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Abstract—This paper focuses on the impact of the charge
of Plug-in Electric Vehicles (PEVs) on the dynamic response
of power systems and proposes an efficient solution to control
electric vehicle chargers, by dynamically allocating the available
power in an optimized way. The proposed approach is based
on an Additive-Increase-Multiplicative-Decrease (AIMD) stochas-
tic decentralized control strategy to efficiently and seamlessly
manage the charge of a high number of PEVs with little
communication efforts. A modified version of the New England
network is utilized to validate the proposed control through a
variety of scenarios and control setups.

Index Terms—Plug-in electric vehicles, loading margin, fre-
quency control, decentralized control.

I. INTRODUCTION

A. Motivation

The projections of the future electricity demand indicate that
Plug-in Electric Vehicles (PEVs) will play a relevant role in
power systems. It has been estimated, in fact, that there will
be over 1 billion electric vehicles by 2050, making electricity
the first energy carrier [1], [2].

PEVs are characterized by high flexibility, which can be a
valuable resource for the system. However, an uncontrolled
charging of large fleets of vehicles at peak times may pose
challenges to the transmission grid [3]. There is, thus, an
impelling need to develop smart strategies to accommodate
an increasing number of PEVs in existing power grids. The
present work proposes an efficient stochastic decentralized
control that is particularly suited for large numbers of PEVs.

B. Literature Review

The literature on the impact of PEVs on system dynamics
can be roughly divided into two main groups: (i) studies that
exploit the flexibility of PEVs to improve system dynamics;
and (ii) studies that discuss how large fleets of PEVs affect
the system and possibly lead it to collapse.

M. Moschella and E. Crisostomi are with the Department of Energy, Sys-
tems, Territory, and Constructions Engineering, University of Pisa, 56126 Pisa,
Italy (e-mail: michela.moschella@ing.unipi.it; emanuele.crisostomi@unipi.it).

M. A. Adib Murad and F. Milano are with the School of Electrical and
Electronic Engineering, University College Dublin, Belfield, Ireland (e-mail:
mohammed.murad@ucdconnect.ie; federico.milano@ucd.ie).

M. Moschella and E. Crisostomi were partially supported by MIUR under
PRIN 2017 grant “Advanced Network Control of Future Smart Grids” and
partially supported by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 863922.

M. A. Adib Murad and F. Milano were supported by the Science Foundation
Ireland, under Investigator Programme Grant No. SFI/15/IA/3074.

1) Studies that exploit PEVs flexibility: Smart charging
strategies can be adopted by means of ad hoc electricity tariffs
[4], and Vehicle-To-Grid (V2G) power flows [5]. Some works
focus on the ability of PEVs to provide control that can
improve the performance of the grid. For example, [6] lists
a variety of positive aspects of the PEVs, such as their ability
to facilitate the integration of renewable energy sources.

With respect to short-term time scales, in [7], the authors
propose an aggregate model of PEVs for the Primary Fre-
quency Control (PFC), which proves to help considerably
regulate the frequency of the system after a large disturbance.
Also [8] shows that the adoption of advanced centralized PEVs
charging strategies reduces the negative impact of the electric
mobility penetration, e.g. congestion problems on distribution
grids, and increases the PEVs potential benefits as system
ancillary services providers.

Considering longer time scales, reference [9] presents a
power management scheme for Secondary Frequency Reg-
ulation (SFR) using an integrated fleet of electric vehicles.
An alternative application can be found in [10], where the
potential advantages of V2G and mobility are investigated for
the day-ahead generation scheduling of power systems: an op-
timal charging/discharging schedule of PEVs fleets is studied
to reduce grid operation costs and congestions in the power
grid, and also to lessen the generation dispatch variability due
to wind generation units; anyway, there are some restrictions
for utilizing PEVs as storage facilities because of vehicles
requirements for mobility.

2) Studies on the impact of a large number of PEVs on
system dynamics: The impact of PEVs on system dynamics is
intrinsically tied to their charging strategy. Without a suitable
control, in fact, the charging of large fleets of PEVs may
compromise the operation and security of a power system [6].

