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Abstract—This paper addresses the optimal placement of static
var compensators (SVCs) in a transmission network in such a
manner that its loading margin is maximized. A multiscenario
framework that includes contingencies is considered. This problem
is formulated as a nonlinear programming problem that includes
binary decisions, i.e., variables to decide the actual placement
of the SVCs. Given the mixed-integer nonconvex nature of this
problem, a Benders decomposition technique within a restart
framework is used. Detailed numerical simulations on realistic
electric energy systems demonstrate the appropriate behavior of
the proposed technique. Conclusions are duly drawn.

Index Terms—Benders decomposition, maximum loading
margin, static var compensator (SVC) placement, voltage sta-
bility.

NOMENCLATURE

Constants:

Active power demand at bus .

Reactive power demand at bus .

Variables:

Active power generation at bus .

Reactive power generation at bus .

Susceptance of an SVC at bus .

Binary variable associated with placing an SVC
at bus .

Voltage magnitude at bus .

Voltage angle at bus .

Network loading margin.

Current magnitude through transmission line .

Sets:

Set of possible static var compensator (SVC)
placement buses.

Set of generator buses.
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Numbers:

Number of constraints involving only binary
variables.

Number of continuous variables.

Number of buses and of discrete variables.

Number of SVCs.

Cardinality of , i.e., number of possible SVC
locations.

Number of lines.

Number of simulations.

Number of cases including the base case and the
contingencies.

Probability of case .

Number of constraints involving continuous and
binary variables.

Vectors and matrices are in boldface, while scalar variables are
in italic (e.g., is the vector of all voltage magnitudes

). Other symbols are defined as required in the text.

I. INTRODUCTION

A. Motivation and Approach

Static var compensators (SVCs) make it possible to enhance
the functioning of a transmission network by increasing sig-

nificantly its loading margin. Thus, SVCs are increasingly used
in nowadays stressed transmission systems.

Being that the load flow equations are nonlinear, to identify
in which buses SVCs should be located is a complex problem
mostly treated heuristically in the available literature. Therefore,
it naturally arises the need to tackle this problem in a systematic
and formal way so that the best or a near-best solution is found.

This paper provides an optimization procedure based on
Benders decomposition that incorporates multiple restarts for
determining in which buses of a transmission network SVCs
should be installed. Diverse scenarios including the base case,
and contingencies are considered. The target is to maximize the
loading margin. The proposed multistart Benders framework
allows avoiding local minima and reaching eventually the
global minimum. It should be emphasized that the method-
ology proposed in this paper can be straightforwardly applied
to locate any type of FACTS devices. However, for the sake of
clarity and simplicity, we consider only the placement of SVCs.
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B. Literature Review

In the technical literature, the allocation of FACTS devices
has been carried out through different strategies. In [1], a
linear iterative method is proposed to find the best placement
of FACTS devices in order to minimize the expected thermal
generation cost and the investment cost on these devices in
a hydrothermal coordination problem. In [2], a sensitivity
analysis is used to locate thyristor-controlled series capacitors
(TCSCs) and unified power flow controllers (UPFCs) to in-
crease the maximum power transfer level of the system. In [3],
a method based on a voltage stability index is used to find the
best location of the FACTS to avoid the voltage collapse.

In [4] and [5], the FACTS location problem is solved by
means of genetic algorithms to lower the cost of energy produc-
tion and to improve the system loading margin, respectively. A
two-step procedure is proposed in [6] to locate thyristor con-
trolled phase shifting transformers (TCPSTs) in a system using
a dc load flow model. In the first step, the system loading margin
is maximized, while in the second step the total investment
cost or the total number of phase shifters is minimized. In both
steps a mixed-integer linear programming problem is solved.
Reference [7] provides a var planning tool which considers
simultaneously static constraints as well as voltage stability
constraints. The formulation and implementation is based on
a three-level hierarchical decomposition scheme where each
subproblem is solved by the interior point method. In [8], the
FACTS location problem is formulated as a mixed-integer
nonlinear programming problem. The optimal placement is
obtained optimizing both the investment cost in FACTS and
the security in terms of the cost of operation under contingency
events. The problem is considered convex and solved by Ben-
ders decomposition.

