated Hankel matrices become ill-conditioned. An alternative approach
is to use contour integration to construct a subspace associated to the eigenvalues in Γ, and then extract
the eigenpairs from such subspace using the Rayleigh-Ritz procedure. The resulting method is the
CI-RR (Contour Integration with Rayleigh-Ritz).

Based on (35), it can be proven that, if the column vectors {q1, q2, . . . , qp} form an orthonormal
basis of span{ψo, ψ1, . . . , ψp−1}, then the eigenvalues λi and the corresponding eigenvectors ui,
i = 1, 2, . . . , p can be extracted by using the basis Qp = [q1, q2, . . . , qp] and applying the Rayleigh-Ritz
procedure for the pencil sE−A. To construct the orthonormal basis Qp, the contour integral (35) is
first approximated through the N-point trapezoidal rule. In practice, an orthonormal basis Qp with
size larger than p may be used, to improve accuracy. Compared to the Hankel method, the CI-RR
method is typically more accurate and thus is preferred most of the times.

Finally, another promising contour integration algorithm is FEAST. FEAST was first proposed
in [35] for the solution of symmetric eigenvalue problems, but was later extended to include
non-symmetric eigenvalue problems. The algorithm can be understood as an accelerated subspace
iteration method combined with the Rayleigh–Ritz procedure [55], and from this point of view, it has
some similarities with the CI-RR method. The unique characteristic of the FEAST algorithm is that it
implements an acceleration through a rational matrix function that approximates the spectral projector
onto the subspace.

5. Open-Source Libraries

This section provides an overview of – to the best of our knowledge – all open-source numerical
eigensolvers that implement state-of-art numerical algorithms for non-symmetric eigenvalue problems.
These are LAPACK, ARPACK, Anasazi, SLEPc, FEAST and z-PARES.

5.1. LAPACK

• Summary: LAPACK [38] is a standard library aimed at solving problems of numerical linear
algebra, such as systems of linear equations and eigenvalue problems.

• Eigenvalue Methods: QR and QZ algorithms.
• Matrix Formats: Cannot handle general sparse matrices, but is functional with dense matrices. In

fact, LAPACK is the standard dense matrix data interface used by all other eigenvalue libraries.
• Returned Eigenvectors: LAPACK algorithms are 2-sided, i.e. return both right and left eigenvectors.
• Dependencies: A large part of the computations required by the routines of LAPACK are

performed by calling the BLAS (Basic Linear Algebra Subprograms) [56]. In general, BLAS
functionality is classified in three levels. Level 1 defines routines that carry out simple vector
operations; Level 2 defines routines that carry out matrix-vector operations; and Level 3 defines
routines that carry out general matrix-matrix operations. Modern optimized BLAS libraries, such
as ATLAS (Automatically Tuned Linear Algebra Software) [57] and Intel MKL (Math Kernel
Library), typically support all three levels for both real and complex data types.

• GPU-based version: MAGMA [39] provides hybrid CPU/GPU implementations of LAPACK
routines. It depends on NVidia CUDA. For general non-symmetric matrices, MAGMA includes
the QR algorithm for the solution of the LEP but does not support the solution of the GEP.

• Parallel version: ScaLAPACK (Scalable LAPACK) [58] provides implementations of LAPACK
routines for parallel distributed memory computers. Similarly to the dependence of LAPACK
on BLAS, ScaLAPACK depends on PBLAS (Parallel BLAS), which in turn depends on BLAS
for local computations and BLACS (Basic Linear Algebra Communication Subprograms) for
communication between nodes.
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• Development: As an eigensolver, LAPACK is the successor of EISPACK [59]. The first version of
LAPACK was released in 1992. Compared to EISPACK, LAPACK was restructured to include
the block forms of QR and QZ algorithms, which allows exploiting Level 3 BLAS and leads to
improved efficiency [60]. The latest version of LAPACK is 3.7 and was released in 2016.

5.2. ARPACK

• Summary: ARPACK [40] is a library developed for solving large eigenvalue problems with the
IR-Arnoldi method.

• Eigenvalue Methods: IR-Arnoldi iteration.
• Matrix Formats: ARPACK supports the Reverse Communication Interface (RCI), which provides

to the user the freedom to customize the matrix data format as desired. In particular, with RCI,
whenever a matrix operation has to take place, control is returned to the calling program with an
indication of the task required and the user can, in principle, choose the solver for the specific
task independently from the library.