The transition to grid-charged cars in Ontario, Canada, is
discussed in [11], and the authors conclude that about 6% of
total vehicle fleet in Ontario (approximately 500,000 PEVs)
can be charged without any additional power system invest-
ments, if the off-peak periods are smartly exploited. Different
models and settings have been considered so far to conduct this
kind of studies. In [12], for example, a probabilistic method of
examining the impact of PEVs on composite power systems
is presented. Results suggest that the PEVs penetration will
indeed affect the system dynamic response. In [13], on the
other hand, it has been shown that the evening ramp due to
the PEVs domestic charge may cause a collapse of the system.

The architecture of the control strategy is also critical.
Reference [14] presents a review of different strategies, algo-
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rithms, and methods to implement a smart charging control
system, and [15] describes the main existing PEVs charge
scheduling approaches in a smart grid context. In particular,
there are two main control approaches: centralized and de-
centralized. Both approaches can be found in the literature.
A centralized method is used for example in [16], where
an event driven Model Predictive Control (MPC) approach
is proposed for the management of PEVs charging in dis-
tribution grids. In [8], instead, a combination of local and
centralized control methods is used to optimally coordinate
the PEVs fleet charging. However, a centralized management
of the charging process of a large number of PEVs may
quickly become computationally intractable and impractical,
therefore most charging algorithms are evolving towards a
decentralized structure [15]. For this reason, this paper focuses
on a decentralized approach.

This paper considers the decentralized Additive-Increase-
Multiplicative-Decrease (AIMD) algorithm; this approach has
been applied for a particular class of resource sharing prob-
lems, where a group of agents with limited or no commu-
nication abilities at all wish to share a given resource in an
optimal fashion [17]. In our case, the algorithm coordinates
the charging rates of the PEVs, so that the available power
can be utilized by all vehicles in a fair and safe fashion.

AIMD-based control solutions have many significant ad-
vantages, most notably it is a fully decentralized approach,
which implies that the solution is scalable and independent
from the number of agents. In our case study, this implies that
it is not required to count the number of PEVs connected for
charging, and it is not required to know how much energy
they need. Accordingly, neither PEVs, nor charging stations,
require to communicate any information, contrary to the vast
majority of other existing distributed charging algorithms. In
fact, AIMD algorithms have been already proposed for PEV
charging in some literature works. Reference [18] studies the
problem of charging a number of electric vehicles via limited
capacity infrastructure. In [19], the authors design a smart
energy exchange algorithm based on bidirectional energy
management. Reference [20] proposes an AIMD solution to
fairly share the energy, and to minimize the queues.

The references above envisage the adoption of AIMD but
they do not consider any model of the power grid. Recently,
[21] proposes AIMD algorithms for PEV charging control
supported by a distribution grid model, and measurements of
local voltages are used to decentralize the charging operation.
While this is similar to what it is proposed here, yet no
optimization problem is formulated in [21] and, thus, the
whole power capacity of the network is not fully utilized
during the charging process.

C. Contributions
The main contributions of this work are twofold:
• A formulation of the charging problem of PEVs based

on fully decentralized AIMD control. Such a formulation
does not require PEVs or charging stations to communi-
cate any information, e.g. their connection for charging,
and the available power is automatically shared among
PEVs.

• A discussion on the non-obvious result that popular
strategies based on locally measured grid frequency may
not be appropriate for the control of PEV charging, as
these approaches sometimes fail to predict stability of
the network.

The latter point may be regarded as a surprising result, given
that, as discussed above, some works in the literature exploit
small devices for supporting system frequency regulation, most
notably electric vehicles [7], but also micro-grids [22], [23], or
thermostatically controlled loads, such as refrigerators and air-
conditioners [24]. However, in such studies, the small devices
do not originate the instability, which is what happens in the
PEV charging problem investigated in this work.

The charging problem is formulated as an optimization
problem, so that it can flexibly include priority rules, e.g. based
on the price people may be willing to pay for charging, or to
prioritize vehicles that have a lower level of the battery. We
validate the proposed algorithm on the popular IEEE 39-bus
system, and we use the power grid simulator Dome [25], to
simulate the power system behaviour and provide realistic and
practical assessments.