The Benders decomposition is a particularly attractive tech-
nique for the FACTS location problem because it allows treating
binary and continuous variables separately, thus achieving so-
lution efficiency for moderate computational effort. However,
the Benders decomposition requires that the objective function
of the considered problem, projected on the subspace of the
complicating variables, has a convex hull. Unfortunately, this
is not the case for the SVC allocation problem. Nevertheless,
since the global minimum must lie in a convex subregion, we
solve the above drawback by restarting Benders decomposition
with points that cover most of the solution space and that
allows searching convex subregions, which make it possible
identifying local minima and eventually the global minimum.
We consider this technique particularly appropriate to the SVC
placement problem since the alternative is a fully heuristic
search (e.g., a genetic algorithm), which generally does not
allow taking into account in detail the physics of the problem.

C. Contributions

The contributions of this paper are threefold.
1) A novel technique: A Benders decomposition technique

incorporating multiple restarts is used to place SVCs in a
transmission network. This technique allows tackling non-
convexities.

2) An efficacious and robust algorithm: The proposed de-
composition is efficacious in locating globally optimal or

near-optimal solutions and robust in what refers to compu-
tational behavior.

3) A proven procedure: Detailed numerical simulations con-
sidering different realistic electric energy systems prove
the good behavior of the proposed technique.

D. Paper Organization

The rest of this paper is organized as follows. Section II pro-
vides the detailed formulation of the considered problem. In
Section III the proposed solution algorithm is stated. Section IV
provides and analyzes results for a 40-bus system, and two re-
alistic systems, namely, the IEEE 300-bus test system and a
1228-bus Italian network. Section V gives some relevant con-
clusions.

II. FORMULATION

In this paper, the following mixed-integer nonlinear program-
ming problem is used to compute the maximum loading condi-
tion of a network

(1)

(2)

(3)

(4)

(5)

(6)

and

(7)

(8)

(9)

(10)

(11)

(12)

where the notation of most variables, constants, and numbers
is given at the beginning of this paper and are the
elements of the admittance matrix of the network, and
and are the series admittance and the shunt susceptance,
respectively, of the transmission line . The discrete variables

define the placement of the SVCs, i.e., if ,
an SVC is placed at bus .
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The objective function and the equality and inequality con-
straints in (1)–(12) are explained below.

A. Objective Function

Minimizing corresponds to find the maximum loading
condition that can be associated with either [9]

1) voltage stability limit (collapse point) corresponding to a
system singularity (saddle-node bifurcation);

2) system controller limits such as generator reactive power
limits (limit-induced bifurcation);

3) thermal or bus voltage limit.
Observe that (1) is the simplest objective function that al-

lows taking into account voltage stability constraints [10]. Other
more sophisticated models have been proposed in [11] and [12].
Nevertheless, the main goal of this paper is to formulate the
maximum loading condition problem as a mixed-integer non-
linear programming problem and solve it by means of a robust
technique. Thus, the conclusions to be drawn using (1) can be
extended to other objective functions and OPF models of the
form (1)–(12).

B. Equality Constraints

The system functioning is represented by the power flow (2)
and (3), and the current flows in transmission lines and trans-
formers (4). According to typical assumptions in voltage sta-
bility studies [9], the loading margin is a scalar value that in-
creases uniformly the active and reactive powers of all loads.
Thus, the power factor of load powers is assumed to be con-
stant. Equation (5) imposes that the SVCs cannot be installed at
generator buses, as it is common practice. Finally (6) is needed
to fix the reference bus phase angle.

For simplicity, it is assumed that there is at most one generator
at each bus. If no generator is connected at bus , then

(13)

For the sake of simplicity, but without lack of generality,
SVC devices are modeled as variable susceptances. More so-
phisticated models (e.g., the fundamental frequency firing angle
model) can be implemented but doing so does not change the so-
lution technique that is proposed in this paper. It should also be
noted that different steady-state models of FACTS, i.e., TCSCs,
UPFCs, TCPSRs, etc., can be straightforwardly incorporated in
problems (1)–(12).