• Returned Eigenvectors: Only right eigenvectors are calculated.
• Dependencies: ARPACK depends on a number of subroutines from LAPACK/BLAS. Moreover,

ARPACK requires to be linked to a library that factorizes matrices. This can be either dense or
sparse. In the simulations described in this paper, we linked ARPACK to the efficient library
KLU, which is part of SuiteSparse [61], and that is particularly suited for sparse matrices whose
structure originates from an electrical circuit.

• GPU-based version: To the best of the authors’ knowledge, a library that provides a functional
GPU-based implementation of ARPACK is not available to date.

• Parallel version: PARPACK is an implementation of ARPACK for parallel computers. The message
parsing layers supported by PARPACK are MPI (Message Passing Interface) [62] and BLACS.

• Development: The first version of ARPACK became available on Netlib in 1995. The last few
years, ARPACK has stopped getting updated by Rice University. The library has been forked
into ARPACK-NG, a collaborative effort among software developers, including Debian, Octave
and Scilab, to put together their own improvements and fixes of ARPACK. The latest version of
ARPACK-NG is 3.7.0 and was released in 2019.

5.3. Anasazi

• Summary: Anasazi [41] is a library that implements block versions of algorithms for the solution
of large-scale eigenvalue problems.

• Eigenvalue Methods: The library includes methods for both symmetric and non-symmetric
problems. Regarding non-symmetric problems, it provides a block extension of the Krylov-Schur
method and the Generalized Davidson (GD) method.

• Matrix Formats: Anasazi depends on LAPACK as an interface for dense matrix and on Epetra as
an interface for sparse CSR matrix formats.

• Returned Eigenvectors: Only right eigenvectors are calculated.
• Dependencies: Anasazi depends on Trilinos [63] and on LAPACK/BLAS.
• GPU-based version: Currently not supported.
• Parallel version: A parallel version of Anasazi is not currently available. On the other hand, the

library has an abstract structure which is, in principle, compatible with parallel implementations.
• Development: The latest version of Anasazi was released in 2014.

5.4. SLEPc

• Summary: SLEPc [42] is a library that focuses on the solution of large sparse eigenproblems.
• Eigenvalue Methods: SLEPc includes a variety of methods, both for symmetric and non-symmetric

problems. For non-symmetric problems, it provides the following methods: power/inverse
power/Rayleigh quotient iteration with deflation, in a single implementation; Subspace iteration
with Rayleigh-Ritz projection and locking; Explicitly Restarted and Deflated (ERD) Arnoldi;
Krylov-Schur; GD; Jacobi-Davidson (JD); CI-Hankel and CI-RR methods.
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• Matrix Formats: SLEPc depends on LAPACK as an interface for dense matrix and on MUMPS
[64] as an interface for sparse Compressed Sparse Row (CSR) matrix formats. In addition, it
supports custom data formats, enabled by RCI.

• Returned Eigenvectors: Only the power method and Krylov-Schur method implementations are
2-sided. All other algorithms return only right eigenvectors.

• Dependencies: SLEPc depends on PETSc (Portable, Extensible Toolkit for Scientific Computation)
[65]. By default the matrix factorization routines provided by PETSc are utilized by SLEPc but,
at the compilation stage, SLEPc can be linked to other more efficient solvers, e.g. MUMPS, which
is recommended by SLEPc developers and exploits parallelism.

• GPU-based version: SLEPc supports GPU computing, which depends on NVidia CUDA.
• Parallel version: SLEPc includes a parallel version which depends on MPI. The parallel version

employs MUMPS as its linear sparse solver.
• Development: The first version of SLEPc (2.1.1) was released in 2002. The latest version is SLEPc

3.13 and was released in 2020.

5.5. FEAST

• Summary: FEAST [43] is the eigensolver that implements the FEAST algorithm, first proposed in
[35]. Among other characteristics, the package includes the option to switch to IFEAST, which
uses an inexact iterative solver to avoid direct matrix factorizations. This feature is particularly
useful if the sparse matrices are very large and carrying out direct factorization is very expensive.