D. Organization

The paper is organized as follows. Section II describes the
models of the power system, the PEVs fleets, and the control
strategies analyzed. Then, Section III presents the AIMD
algorithm and the proposed control schemes; the following
Section IV introduces our system set-up, and the main results
obtained. Finally, Section V outlines main conclusions.

II. MODELING

We first introduce the overall dynamic model of the power
system (Section II-A) and then the model of the PEV fleet
(Section II-B) and the proposed control strategy (Section II-C).

A. Power System Model

The power system model is formulated as a set of stochastic
differential algebraic equations (SDAEs), as follows [26]:

ẋ = f(x,y,u, z,η),

0 = g(x,y,u, z,η),

η̇ = a(x,y,η) + b(x,y,η) ξ ,

(1)

where f represents the differential equations, including the
dynamic models of synchronous machine and their controllers,
while the algebraic equations g model auxiliary variables;
x, y, z are the state, algebraic, and discrete variables, re-
spectively; u are the inputs, e.g. active power schedules
and reference voltage of the automatic voltage regulators; η
represents stochastic perturbations, e.g. wind speed and load
variations, which are modeled through the last term in (1);
a and b represent the drift and diffusion of the stochastic
differential equations, respectively; and ξ represents the white
noise vector. The set of equations in (1) includes lumped
models of the transmission system and conventional dynamic
models of synchronous machines, e.g., 6th order models, and
their controllers, such as, automatic voltage regulators, turbine
governors, and power system stabilizers.
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B. PEVs Fleets Model

Many statistical analyses have shown that in the near future
in many countries a significant number of PEVs is expected
to charge in a domestic scenario [27], [28], as soon as the
drivers come back home after work [8], [29]. In this case, the
number of connected PEVs may quickly increase in a short
time, e.g. right before dinner time, and may give rise to a new
evening peak load. This peak of PEVs domestic charging can
be modeled as many active power load ramps, connected to
some buses of the network, where other conventional loads
are present. The mathematical model of the loads at the buses
where also PEVs are connected is:

p = p0 +RPEV(t− t0) + ηp,

η̇p = −aηp + bξp,
(2)

where p is the total load; p0 is the aggregated voltage-
dependent pre-existing load at the bus; RPEV is the ramp rate
of the electric vehicles; t0 is the time at which the evening
ramp begins; ηp is a Gaussian mean-reverted stochastic process
that reproduces load random fluctuations; a is the drift; b is
the diffusion; and ξp is white noise [26].

C. Control Strategies

A decentralized control strategy relies on the ability of one
PEV charger to modulate the charge rate so that the PEV
gets charged as quickly as possible, without at the same time
giving rise to power system stability issues. For this purpose,
this section discusses the effectiveness of different measurable,
or simple to estimate, quantities to trigger a control action and
decrease the charge rates of PEVs when getting close to the
safety limits of the network.

In principle, there are various alternative set-ups, as follows.
• ωCOI: the frequency of the center of inertia (ωCOI) of the

system [30]. Since this quantity is indicative of a system
balancing condition, it is reasonable to assume that it may
be used to infer when getting close to unstable conditions.

• ωi: the local frequency measured at the bus i. This
quantity is indicative of the local power imbalance, and
it is easier to estimate than ωCOI for a decentralized
approach, as it can be locally measured.

• vi: the voltage magnitude at bus i. This quantity is strictly
linked to the transmission capacity of the lines.

• pi: the PEVs power load at bus i.
A first result of our paper, that will be better illustrated through
extensive simulations in a later section, is that the only control
strategies that use pi as a control variable are effective for our
case study. In particular, the following facts have been noticed:
• The time scale of the PEV ramping rate allows assuming

that the frequency of the system is effectively the same
in every point of the grid. As a matter of fact, our
simulations show that all ωi are always very close to
ωCOI, even when very steep ramp profiles of vehicles
are simulated.

• Frequency-based control strategies (either using ωCOI or
ωi’s, as they are equivalent as explained in the previous
point) are ineffective as instability issues may occur with-
out noticing any evident variation in the frequency signals

(or they are noticed when it is too late to implement
recovery strategies).