C. Inequality Constraints

The physical and security limits considered in this paper are
similar to those proposed in [13], and take into account gener-
ator active (7) and reactive limits (8), voltage magnitude limits
(9), and transmission line thermal limits (4). Inequalities (10)
are used for limiting voltage angles, eventually improving the
convergence of the optimization method. Inequalities (11) are
used for limiting the susceptance of installed SVCs; if the SVC
is not placed at the bus , the associated SVC susceptance limits
are set to zero. Finally, (12) imposes that the maximum number
of installed SVCs is .

III. SOLUTION

A. Compact Formulation

The SVC placement problem formulated in Section II can be
expanded to consider multiple scenarios (base case and contin-
gencies) and reformulated in a compact manner as

(14)

(15)

(16)

where
, and

, and constraints (15) and (16) include both equality and in-
equality constraints. Note that . Note also that
refers to different scenarios (i.e., base case and contingencies)
and is the probability associated with the occurrence of sce-
nario . It should be noted that the above formulation considers
simultaneously one base case scenario and several contingency
scenarios. Observe also that SVC placement variables do not
depend on the scenario while operational variables do.

Note that the objective function (14) provides a measure of
the average impact on system security (average loading margin)
resulting from the availability of SVCs. This average value is
computed for all plausible loading and contingency scenarios
properly weighted by their corresponding probabilities of oc-
currence.

B. Solution Algorithm

The proposed multistart Benders decomposition procedure
for problems (14)–(16) shown in Fig. 1 works as follows [14].

1) Global Initialization. Set the simulation counter to
and , where is the global minimum of

problems (14)–(16).
2) Random Initial Solution. Place randomly the available

SVCs in the network, i.e., initialize , and update the
simulation counter .

3) Benders Initialization. Set the Benders iteration counter to
, and .

Note that the lower bound of the objective function optimal
value is initialized to .

4) Subproblem Solutions. Solve for all cases considered
(base case and contingencies)

(17)

(18)

(19)

The solution of this subproblem provides
and . It should be noted

that is the dual variable associated with (19).
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Fig. 1. Structure of the proposed multistart Benders framework.

Update the objective function upper bound,
.

Note that since is not generally optimal, con-
stitutes an upper bound of the objective function optimal
value.
Observe that (1)–(12) corresponds to one instance of
problem (17)–(19) once variables are fixed to trial
values. An interesting feature of the Benders decom-
position technique is that the problems (17)–(19),

corresponding to the base case and the contingencies, are
decoupled and can thus be solved in parallel.

5) Infeasibility Check. If or a non-
convex region is wrongly reconstructed and no solution can
be identified; if the number of prespecified rounds has
not been reached go to 2), otherwise the algorithm con-
cludes. In any other case the algorithm continues below.

6) Convergence Check. If , a solu-
tion with a level of accuracy has been found

and the algorithm continues below; otherwise, it contin-
uous in 8).

7) Global Solution Update. If update the global
solution and the algorithm con-
tinues in 2) if the number of prespecified rounds has not
been reached; otherwise, the algorithm concludes. In any
other case, the algorithm continues below.

8) Master Problem Solution. Update the iteration counter
and solve

(20)

(21)

(22)

(23)

Note that at each iteration one additional constraint (22) is
added to problem (20)–(23). Constraint (23) forces to look
for solutions with objective function value lower than or
equal to the current optimum thus seeking better and
better solutions. Note that (23) increases the failure rate of
the Benders scheme but ensures that solutions found are
successively better and better. The solution of this master
problem provides and .
Update the objective function lower bound .
The algorithm continues in 4).
It should be noted that problem (20)–(23) approximates
successively problems (14)–(16). Note that consti-
tutes a lower bound of the optimal value of the objective
function because problems (20)–(23) approximates from
below problem (14)–(16). If the Benders decomposition
technique converges, then, .

C. Generation of Initial Solutions

A relevant issue concerning the performance of the proposed
method is how to generate random initial SVC allocations in
order to restart the Benders procedure. It should be noted that
the SVC locations are randomly generated just as starting points
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Fig. 2. Simulation procedure for a 10-bus system.

for the Benders algorithm and with the purpose of exploring
the whole feasibility region so that the global maximum is not
missing.