• Eigenvalue Methods: FEAST.
• Arithmetic: Both real and complex types.
• Matrix Formats: FEAST depends on LAPACK as an interface for dense matrix, on SPIKE as

an interface for banded matrix and on MKL-PARDISO [66] for sparse CSR matrix formats. In
addition, FEAST includes RCI and thus, data formats can be customized by the user. Using the
sparse interface requires linking FEAST with Intel MKL. Linking the library with BLAS/LAPACK
and not with MKL is possible, but seriously impacts the performance and the results of the
library.

• Returned Eigenvectors: The FEAST algorithm implementation is 2-sided.
• Dependencies: FEAST requires LAPACK/BLAS.
• GPU-based version: Currently not supported.
• Parallel version: PFEAST and PIFEAST are the parallel implementations of FEAST and IFEAST,

respectively. Both support 3-Level MPI message parsing layer, with available options for
the MPI library being Intel MPI, OpenMPI and MPICH. PFEAST and PIFEAST employ
MKL-Cluster-PARDISO and PBiCGStab, respectively, as their parallel linear sparse solvers.

• Development: The first version of FEAST (v1.0) was released in 2009 and supported only
symmetric matrices. Through the years FEAST added many functionalities, such as support for
non-symmetric matrices, parallel computing and support for polynomial eigenvalue problems.
Since 2013, Intel MKL has adopted FEAST v2.1 as its extended eigensolver. The latest version is
FEAST v4.0, which was released in 2020.

5.6. z–PARES

• Summary: z-PARES [44] is a complex moment-based contour integration eigensolver for GEPs
that finds the eigenvalues (and corresponding eigenvectors) that lie into a contour path defined
by the user.

• Eigenvalue Methods: CI-Hankel, CI-RR.
• Matrix Formats: z-PARES depends on LAPACK for dense matrices and on MUMPS for sparse

CSR matrices. In addition, it supports custom data formats, enabled by RCI.
• Returned Eigenvectors: Only right eigenvectors are calculated.
• Dependencies: z-PARES requires BLAS/LAPACK to be installed.
• GPU-based version: Currently not supported.
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• Parallel version: z-PARES includes a parallel version, which exploits 2-Level MPI layer and
employs MUMPS as its sparse solver.

• Development: The latest version of z-PARES is v0.9.6a and was released in 2014.

5.7. Summary of Library Features

Tables 3 and 4 provide a synoptic summary of the methods and relevant features of open-source
libraries that solve non-symmetric eigenvalue problems. All libraries can handle both real and complex
arithmetic types.

Table 3. Methods of open-source libraries for non-symmetric eigenvalue problems.

Library Method

LAPACK QR, QZ

ARPACK IR-Arnoldi

SLEPc Power/Inverse Power/Rayleigh Quotient Iteration,

Subspace, ERD-Arnoldi, Krylov-Schur,

GD, JD, CI-Hankel, CI-RR

Anasazi Block Krylov-Schur, GD

FEAST FEAST

z-PARES CI-Hankel, CI-RR

Table 4. Relevant features of open-source libraries for non-symmetric eigenvalue problems.

Library Data formats Computing 2-sided Real/ Releases

dense CSR band RCI GPU parallel complex first latest

LAPACK 3 7 7 7 3a 3b 3 3 1992 2016

ARPACK 7 7 7 3 7 3 7 3 1995 2019c

SLEPc 3 3 7 3 3 3 3d 3 2002 2020

Anasazi 3 3 7 7 7 7 7 3 2008 2014

FEAST 3 3 3 3 7 3 3 3 2009 2020

z-PARES 3 3 7 3 7 3 7 3 2014 2014

a With MAGMA.
b With ScaLAPACK.
c Now as ARPACK-NG.
d In SLEPc, only the power and the Krylov-Schur methods are 2-sided.

As it can be seen from Table 4, not all libraries provide algorithms that allow calculating both
left and right eigenvectors at once. However, in order to calculate participation factors, which are
an important tool of power system SSSA [67,68], both right and left eigenvectors are required. With
this regard, a formula to calculate directly left eigenvectors from right ones was proposed in [69]. In
general, which is the most efficient solution for the calculation of the left eigenvalues depends on the
library and the eigenvalue problem.