• Voltage-based control strategies are ineffective for the
opposite reason, since significant voltage variations may
be observed even in fully stable operations of power grids.
This is due to the presence of many existing devices
devoted at regulating voltages around the nominal values,
e.g. under-load tap changers (ULTCs) and static VAR
compensators (SVCs).

On the other side, it is reasonable to assume that grid operators
can use historical data to estimate the maximum power allowed
at each bus (pmax

i ) (following for instance the techniques
proposed in [31], [32]), and that power-based control strategies
can be used to maintain pi below the value of pmax

i . For
this reason, in the following section we focus on power-based
control strategies.

III. AIMD-BASED DECENTRALIZED CONTROL OF PEVS

The problem of optimal allocation of a shared resource
(here, power) among a set of competing agents (here, PEVs)
arises in many different scientific and engineering applications.
The AIMD algorithm, which had been initially introduced
to address internet congestion problems and optimally share
bandwidth between connected computers, may be efficiently
used to solve this problem. In particular, AIMD is known to
be very attractive when the number of agents is continuously
changing (here, PEVs connect and disconnect from the grid),
with limited or no communication abilities at all (so, one
does not need to count the number of connected PEVs, and
PEVs are not required to communicate any information). The
algorithm consists of two alternating phases:

1) the additive increase (AI) phase: the resource consump-
tion of each agent increases linearly in time with a
certain step α > 0;

2) the multiplicative decrease (MD) stage: each agent de-
creases its consumption in a multiplicative fashion, with
a certain slope β > 0.

In particular, the MD step is performed when the so-called
Capacity Events (CEs) occur, which means that the limit of
the shared resource has been reached, e.g. all the available
power is fully shared by the connected PEVs.

Let t1 < t2 < · · · < tk < . . . denote the time instants
when such CEs occur; if t+k+1 is the instant after the agent
i performs an MD step at time tk, its share of the resource
xi(t

+
k+1) is:

xi(t
+
k+1) = β lim

t→tk+1

xi(t), (3)

and then agent i will return to the AI phase, until the next CE
occurs.
Therefore, the equation describing the behaviour of the i′th
agent is the following:

xi(t) = βxi(tk) + α(t− tk), t ∈ (tk, tk+1), (4)

where tk and tk+1 represent two consecutive time instants at
which a CE occurs.

We now tailor the general AIMD algorithm for our applica-
tion of interest as follows: each bus of the network represents
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an independent system with maximum allowed power pmax
s

that is shared among PEVs, as described in Section II-C; let
us denote with pi,s the power consumption of i′th agent at the
s′th bus. Then a capacity event occurs at the s′th bus when the
sum of the charge rates pi,s of all connected PEVs exceeds
the maximum available power pmax

s .

A. The Unsynchronized AIMD Control

The previously described version of the AIMD algorithm is
also known as the synchronized AIMD, as all PEVs reduce
the charging rate in a multiplicative fashion when a CE is
notified. In reality, it is a sufficient that only a subset of PEVs
decrease their charge rates to fall between the safe thresholds,
and this possibility is useful to prioritize some PEVs over
others [33]. This can be easily achieved by implementing a
so-called unsynchronized version of the AIMD, where only a
subset of PEVs react to a CE event by reducing the charge
rates, in a probabilistic way.

Priorities of single buses can be formally stated by assuming
that each PEV i has its own utility function fi,s(pi,s), where
for convenience we shall consider convex, strictly differen-
tiable utility functions fi,s(·) that have a global minimum for
the maximum allowed charge rate (i.e., here 3.3 kW). Roughly
speaking, this implies that the optimal value of the utility
function of PEVs (i.e., the minimum) is achieved when PEVs
are charged at the maximum power. Accordingly, we formulate
an optimization problem for each bus as follows: min

pi,s∈[0,3.3]kW

∑n(s)
i=1 fi,s

(
pi,s
)

∑n(s)
i=1 pi,s ≤ pmax

s ,
(5)

where n(s) is the number of PEVs connected to the s′th bus.
Roughly speaking, Problem (5) works as follows: when there
are no stability issues, then the minimization of the sum of
the utility functions is achieved when PEVs are charged at the
maximum charging rate; when the aggregated vehicles load
reaches the power limit, then PEVs are charged at a lower
charging rate and safer system configurations are restored.