Let us consider a 10-bus system with 3 generation buses cor-
responding to buses 2, 5, and 8, respectively, as indicated in
Fig. 2(a) using gray shadows. The aim is to generate an ini-
tial random positioning for SVCs. As no device can
be located at generation buses, for the first iteration set with

components is initialized including just the positions where
SVCs can be located as shown in Fig. 2(a). Next, a random in-
teger value between 1 and the cardinality of is
generated using “ ,” where a uni-
formly random number between 0.5 and is rounded to
the nearest integer. Note that using this expression, the proba-
bility of obtaining any of the integers on the list is equally likely.
Considering that a 3 has been obtained, the first device is located
at the position indicated by the third component of set , i.e.,
bus 4 [see Fig. 2(b)]. For the next iteration, set is updated
because no additional SVCs can be installed in bus 4. The car-
dinality of is updated , and a random in-
teger value is obtained using the same expression. Considering
the resulting random integer number to be 5, the second SVC
is located at the position indicated by the fifth component of set

, i.e., bus 9 [see Fig. 2(c)]. The procedure continues until all
SVCs have been placed.

Note that this procedure allows us to randomly generate a fea-
sible initial solution for the Benders decomposition procedure
with a probability of occurrence of

(24)

In general, the algorithm to generate initial solutions proceeds
as stated in the following.

1) Data and initialization: Required data include the set of
possible device locations , its cardinality and the
number of SVCs to be installed .
Set the iteration counter to , and all the components
of to zero.

2) Random number generation: Obtain the first random in-
teger number using the expression

(25)

Fig. 3. Flow chart of the algorithm to generate random initial solutions.

3) SVC placement: Set the th component in vector corre-
sponding to the th element in set to 1.

4) Stopping criterion: If the procedure concludes,
otherwise update the iteration counter , the set

and the remaining number of possible device locations
, and continue in 2).

The flow chart of the algorithm to generate random initial
solutions is shown in Fig. 3.

IV. CASE STUDIES

A. Southwest England 40-Bus System

This section discusses a case study based on the 40-bus test
system shown in Fig. 4. This system is based on a simplified
model of the Southwest England power system and firstly ap-
peared in [15]. Most power flow data can be found in [16] while
the system limits used in this paper are provided in the Ap-
pendix. The network includes 40 buses, 65 lines, and 17 loads
for a total base-case load of 41 MW and 7 Mvar. There are three
voltage levels, namely 132, 33, and 11 kV. A feeding substation
is located at bus 40 at 132 kV. Buses 20, 22, and 29-37 are at
11 kV, while all remaining buses are at 33 kV. Generators are
located at buses 6, 13, 18, 20, 22, 24, and 39.

The original network does not contain SVCs. In this case,
compensation is obtained through a static condenser at bus 12
and proper values of tap ratios of 33/11 kV transformers. These
are the transformers that connect buses 1–29, 2–30, 3–31, 4–31,
5–32, 8–36, 9–35, 10–33, 11–34, 27–37, and 28–37, respec-
tively. For the sake of simplicity, we assume that the tap ratios
of these transformers are fixed.

The maximum number of SVCs that can be allocated in this
system is 33, i.e., the number of buses minus the number of
generators (no SVC is located at generator buses).
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Fig. 4. The 40-bus test system.

In the simulations, we consider the base case scenario and
the four “worst case” contingencies corresponding to the out-
ages of the lines 29–1, 26–39, 17–18, and 5–6, respectively.
Contingency scenarios are sorted in increasing order of poten-
tial damage. Furthermore, we also study a multiscenario model
where the objective function (14) is the average loading margin
for the different cases multiplied by their corresponding proba-
bilities of occurrence, i.e.,

(26)

where the -values for this example are % for the base
case, and % % %, and % for the
line outage cases, respectively.

Up to 5 SVCs (i.e., ) and 200 different initial so-
lutions for each number of SVCs have been considered for each
scenario. Observe that for , it is sufficient to place the
SVC at each bus and then to check which placement provides
the maximum loading margin. However, the case is in-
cluded for the sake of completeness. The optimization problems
are solved using CPLEX 10.0 (master problem) and MINOS
5.51 (subproblems) under GAMS [17] with a Sun Fire V20Z
with 2 processors at 2.40 GHz and 8 GB of RAM memory.