6. Case Studies

This section presents simulation results based on two real-world size power system models. The
first system is a detailed model of the All-Island Irish Transmission System (AIITS) which includes
1, 443 state variables and 7, 197 algebraic variables. The second system is a dynamic model of the
European Network of Transmission System Operators for Electricity (ENTSO-E) system, which



Version October 24, 2020 submitted to Applied Sciences 16 of 27

includes 49, 396 state variables and 96, 770 algebraic variables. The versions and dependencies of the
open-source libraries considered in this section are summarized in Table 5. Note that we consider only
the open-source libraries that we managed to compile and install on Linux and Mac OS X operating
systems and that worked for relatively “large” eigenvalue problems.

Table 5. Versions and dependencies of open-source libraries for non-symmetric eigenvalue problems.

Library (Version) Dependencies (Version)

LAPACK (3.8.0) ATLAS (3.10.3)

MAGMA (2.2.0) NVidia CUDA (10.1)

ARPACK-NG (3.5.0) SuiteSparse KLU (1.3.9)

z-PARES (0.9.6a) OpenMPI (3.0.0), MUMPS (5.1.2)

SLEPc (3.8.2) PETSc (3.8.4), MUMPS (5.1.2)

All simulations are obtained using the Python-based software tool Dome [70]. The Dome
version utilized for this paper is based on Fedora Linux 28, Python 3.6.8, CVXOPT 1.1.9 and KLU
1.3.9. Regarding the computing times reported in both examples, we have two comments. First, all
simulations were executed on a server mounting two quad-core Intel Xeon 3.50 GHz CPUs, 1 GB
NVidia Quadro 2000 GPU, 12 GB of RAM, and running a 64-bit Linux OS. Second, since, not all method
implementations include 2-sided versions and in order to provide as a fair comparison as possible, all
eigensolvers are called so as to return only the calculated eigenvalues and not eigenvectors.

6.1. All-Island Irish Transmission System

In this case study we consider a real-world model of the AIITS. The topology and the steady-state
operation data of the system have been provided by the Irish transmission system operator, EirGrid
Group, whereas the dynamic data have been defined based on our knowledge about the technology
of the generators and the controllers. The dynamic model has been also validated using frequency
data from a severe event that occurred in the real system in 2018, see [71]. The system consists of 1,479
buses, 796 lines, 1,055 transformers, 245 loads, 22 synchronous machines, with Automatic Voltage
Regulators (AVRs) and Turbine Governors (TGs), 6 Power System Stabilizers (PSSs) and 176 wind
generators. In total, the dynamic model has n = 1, 443 state variables and m = 7, 197 algebraic
variables.

Table 6. AIITS: dimensions of the LEP and GEP.

Problem Pencil Size

LEP sIn −AS 1, 443× 1, 443
GEP sEI −AI 8, 640× 8, 640

Results of the eigenvalue analysis of the AIITS are discussed for both LEP and GEP and for a
variety of different numerical methods, namely, QR and QZ algorithms by LAPACK, GPU-based
QR algorithm by MAGMA, subspace iteration, ERD-Arnoldi and Krylov-Schur methods by SLEPc,
IR-Arnoldi by ARPACK; and CI-RR by z-PARES. In particular, we provide for each method the
rightmost eigenvalues, as well as the time required to complete the solution of the eigenvalue problem.

6.1.1. Dense Algorithms

The results obtained with Schur decomposition methods are presented in Table 7. Both QR and
QZ algorithms find all 1, 443 finite eigenvalues of the system. For the GEP, the QZ algorithm also finds
the additional infinite eigenvalue with its algebraic multiplicity. The obtained rightmost eigenvalues
are the same for both LEP and GEP. Since LAPACK is the most mature software tool among those
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considered in this paper, the accuracy of the eigenvalues found with all other libraries is evaluated
by comparing them with the reference solution computed with LAPACK. The system root loci plot is
shown in Fig. 1.

Regarding the computational time, we see that, for the LEP, both LAPACK and the GPU-based
MAGMA are very efficient at this scale, with MAGMA providing only a marginal speedup. On the
other hand, when it comes to solving the GEP with LAPACK’s QZ method, scalability becomes a
serious issue, since the problem is solved in 3, 669.77 s, which is computationally cumbersome.

Table 7. AIITS: Schur decomposition methods, LEP and GEP.

Library LAPACK MAGMA LAPACK

Problem LEP LEP GEP
Method QR QR QZ
Spectrum All All All

Time [s] 3.94 3.54 3, 669.77
Found 1, 443 eigs. 1, 443 eigs. 8, 640 eigs.