As proved in [34], the optimization problem (5) can be
solved in a fully decentralized way if we let each vehicle
asynchronously perform the decrease step with probability

πi,s(p̄i,s(t)) = Γ
f ′i,s(p̄i,s(t))

p̄i,s(t)
, (6)

where f ′(·) is the derivative of function f(·) with respect to
time, and p̄i,s(t) is the average charge rate of PEV i at bus s at
previous time steps (to improve smoothness of the solution):

p̄i,s(t) =
1

t

∫ t

0

pi,s(τ) dτ, (7)

and Γ appearing in (6) is a constant required to map πi,s
into a probability, i.e., 0 ≤ πi,s ≤ 1. Equation (6) means that
each PEV i reacts to a CE independently from the others, with
the customized probability πi,s(p̄i,s(t)), based on its historical
power consumption. For the convenience of exposition, a
pseudocode to implement the AIMD algorithm at each bus
is now given in Algorithm 1.

Algorithm 1 Unsynchronized AIMD algorithm at the s′th bus
Initialisation: k = 1; Γ is broadcast;

while k < ksimulation do
if
∑

i pi,s(k) ≥ pmax
s (k) then

pi,s(k+1) =

{
βpi,s(k), with probability πi,s(p̄i,s(k))

pi,s(k) + α, with probability 1 − πi,s(p̄i,s(k))
;

else
pi,s(k + 1) = pi,s(k) + α;

end if
k = k + 1;

end while

If convex utility functions are considered as in our case,
and parameters α and β are the same for all agents, then the
convergence analysis described in [34, Section 4] can be used,
and the AIMD Algorithm 1 produces a long-term average that
converges almost surely to the optimal solution of problem
(5).

Remark 1: The AIMD algorithm has a number of signif-
icant advantages that are ideal for the charging problem: for
instance, it can be implemented in a fully decentralized way
without requiring PEVs to communicate anything to either
other PEVs or charging stations; the solution is fully scalable
independently from the number of agents; unlikely many other
optimization approaches it is not required to solve a new
optimization problem as new PEVs connect for charging, but
a new optimized solution is obtained; all the communication
is restricted to a CE event, i.e. a 0 or 1 bit of communication.

Remark 2: In a practical implementation of this algorithm
in a power grid, we assume that it would be too complicated,
and anyway not fundamental, to change the charging rates
of PEVs too often, and for this reason we assume that the
occurrence of CEs only occurs every Tp = 30 seconds, in
accordance with [23].

IV. CASE STUDY

A. Power System Set-up

The simulations discussed in this work are based on the
well-known IEEE 39-bus 10-machine, which corresponds to
the New England power system [35]. Synchronous machines
are equipped with turbine governors and automatic generation
control (for primary and secondary frequency regulation),
automatic voltage regulators and power system stabilizers [30],
[36]. The original network is slightly modified by replacing
two generators with wind farms with detailed dynamic models
of the doubly-fed induction generator, wind turbine and MPPT
and voltage controllers of the power electronic converters [30],
to mimic modern power systems with significant penetration
of power generated from renewable sources (see Fig. 1).

The set of SDAEs describing the system (1), including the
PEVs load ramps (2), are implemented and simulated using
Dome, a Python-based power system software tool [25].

All 16 loads in the New England system are connected to
the grid through an ULTC with discrete control of the voltage.
Moreover, aggregated models of the PEV charging stations are
assumed to be located at buses 3, 4, 7, 8 and 12; for simplicity,
all stations have the same maximum charging rate, i.e. 3.3
kW, which is the typical nominal rate of domestic chargers
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Fig. 1. Modified IEEE New England 39-bus power system. Generators 1
and 5 are modeled as wind power plants, with same capacity as the original
synchronous machines.