Table I provides the results for each scenario and for each
value of . The first column shows the maximum loading
margin without SVC placement ) and the percentage of
times the Benders procedure fails to converge % for the
first 200 5 runs (5 cases considering from 1 to 5 SVCs and
200 simulations for each case). The loading margin provided
in the third column of Table I is the maximum value obtained
after the 200 simulations. The fourth column provides the
number of times that the Benders procedure converges to the
global optimal solution using different initial solutions. The
SVC placement depicted in the fifth column corresponds to
the maximum value of the loading margin . The last column
of Table I shows the CPU time in seconds needed to complete
the 200 simulations for each scenario. Observe that the number

TABLE I
MAXIMUM LOADING MARGIN AND SVC LOCATIONS FOR DIFFERENT

SCENARIOS FOR THE 40-BUS TEST SYSTEM

of SVCs located is always equal to , although (12) only
imposes that the number of SVCs is smaller than or equal to

. This result is to be expected since the higher the number
of SVCs installed in the network, the higher the loadability of
the network.

It is relevant to note that for the outage of line 29–1 (con-
tingency 1), the solution without SVCs is not feasible, in fact

. After the SVC placement, the system com-
plies the N-1 security criterion, i.e., for .

Note that for the multiscenario case, the result up to 3 SVCs
is equal to the results for the base case and the contingency case
4, while for 4 and 5 SVCs the result of the multiscenario case is
the same as that of contingency case 4.

Fig. 5 illustrates the loading margin as a function of the
number of installed SVCs, . For the sake of illustration, in
this case up to 20 SVCs (i.e., ) have been consid-
ered. The black dots indicate the best values of found, while
light gray dots indicate the values of obtained with subop-
timal SVC placements. Fig. 5(a) depicts the solution for the
base case and for each contingency considered separately. As
expected, the base case leads to the highest loading margins.
Observe that the optimal value of saturates below 20 SVCs
for contingencies 1 and 2. This result is to be expected, since
the maximum loading condition is given by the transmission line
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Fig. 5. Evolution of the loading margin � as a function of the number of in-
stalled SVCs n for the different cases. (a) Separate solutions for the base case
and each contingency. (b) Solution of the multiscenario model that includes the
base case and all contingencies.

thermal limits or by the saddle-node bifurcation if there is no re-
active power problem. Fig. 5(b) depicts the solution of the mul-
tiscenario problem that includes a weighted average of the base
case and the 4 worst contingencies. Observe that the low prob-
ability of the contingencies with respect to the base case leads
to high values of the loading margin . Simulation results con-
sidering the 20 cases show that the percent of variation, which
is equal to the difference between the maximum and the min-
imum obtained loading margins divided by the average value

, is between 0 and 4% for all cases. The percentage of times
the Benders decomposition fails to converge varies between 0
and 98% across the cases considered. The simulation number
where the maximum loading margin is obtained ranges from 1
to 194.

For the sake of comparison, Table II provides the ten smallest
eigenvalues of the reduced power flow Jacobian matrix of the
40-bus system obtained using the well-known sensitivity
approach proposed in [18]. The Jacobian matrix is computed
for the base case loading condition.

According to the sensitivity analysis, the buses associ-
ated through participation factors with the lowest eigenvalues
are the best candidates for reactive power compensation. The
weakest bus is bus 29, which is also the bus provided in Table I
for . However, as the maximum number of device
increases, the sensitivity analysis is only able to provide rough
information on the best bus candidates for the placement of SVC
devices. For example, for , the optimal solution in Table I

TABLE II
QV SENSITIVITY ANALYSIS FOR THE 40-BUS TEST SYSTEM

TABLE III
COMPARISON BETWEEN BENDERS DECOMPOSITION AND QV SENSITIVITY

ANALYSIS FOR THE 40-BUS TEST SYSTEM

TABLE IV
COMPARISON BETWEEN MULTISTART BENDERS DECOMPOSITION AND

STANDARD BENDERS DECOMPOSITION FOR THE 40-BUS TEST SYSTEM

for the base case provides buses 29 and 30. On the other hand,
the sensitivity analysis is only able to show that buses 29 and
30 are among the 10 weakest buses of the system. Table III
shows a comparison of the maximum loading margins ob-
tained using the proposed Benders decomposition technique and
the sensitivity analysis method. Observe that the Benders
decomposition technique is able to find better SVC placement
solutions for .