LRP eigs. 0.0000 0.0000 0.0000
−0.0869 −0.0869 −0.0869

−0.1276±  0.1706 −0.1276±  0.1706 −0.1276±  0.1706
−0.1322±  0.4353 −0.1322±  0.4353 −0.1322±  0.4353

−0.1376 −0.1376 −0.1376
−0.1382 −0.1382 −0.1382
−0.1386 −0.1386 −0.1386
−0.1390 −0.1390 −0.1390
−0.1391 −0.1391 −0.1391
−0.1393 −0.1393 −0.1393
−0.1394 −0.1394 −0.1394
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Figure 1. AIITS: root loci computed with LAPACK.

6.1.2. Möbius Transform Image of the Spectrum

We show the image of the spectrum of the AIITS system for a couple of common special Möbius
transforms, in particular for the shift & invert and the Cayley transform. The results are presented
in Figs. 2-3, in which λ̂ denotes an eigenvalue of the transformed pencil. These results refer to the
LEP, and are obtained using LAPACK. In each figure, the stable region is shaded, while the stability
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boundary is indicated with a solid line. The 5 % damping boundary is indicated with a dash-dotted
line.

For the shift & invert transform, the stability boundary is defined by the circle with center
γ = (1/2σ, 0) and radius ρ = 1/2σ. If σ < 0, that is the case of Fig. 2, stable eigenvalues are mapped
outside the circle. On the other hand, if σ > 0, stable eigenvalues are mapped inside the circle. If σ = 0,
we obtain the dual pencil with the corresponding invert transform, and the stable region is the full
negative right have plane. Finally, Fig. 3 shows the image of the Cayley transform of the AIITS for
σ = 1.2. All stable eigenvalues are located inside the unit circle with center the origin.
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Figure 2. AIITS: shift & invert transform image of the spectrum, σ = −1.2.
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Figure 3. AIITS: Cayley transform image of the spectrum, σ = 2.

6.1.3. Sparse Algorithms

The implementation of the subspace iteration by SLEPc only finds the desired number of LM
eigenvalues. However, in the s-domain, the relevant eigenvalues from the stability point of view are
not the LM ones, but the ones with LRP or SM. Especially for the GEP, the LM eigenvalue is infinite
and, hence, does not provide any meaningful information on the system dynamics. For this reason
and for the needs of power system SSSA, the subspace method and, in general, any method that
looks for LM eigenvalues, must always be combined with a spectral transform. For the needs of this



Version October 24, 2020 submitted to Applied Sciences 19 of 27

example, we apply the invert transform and pass to SLEPc the pencil of the dual system, i.e. zA− E.
Then, the method looks for the 50 LM eigenvalues of the dual system, which correspond to the 50 SM
eigenvalues of the prime system. With this setup, the eigenvalues found by the subspace iteration
for the GEP are shown in Table 8. As it can be seen, the pair −0.1322± 0.4353 is not captured, since
its magnitude is larger than the magnitudes of the 50 SM eigenvalues. To obtain also this pair, one
can customize the spectral transform or simply increase the number of the eigenvalues to be returned.
However, the best setup is not known a priori and thus, some heuristic parameter tuning is required.
Finally, the method does not scale well, since solution of the GEP is completed in 6, 807.24 s.

Table 8. AIITS: subspace iteration method, GEP.