[37]. SVCs have also been included at these buses to prevent
collapses due to shortage of reactive power in the grid. Note
that, since the focus is on PEVs, we have not included in the
system a fast frequency control in wind power plants nor large
batteries. These controllers, in fact, while can help improve the
dynamic response of the system do not alter the conclusions
that are drawn in this section.

The load consumption of the system has been increased by
10 pu with respect to the original data, and pre-existing loads
(including industrial and residential loads) at each bus of the
system are considered constant, which allows one to separate
the effects of the PEVs from those of the conventional load.

Overall, the set of hybrid differential-algebraic equations
that form the model of the system include 169 state variables,
398 algebraic variables, and 57 discrete variables.

Remark: The results presented in the remainder of this
section refer to the specific power system described above.
However, conclusions are general and may be extended to any
other power system.

B. A Motivating Example: Uncontrolled Charging

The evening ramp due to the PEVs domestic charge may
cause a system collapse, if it is uncontrolled [13]. We now
simulate such a situation in our case study. For this purpose,
we assume that PEVs are equally distributed among the 5
buses (3, 4, 7, 8 and 12, see Fig. 1), and that the arrival rate of
PEVs for charging is about 120 veh/s. We do not give an exact
starting time for the evening domestic charging scenario, as
this may change from country to country, depending on local
habits (e.g., dinner time). After 1 hour of simulation, about
432 000 PEVs would be connected for charging. Considering

that the total number of cars in New England can be estimated
equal to 5 · 106 vehicles,1 this corresponds to assuming that
about 8-9% of the total number of cars connect for charging
during the evening peak within an hour. Figs. 2(a)-(c) show
that actually the system is not able to cope with such a large
volume of PEVs, and the system collapses.

The interesting aspect is that it may be hard to predict
the upcoming instability, as the voltages and the frequency
of the center of inertia ωCOI remain always very close to
their nominal value 1 pu in all scenarios, even very close
to the collapse (see Fig. 2(b) and Fig. 2(c)). In particular,
Fig. 2(b) shows that the behaviour of the voltage values is
mainly affected by the action of the ULTC devices. Also, we
can observe that the system behaviour is independent of the
Gaussian process parametrization, which characterizes the load
ramp equation – see (2). Actually, we get quite the same results
if we use a standard deviation ten times higher (see Figs. 2(d)-
(f)) for instance. A careful handling of the reactive power
is critical in the problem of charging PEVs in transmission
networks. The SVCs included in the system prevent limit-
induced bifurcations due to reactive power shortage. So the
instability shown in this scenario refers to congestion in the
transmission lines (saddle-node bifurcation) [38].

Remark: The analysis above can be conveniently carried
out using a steady-state analysis, such as the well-known
continuation power flow technique [39]. The goal of this
simple example, however, is to show that the relatively slow
time-scale of the PEVs ramp as well as the small capacity
of each individual PEV prevent utilizing the frequency of the
system, or the voltages of the buses, as reliable signals to
implement a “smart” control. For this reason, as mentioned in
advance, in the next sections we shall show examples where
only power signals are used for control purposes. Finally, this
example indicates that it is not enough to insert SVCs close
to the charging points, as the intrinsic transfer capability limit
of the grid cannot be avoided and is thus binding.

C. Synchronized AIMD

As previously discussed, we now consider the power-based
AIMD controller described in details in Section III, where
safety thresholds for the system are defined as a function of
the static limits, i.e., the maximum power limits of the load
buses.

The synchronized version of AIMD may be regarded as
the maximally fair solution to solve the problem, as all PEVs
have the same priority and should be charged on average with
the same power rate. In this section, we present the system
behaviour in the same settings of Section IV-B, with the action
of our synchronized controller; the parameters of the AIMD
are α = 0.34 W, β = 0.99 and the threshold that triggers
CEs is pmax

s = 180 MW. The values of the AIMD parameters
α and β are assumed to be the same in all simulations. In
practice, the grid operator can tune these parameters as a trade-
off between power efficiency (i.e., optimal utilization of the
available power) and communication requirements (to prevent
the system from frequently broadcasting CEs). Finally, the