It should also be noted that if a standard Benders procedure
is used [14] (with no restart), the solution attained is generally
worse than the one obtained by the proposed multistart Benders
algorithm. Table IV compares the solutions of both methods.

B. IEEE 300-Bus Test System

This section presents and discusses a case study based on the
IEEE 300-bus test system [19]. The aim of this case study is
to show that the proposed Benders decomposition technique is
feasible for large networks. Due to space limitations, only the
base case is considered in this case study.

The maximum number of SVCs that can be allocated in this
system is 231, i.e., the number of buses minus the number of
generators.

For this case study, we consider up to 5 SVCs (i.e.,
), and 500 different initial solutions for each value of

SVCs.
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TABLE V
OPTIMAL LOADING MARGIN AND SVC LOCATIONS

FOR THE IEEE 300-BUS SYSTEM

Results for the IEEE 300-bus test system are given in Table V,
which provides similar information as Table I but for the IEEE
300-bus system.

Table VI provides simulation results up to 5 SVCs, where
is the loading margin mean value for the 500 simulations, is
the loading margin standard deviation, range is the difference
between the maximum and the minimum loading margins ob-
tained, “% of variation” is equal to the range divided by the av-
erage value , “% of failure” is the percentage of times the
Benders decomposition fails to converge, is the simulation
number corresponding to the maximum loading margin, is
the number of different solutions obtained by means of the Ben-
ders decomposition, and is the number of different possible
SVC placement configurations obtained through the inverse of
formula (24).

Note that the solution for more than one SVC does not include
the optimal position for 1 SVC, showing that the sensitivity
analysis method fails to obtain the global optimum if the number
of SVC is greater than 1.

The most likely global optima for the placement of 1 to 5
SVCs are obtained at iterations 169, 466, 186, 243, and 87, re-
spectively (see Table VI). Note that in most cases the optimum
is obtained in fewer iterations than 500 (number of restarts).

C. 1228-Bus Italian Network

For the sake of completeness the proposed method is applied
to a real-world 1228-bus model of the Italian transmission grid.
Due to space limitations only the base case is considered.

For this case study, we consider up to 3 SVCs and 200 dif-
ferent initial solutions for each value of SVCs.

Results are given in Table VII, which provides similar infor-
mation as Table I. Table VII also provides information about the
first solution of the method, corresponding to the standard Ben-
ders approach. The following observations are pertinent.

1) The solution provided by the multistart Benders method
is better than the one provided by the sensitivity based
technique. Note that the three nodes associated with the
weakest eigenvalues of the Jacobian matrix are 483, 758
and 413, respectively. The objective function values cor-
responding to the positioning of one SVC at node 483,
two SVCs at nodes 483 and 758, and three SVCs at nodes
483, 758 and 413, are and

, respectively, which are worse solutions than
those provided by the proposed technique (see Table VII).

2) Even if the Benders decomposition method with only one
starting point is considered (standard Benders), results are
better than those obtained using the sensitivity method.

3) For 2 SVCs, there are two equivalent solutions because the
corresponding objective functions are almost the same and
nodes 241 and 242 are geographically very close. Since
this is the only solution obtained through the simulation
process, we can affirm with a high confidence level that
this is the global optimum.

4) For the case of three SVCs, only two different solutions
are obtained through the simulation process. Note that the
optimal solution corresponds to nodes 240, 241, and 242.

Buses 483 and 413 are located in Northeast Italy, while bus
758 is in the South. These buses belong to scarcely intercon-
nected subtransmission networks at 132 kV. Hence, these buses
present high participation factors with respect to the lowest
eigenvalues of the power flow Jacobian matrix. Although
placing SVC devices at these buses can locally improve voltage
levels, this does not necessarily implies a benefit for the whole
Italian grid.