Library SLEPc

Method Subspace
Spectrum 50 LM
Transform Invert

Time [s] 6, 807.24
Found 50

LRP eigs. −0.0000
−0.0869

−0.1276± 0.1706
−0.1376
−0.1382
−0.1386
−0.1390
−0.1391
−0.1393
−0.1394
−0.1397

The rightmost eigenvalues found with Krylov subspace methods for the LEP and GEP are shown
in Table 9 and Table 10, respectively. For the LEP, ARPACK is set up to find the 50 LRP eigenvalues.
Although all eigenvalues shown in Table 9 for ARPACK are actual eigenvalues of the system, some
of the LRP ones are missed. Furthermore, no correct eigenvalues were found for the GEP, which we
attribute to the fact that a non-symmetric E is not supported. In SLEPc methods, both for LEP and GEP
and in order to obtain the eigenvalues with good accuracy, we use the option “Target Real Part” (TRP)
which allows targeting eigenvalues with specified real part. In particular, we set the TRP parameter
to −0.01, and apply a shift & invert transform with σ = −0.01. Both ERD-Arnoldi and Krylov-Schur
methods are able to accurately capture all rightmost eigenvalues. For the sake of completeness, we
mention that the eigenvalues obtained with SLEPc, when compared to the ones found by LAPACK,
appeared to be shifted by a constant offset −σ, i.e. 0.01 was returned instead of 0, and so on. The
results shown in Table 9 and Table 10 take into account such a shift by adding σ to all output values
returned by SLEPc. Finally, the Krylov subspace methods by SLEPc appear to be more efficient than
ARPACK’s IR-Arnoldi. Compared to Schur decomposition methods, at this scale, Krylov methods,
although they require some tuning, appear to be by far more efficient for the GEP, but less efficient for
the LEP.

The results produced by z-PARES’ CI-RR method for the LEP and GEP, are presented in Table 11.
The method is set to look for solutions in the circle with center the point γ = (−0.01, 4) and radius
ρ = 8. In both cases, the eigenvalues found by z-PARES are actual eigenvalues of the system, although
the eigenvalues found for the GEP include noticeable errors, when compared to the results obtained
with LAPACK.

The most relevant issue is that the eigenvalues obtained with z-PARES are not the most important
ones for the stability of the system, which means that critical eigenvalues are missed. This issue occurs
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Table 9. AIITS: Krylov subspace methods, LEP.

Library ARPACK SLEPc SLEPc

Method IR-Arnoldi ERD-Arnoldi
Spectrum 50 LRP 50 TRP 50 TRP
Transform - Shift & invert Shift & invert

σ = −0.01 σ = −0.01

Time [s] 76.96 17.84 16.58
Found 26 eigs. 54 eigs. 55 eigs.
LRP eigs. −0.0000 0.0000 0.0000

−0.0869 −0.0869 −0.0869
−0.1276±  0.1706 −0.1276±  0.1706 −0.1276±  0.1706
−0.1322±  0.4353 −0.1322±  0.4353 −0.1322±  0.4353
−0.1615±  0.2689 −0.1376 −0.1376
−0.1809±  0.2859 −0.1382 −0.1382
−0.2042±  0.3935 −0.1386 −0.1386
−0.2172±  0.2646 −0.1390 −0.1390
−0.2335±  0.3546 −0.1391 −0.1391
−0.2344±  0.3644 −0.1393 −0.1393
−0.2503±  0.4363 −0.1394 −0.1394

Table 10. AIITS: Krylov subspace methods, GEP.

Library SLEPc

Method ERD-Arnoldi Krylov-Schur
Spectrum 50 TRP 50 TRP
Transform Shift & invert Shift & invert

σ = −0.01 σ = −0.01

Time [s] 8.93 7.64
Found 51 eigs. 53 eigs.

LRP eigs. 0.0000 0.0000
−0.0869 −0.0869

−0.1276±  0.1706 −0.1276±  0.1706
−0.1322±  0.4353 −0.1322±  0.4353

−0.1376 −0.1376
−0.1382 −0.1382
−0.1386 −0.1386
−0.1390 −0.1390
−0.1391 −0.1391
−0.1393 −0.1393
−0.1394 −0.1394

despite the defined search contour being reasonable. Of course, there may be some region for which
the critical eigenvalues are captured but, this can not be known a priori. Regarding the simulation time,
the method for the AIITS is faster than SLEPc’s Krylov subspace methods for the LEP, but slower for
the GEP. The search contour and the location of the characteristic roots found by z-PARES for the LEP
are depicted in Fig. 4.

6.2. European Network of Transmission System Operators for Electricity

This example presents simulation results for a dynamic model of the ENTSO-E. The system
includes 21, 177 buses (1, 212 off-line); 30, 968 transmission lines and transformers (2, 352 off-line);
1, 144 zero-impedance connections (420 off-line); 4, 828 power plants represented by 6-th order and
2-nd order synchronous machine models; and 15, 756 loads (364 off-line), modeled as constant active
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Table 11. AIITS: contour integration method, LEP and GEP.