1https://www.fhwa.dot.gov/policyinformation/statistics/2016/mv1.cfm#foot3
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Fig. 2. Effect of uncontrolled charging of PEVs equally distributed among buses 3, 4, 7, 8 and 12, with an arrival rate of about 120 veh/s: (a) and (d) nodes
power load profile; (b) and (e) nodes voltage response; (c) and (f) behaviour of the frequency ωCOI. The lower row shows results for a system with noise
ten times higher than the upper row.

static limit pmax
s of each bus s is set equal to 80% of the

actual bus power limit, assuming that grid operators will be
conservative in estimating the maximum available power, for
safety reasons.
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Fig. 3. Synchronized AIMD results; (a) active powers of loads at buses 3, 4,
7, 8 and 12 (where PEVs are); (b) frequency ωCOI response.

Fig. 3 summarizes the obtained results; the proposed control
correctly manages to accomplish the charging task, as the

control action prevents the power limit from being exceeded.
Also, note that during the charging process, the frequency
signal ωCOI lies within a safe range of [0.996, 1.004] pu
(Fig. 3(b)), thus making this control strategy realistically
feasible and safe for the system stability.

Remark 1: Extensive simulations have been performed to
validate the previous results, for different values of the loads,
and for different PEVs spatial distribution: similar results have
been obtained and for this reasons are not reported here.
Moreover, it is important to note that the choice of parameters
or thresholds does not change the main conclusion, i.e. that
the control strategy is effective to prevent the system collapse.

Remark 2: The determination of the maximum loading
condition, namely pmax

s , of a grid is an analysis that is
commonly carried out by system operators, independently
from the presence of PEVs in the grid. This analysis is aimed
at determining the available loading condition or, equivalently,
the voltage stability margin of the grid. In the paper, we thus
assume that the system operator has a good knowledge of the
grid and defines pmax

s based on an analysis of the “available
transfer capability”, this takes into account an N-1 contingency
analysis and the “transmission reliability margin” as defined
by NERC [40]. Of course, pmax

s varies for different topologies
of the grid but these are events that require updating the
AIMD parameters periodically. For simplicity, however, in the
simulations presented in the manuscript, we assume that pmax

s

does not change during the PEV ramp-up. It should be noted
that system operators often decrease the estimated value of
pmax
s for security reasons. In the context of PEV charging, the

lower the maximum loading condition limit pmax
s , the longer

the time required to charge all PEVs than strictly needed. On
the other hand, the value of pmax

s is never increased as this
would lead to a potential security issue for the grid.
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D. Synchronized AIMD: a Frequency-Based Version

In Section IV-B we had noticed that it may be inappropriate
to use a frequency-based control to charge PEVs, as stability
issues may arise without significant changes to the frequency,
until it is too late. In this section, we provide a simple
simulation to support our statement. In particular, we consider
exactly the same scenario of Section IV-C, but the AIMD
algorithm is performed with respect to the bus frequencies,
and a capacity event (and consequent reduction of power
consumption by the connected PEVs) now occurs when the
frequency falls below a safe threshold. AIMD parameters are
α = 0.34 W, β = 0.99 and ωmin = 0.999 pu(Hz) on a base
of 60 Hz.

Remark 1: When PEVs perform an increasing step, and
increase their charge rates, then the frequency decreases. For
this reason the threshold corresponds now to a minimum
allowed frequency (and not a maximum overall power).
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Fig. 4. Results of the synchronized AIMD frequency-based version; (a) active
powers of loads at buses 3, 4, 7, 8 and 12 (where PEVs are); (b) frequency
ωCOI response.

Fig. 4 summarizes the obtained results. In particular, the
charging process is very slow because a very conservative
threshold for the frequency was chosen, and thus only very
small changes of the load are allowed. Despite this conserva-
tive choice of the frequency threshold, instability occurs just
the same, and when the system realizes of this event and starts
reducing the charge rates of the connected vehicles, it is too
late to prevent a network collapse from occurring.

Remark 2: Several simulations, solved with different
thresholds, have confirmed that small variations of charging
powers do not have a significant impact on the frequency
of the system, and more importantly, that local frequency-

based strategy may not be appropriate for the control of PEV
charging to avoid lines congestion.