Buses 313, 240, 241, and 242 are well interconnected 400
kV buses located in the North of Italy, in between Switzerland
and the industrial area of Milan. These buses are not particu-
larly weak since they are well interconnected to the HV network.
However, a voltage support of the heavily loaded area of Milan
improve the loading margin of the whole Italian grid. Observe
also that to place several SVCs at buses geographically close
basically means that the requirement of reactive power of the
area of Milan is higher than the maximum capacity of a single
SVC. This information cannot be deduced from the sensitivity
analysis.

Finally, note that the computing time needed by the sensi-
tivity technique is basically the time required to compute the
eigenvalues of the corresponding power flow Jacobian matrix.
This time is generally much smaller than the computing time re-
quired by the proposed Benders procedure. For example, to lo-
cate 3 SVCs in the 1228-bus Italian network, the time required
by the sensitivity technique is 10 seconds (that is, the CPU time
needed to compute the 3 smallest eigenvalues of the power flow
Jacobian matrix and the associated bus participation factors)
whereas the time required by the Benders technique considering
200 restarts is about 52 h.

D. Remarks

From the results obtained in the case studies, the following
observations are pertinent.

1) The maximum loading margin saturates as the number of
SVC devices increases under two different situations: a)
the maximum loading condition is imposed by transmis-
sion line thermal limits or b) a saddle-node bifurcation
occurs if there is no reactive power shortage. For both
cases adding new SVCs does not improve significantly the
loading margin.

2) Differences in range up to 7%. This fact can be useful in
case that a suboptimal solution is more acceptable than the
optimal one for practical reasons (e.g., reachability of the
bus, availability of the area around the bus for the installa-
tion of the SVC, etc.).
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TABLE VI
RESULTS UP TO 5 SVCS FOR THE IEEE 300-BUS SYSTEM

TABLE VII
OPTIMAL LOADING MARGIN AND SVC LOCATIONS

FOR THE 1228-BUS ITALIAN SYSTEM

3) The number of times that the Benders procedure fails to
converge, ranging from 0% to 98%, and the number of
repetitions of the different solutions obtained show both
the globally nonconvex character of the problem and the
existence of local convex regions.

4) Simulations point out the existence of clearly different
local minima.

5) The number of occurrences of the globally optimal solu-
tion varies considerably with the number of SVCs to be
installed.

6) For the considered case-studies, the proposed method per-
forms better than the sensitivity method. For the base case,
the optimal loading margins obtained from 2 up to 5 SVCs
is always higher than the solution obtained through the sen-
sitivity method (see Table III).

7) The proposed method allows an easy implementation
of multiscenario problems, which can be solved in a
distributed fashion. This allows considering all different
situations at once.

8) The proposed technique is feasible for realistic size net-
works. Note that CPU time varies fairly linearly with the
number of SVCs. Computational times are reasonable con-
sidering that a design problem is solved.

9) Even thought the proposed technique requires higher com-
puting time than the sensitivity method, results are consid-
erably better, which makes this approach more appropriate
for the allocation of SVCs.

V. CONCLUSION

This paper presents a multistart Benders decomposition tech-
nique to maximize the loading margin of a transmission network
through the placement of SVCs. A base case and different con-
tingency cases are considered. The proposed algorithm proves

TABLE VIII
40-BUS SYSTEM: TRANSMISSION LINE AND TRANSFORMER THERMAL LIMITS

TABLE IX
THE 40-BUS SYSTEM: GENERATOR REACTIVE POWER LIMITS

to be efficacious in identifying optimal or near-optimal solu-
tions and robust in what refers to computational behavior. The
three case studies analyzed provide detailed numerical simula-
tions and prove the good behavior of the proposed technique.
The solutions obtained are superior to those obtained using a
sensitivity analysis procedure for a number of installed SVCs
greater than one.

Future work will focus on modeling other FACTS different
than SVCs (e.g., series FACTS devices).

APPENDIX

This Appendix provides the limit values used in the 40-bus
case study so that the interested reader can readily reproduce
paper results. All p.u. values shown in this section are referred
to a 100 MVA power base and to transformer voltage ratings.
Table VIII provides transmission line and transformer thermal
limits, while Table IX provides generator reactive power limits.
Maximum and minimum voltage limits are considered to be
1.1 and 0.9 p.u., respectively, for all buses. Finally, SVC max-
imum and minimum susceptance limits are p.u.
and p.u., respectively.
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