Library z-PARES

Method CI-RR
Spectrum γ = (−0.01, 4), ρ = 8

Problem LEP GEP
Time [s] 10.81 17.10
Found 49 eigs. 52 eigs.
LRP eigs. −0.3041 +  4.1425 −0.3040 +  4.1429

−0.3720 +  4.7773 −0.3715 +  4.7774
−0.3945 +  4.3121 −0.3947 +  4.3122
−0.4184±  3.6794 −0.4187±  3.6794
−0.4866 +  5.0405 −0.4865 +  5.0405
−0.5011 +  4.1276 −0.5007 +  4.1274
−0.5022 +  4.4417 −0.5018 +  4.4417
−0.5077 +  5.8727 −0.5097 +  5.8747
−0.5555 +  5.3444 −0.5542 +  5.3436
−0.6765 +  6.3426 −0.6761 +  6.3412
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Re(λ)
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2
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Im
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Figure 4. AIITS: root loci obtained with z-PARES, LEP.

and reactive power consumption. Synchronous machines represented by 6-th order models are also
equipped with dynamic AVR and TG models. The system also includes 364 PSSs.

As summarized in Table 12, the system has in total n = 49, 396 state variables and m = 96, 770
algebraic variables. The pencil sE−A has dimensions 146, 166× 146, 166 and the matrix A has 654, 950
non-zero elements, which represent the 0.003% of the total number of elements of the matrix.

Table 12. ENTSO-E: statistics.

n 49, 396
m 96, 770

Dimensions of A 146, 166× 146, 166
Sparsity degree of A [%] 99.997

Neither the LEP or GEP could be solved using Schur decomposition methods. At this scale, the
dense matrix representation required by LAPACK and MAGMA libraries leads to massive memory
requirements, and a segmentation fault error is returned by the CPU. Among the algorithms that
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support sparse matrices, we test here only the contour-integration based methods which, in fact, were
the ones that were able to tackle this large eigenvalue problem on the available hardware.

The effect of changing the search region of the z-PARES CI-RR method on the eigenvalue analysis
of the ENTSO-E system is shown in Table 13. Interestingly, simulations showed that shrinking the
defined contour may lead to a marginal increase of the computation time. Although not intuitive, this
result indicates that the mass of the computational burden is mainly determined by the large size of
the ENTSO-E system, and that, at this scale, smaller subspaces are not necessarily constructed faster by
the CI-RR algorithm. Regarding the number of eigenvalues obtained, using a region that is too small
leads, as expected, to missing an important number of critical eigenvalues.

Table 13. ENTSO-E: impact of the search region of the CI-RR method.

Library z-PARES

Problem GEP
Method CI-RR

c (−0.01, 4) (−0.01, 3) (−0.01, 3)
ρ 8 4 2

Time [s] 364.85 375.67 378.71
Found 349 eigs. 350 eigs. 110 eigs.

We test the impact of applying spectral transforms to the matrix pencil sE−A, on the eigenvalue
analysis of the ENTSO-E with z-PARES’ CI-RR. In particular, we test the invert transform that yields
the dual pencil zA− E; and the inverted Cayley transform, i.e. s = (z + 1)/(σz− σ), which yields the
pencil z(E− σA)− (−σA− E). The results are shown in Table 14. Passing the transformed matrices to
z-PARES provides a marginal speedup to the eigenvalue computation. In addition, considering either
the prime system or the inverted Cayley transform with σ = −1, results in finding the same number
of eigenvalues, whereas when the dual system is considered a number of eigenvalues is missed.

Table 14. ENTSO-E: impact of spectral transforms of the CI-RR method.

Library z-PARES

Problem GEP
Method CI-RR
Spectrum γ = (−0.01, 4), ρ = 8

Transform - Invert Inverted Cayley

Time [s] 364.85 350.82 337.43
Found 349 eigs. 297 eigs. 349 eigs.

6.3. Remarks

The following remarks are relevant:

• With regard to dense matrix methods, their main disadvantage is that they are computationally
expensive. In addition, they generate complete fill-in in general sparse matrices and therefore,
can not be applied to large sparse matrices simply because of massive memory requirements.
Even so, LAPACK is the most mature among all computer-based eigensolvers and, as opposed
to basically all sparse solvers, requires practically no parameter tuning. For small to medium size
problems, the QR algorithm with LAPACK remains the standard and most reliable algorithm for
finding the full spectrum for the conventional LEP.