E. Unsynchronized AIMD
The unsynchronized version of AIMD is actually more

interesting than its synchronized counterpart, as it is possible
to prioritize PEVs as desired. This allows one to implement
policies that favor certain PEVs (for instance because their
owners are willing to pay more to be charged earlier, or
also allow one to take into account energy requirements of
the PEVs, or of the power grid). We now assume again that
PEVs are be equally distributed and connected to the same
five different buses, i.e. 3, 4, 7, 8 and 12. Then, we compare
two scenarios, as follows.
S1: all PEVs at any s′th bus have the same objective function:

fs(pi,s) = −
p3i,s

3 · pmax
, (8)

where pi,s is the power load of the i′th PEV plugged at
bus s, and pmax is the maximum charge rate (i.e., 3.3
kW, as described in Section IV-A).

S2: all PEVs that are connected at buses 3, 4 and 7 have the
following utility function fs1 , while PEVs connected at
buses 8 and 12 have utility function fs2 :

fs1(pi,s) = −
p3i,s

3 · pmax
, (9)

fs2(pi,s) = −
p4i,s

4 · p2max

. (10)

In both scenarios, up to 88 ·103 PEVs connect for charging
at each bus. The AIMD parameters are α = 0.34 W, β = 0.99,
pmax
s = 180 MW, and Γ = −1.
Fig. 5 summarizes our results for Scenario S1 (above) and

Scenario S2 (below). The effect of the different objective
functions can be noticed by comparing Fig. 5(a), where the
algorithm fairly manages to complete charging at all buses
at about the same time, and Fig. 5(c), where the vehicles
associated with a steeper utility function (prioritized vehicles)
finish earlier than the vehicles of other buses. Hence, results
confirm qualitatively our expectations; in particular, to better
appreciate the effect of the prioritization in a quantitative way,
we compare the 5 buses characteristics also in Table I.

TABLE I
UNSYNCHRONIZED CONTROL PERFORMANCE WITH PRIORITIES

Bus # Mean power rate Global charge duration

3 1.537 kW 4 hours, 18 minutes
4 1.531 kW 4 hours, 19 minutes
7 1.53 kW 4 hours, 19 minutes
8 1.702 kW 3 hours, 53 minutes
12 1.727 kW 3 hours, 49 minutes

In addition, Figs. 5(b) and 5(d) show that the frequency
always lies in a safe range [0.998, 1.001] pu. These results
show that by designing steeper, or less steeper utility functions,
it is possible to prioritize some vehicles, if desired, as an
alternative to a fair approach.
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Fig. 5. Unsynchronized AIMD results; (a) active powers of loads at buses 3, 4, 7, 8 and 12 (where PEVs are), decentralized controller with no priorities;
(b) ωCOI, decentralized controller with no priorities; (c) active powers of loads at buses 3, 4, 7, 8 and 12 (where PEVs are), decentralized controller with
priorities; (d) ωCOI, decentralized controller with priorities.

F. Different Priorities Within the Same Bus
The previous example assumes that all PEVs connected

to the same bus have the same utility functions. While this
is convenient to illustrate the proposed control strategy, in
practice, PEVs connected to the same bus may have different
utility functions. In this section, we consider that PEVs are
equally distributed and connected to buses 3 and 4. At each
bus, half of the PEVs have the utility function fs1 (see (9)), and
the other half have utility function fs2 (see (10)). Fig. 6 shows
the system behaviour in terms of the power loads at buses 3-4.
The control strategy is effective, as with the same number of
PEVs, the power grid would have collapsed in an uncontrolled
scenario. Moreover, PEVs with prioritized charging end earlier
than those without priority, independently from the bus at
which they are connected.

V. CONCLUSIONS

The paper proposes a decentralized AIMD algorithm for
charging PEVs without affecting the system stability, by
dynamically allocating the available power in an optimized
way. A first interesting result of our work, is that automatic
frequency-based, or voltage-based control strategies fail to
preserve the stability of the network. On the other side, power-
based control strategies can be used to automatically and
seamlessly adjust charging rates of PEVs to optimize a desired
cost function of interest.
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