• As for sparse matrix methods, convergence of vector iteration methods can be very slow,
and thus in practice, if not completely avoided, these algorithms should be used only for
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the solution of simple eigenvalue problems. An application where vector iteration methods
may be more relevant, is in correcting eigenvalues and eigenvectors that have been computed
with low accuracy, i.e. as an alternative to Newton’s method [69]. With regard to Krylov
subspace methods, the main shortcoming of ARPACK’s implementation is the lack of support
for general, non-symmetric left-hand side coefficient matrices, which is the form that commonly
appears when dealing with the GEP of large power system models. On the other hand, the
implementations of ERD-Arnoldi and Krylov-Schur by SLEPc do not have this limitation and
exploit parallelism while providing good accuracy, although some parameter tuning effort
is required. In addition, for the scale of the AIITS system and for the GEP, these methods
appear to be by far more efficient than LAPACK. Moreover, the implementation of contour
integration by z-PARES is very efficient and can handle systems at the scale of the ENTSO-E. An
interesting result is that, at this scale, smaller contour search regions, even if properly setup, do
not necessarily imply faster convergence or equivalently, smaller subspaces are not necessarily
constructed faster by the CI-RR algorithm. The most relevant issue for z-PARES is that, depending
on the problem, it may miss some critical eigenvalues, despite the defined search contour being
reasonable. Although there may be some parameter settings for which this problem does not
occur, those can not be known a priori.

• Finally, the presented comparison of numerical methods and libraries is not specific of power
system problems, but is relevant to any system with unsymmetric matrices. A relevant problem
of the eigenvalue analysis for any dynamical system is to utilize its physical background to obtain
an efficient approximation to some (components of) the eigenvectors. A computer algorithm
that has successfully addressed this problem for conventional, synchronous machine dominated
power systems is AESOPS [23,72], a heuristic quasi Newton-Raphson based method aimed at
finding dominant electromechanical oscillatory modes. On the other hand, how to effectively
exploit the physical structure of modern, high-granularity power systems to shape efficient
numerical algorithms is a challenging problem and an open research question.

7. Conclusions

The paper provides a comprehensive comparison of algorithms and open-source software tools
for the numerical solution of the non-Hermitian eigenvalue problems that arise in power systems. In
particular, the paper considers state-of-art implementations of methods based on Schur decomposition,
vector iteration, Krylov subspace, and contour integration.

The most robust and reliable method for the solution of the LEP for small to medium size problems
is the QR algorithm with LAPACK. For large-scale problems, that is the case of real-world power
systems, the only option is to use software tools that exploit matrix sparsity. While different option
exist, such methods are less mature than the QR algorithm. Simulation results discussed in this paper
recommend that among available options, the most promising for power systems are the parallel
versions of the Krylov-Schur method by SLEPc and CI-RR method by z-PARES. In particular, SLEPc’s
Krylov-Schur provides the best accuracy, while z-PARES’s CI-RR was the only one able to tackle the
146, 166× 146, 166 GEP of the European Network of Transmission System Operators for Electricity
(ENTSO-E).

Appendix

The Rayleigh-Ritz procedure is a numerical technique used by many solvers to extract eigenvalue
approximations from an associated to these eigenvalues subspace. The eigenvalues are extracted by
projecting the matrix pencil onto the constructed subspace. In particular, given a subspace associated
to p eigenvalues of sIr −A, the Rayleigh-Ritz procedure for the LEP consists of the following steps:

1. Construct an orthonormal basis Qp, Qp ∈ Cr×p, which represents the subspace Qp associated to
p eigenvalues.

2. Compute Ã = QH
p AQp. Matrix Ã is the projection of A onto the subspace Qp.
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3. Compute the eigenvalues λ1, λ2, . . . λp and eigenvectors v1, v2, . . . vp, of Ã. The eigenvalues are
called Ritz values and are also eigenvalues of A.

4. Form the vector ui = Qpvi, for i = 1, 2, . . . , p. Each vector ui is called Ritz vector and corresponds
to the eigenvalue λi.

In case that a GEP is to be solved, then the Rayleigh-Ritz procedure consists in finding the p
eigenvalues of sE−A. Then, steps 2 and 3 have to be modified as follows:

2. Compute Ã = QH
p AQp and Ẽ = QH

p EQp.
3. Compute the eigenvalues λ1, λ2, . . . λp and eigenvectors v1, v2, . . . vp, of sẼ − Ã. The p

eigenvalues found are called Ritz values and are also eigenvalues of sE−A.
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