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Abstract: In this article we define a fractional forward discrete operator. Then, for a

family of linear non-autonomous fractional difference equations constructed by using this

fractional discrete operator, we provide a practical formula of solutions. This family of

problems covers several linear fractional difference equations that appear in the literature.

Numerical examples are given to justify our theory.
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1 Introduction

Let Yk : Z → Cm be a vector of sequences. Then the backward difference
(or nabla) operator of ν-th order, denoted by ∇ν , is defined as:

∇νYk =
ν∑

j=0

(−1)j
(

ν
j

)
Yk−j , ν ∈ N.

The ν-th order forward difference operator, denoted by ∆ν (delta discrete
operator), is defined as:

∆νYk =
ν∑

j=0

(−1)ν−j

(
ν
j

)
Yk+j , ν ∈ N.

Both the nabla and the delta operator can then be used to form difference
equations that construct models related to macroeconomics, storage, exports
and imports, biology, psychology, and time scale analysis, see [1, 2, 3, 4, 5].

In recent years, research has been expanded into studying the nabla
difference operator of fractional order, see [6, 7, 8, 9], which is a backward
operator. This backward operator has helped in constructing fractional
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difference equations for the modeling of tumour growth, storage, electricity
markets, macroeconomics and logistics, see [10, 11, 12], and mostly aims to
extract information from the past.

In this article we will use the fractional forward delta operator as defined
when applied to a sequence.

The paper is organized as follows. The main results of the paper are
presented in Section 2. Section 3 discusses numerical examples that justify
our theory. Finally, conclusions are drawn in Section 4.

2 Main Results

In this section we provide our main results. Firstly it is important to under-
stand how the fractional forward delta operator is constructed. We present
the following Proposition:

Proposition 2.1. Let k ∈ bZ = {..., 0, 1, 2, ..., b}. If n is a fractional
number, then the fractional forward delta operator of n-th order is given by:

b∆
−nYk =

b∑
j=k

dj−kYj , k ∈ bZ, (1)

where dj−k = (j−(k−1))n−1

Γ(n) , j = k, k + 1, k + 2, ..., b.

Proof. We recall the delta operator of first order ∆Yk = Yk+1 − Yk ap-
plied to a vector of sequences Yk : bZ → Cm. By using this operator, and
by considering a known vector of sequences fk : bZ → Cm, we consider the
following system of difference equations of first order:

∆Yk = fk, Yb = 0m,1, k ∈ bZ.

Considering a fixed N ∈ bZ, we have from the last equation:

Yb − Yb−1 = fb−1

Yb−1 − Yb−2 = fb−2
...

YN+1 − YN = fN .

By taking the sum of the above equations we get Yb−YN =
∑b−1

j=N fj . Hence

the solution to the system is Yk =
∑b−1

j=k fj . Similarly, if we consider the
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following system of difference equations of ν-th order:

∆νYk = fk, Yb = Yb−1 = ... = Yb−(ν−1) = 0m,1, k ∈ bZ,

we receive the solution:

Yk =

b−1∑
j=k

(j − (k − 1))ν−1

Γ(ν)
fj .

Where Γ(·) is the Gamma function, and (j−(k−1))ν−1 = Γ(j−(k−1)+(ν−1))
Γ(j−(k−1)) =

Γ(j−k+ν)
Γ(j−k+1) . The solution of the above ν-th order system of difference equations
can be also expressed as:

Yk = ∆−νfk.

Hence we have that:

∆−νfk =

b−1∑
j=k

(j − (k − 1))ν−1

Γ(ν)
fj .

Based on this expression, if n is a fractional number, then the fractional
forward delta operator of n-th order is defined as:

b−1∆
−nYk =

b−1∑
j=k

dj−kYj , k ∈ b−1Z,

or, equivalently:

b∆
−nYk =

b∑
j=k

dj−kYj , k ∈ bZ,

where dj−k = (j−(k−1))n−1

Γ(n) , j = k, k + 1, k + 2, ..., b. The proof is completed.

One important difference between the fractional forward delta operator of
n-th order (n fractional) and the forward delta operator of ν-th order (ν
natural) is that when ∆ν is applied to Yk we receive an expression that
includes Yk, Yk+1, Yk+2, ..., Yk+ν whereas when b∆

−n is applied to Yk we
receive an expression that includes Yk, Yk+1, Yk+2, ..., Yb.

Consider the following linear system of non-autonomous difference equa-
tions of fractional order:

Ek b∆
−nYk =

b∑
j=k

A
(j)
k Yj + Vk, k ∈ bZ. (2)
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Where Yk : bZ → Cm, and Ek, A
(j)
k : bZ → Cr×m, Vk : bZ → Cr. The symbol

(j) on the matrix A
(j)
k refers to the fact that this matrix is a coefficient

of Yj in (2). For simplicity, in this article we will focus on the case that
r = m = 1, i.e. instead of a system we have a generalized non-autonomous
difference equation, and provide a practical formula of its solutions. We
prove the following theorem:

Theorem 2.1. Consider (2) for r = m = 1. Then if ∀k ∈ bZ and Ek ̸= A
(k)
k ,

there always exists a unique solution for (2) given by:

Yk = (−1)b−k Dk,b

Πb−1
i=kDi

C +

b−1∑
j=k

(−1)j−k Dk,j

Πj
i=kDi

Vj , k ∈ bZ. (3)

Where Dk,k = 1, and for j ̸= k, Dk,j is the determinant of a (j−k)× (j−k)
matrix:

Dk,j =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Dk,k+1 Dk,k+2 Dk,k+3 · · · Dk,j−1 Dk,j

Dk+1 Dk+1,k+2 Dk+1,k+3 · · · Dk+1,j−1 Dk+1,j

0 Dk+2 Dk+2,k+3 · · · Dk+2,j−1 Dk+2,j

0 0 Dk+3 · · · Dk+3,j−1 Dk+3,j
...

...
...

. . .
...

...
0 0 0 · · · Dj−1 Dj−1,j

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4)

In addition C is constant, and:

Dk,j = dj−kEk −A
(j)
k , dj−k =

(j − (k − 1))n−1

Γ(n)
, Dj = Dj,j . (5)

Proof. By replacing (1), i.e. b∆
−nYk =

∑b
j=k dj−kYj , into (2) we get:

Ek

b∑
j=k

dj−kYj =
b∑

j=k

A
(j)
k Yj + Vk, k ∈ bZ,

or, equivalently: ∑b
j=k(dj−kEk −A

(j)
k )Yj = Vk,

whereby setting Dk,j = dj−kEk −A
(j)
k , and Dj = Dj,j :

b∑
j=k

Dk,jYj = Vk,
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with

Yb =
1

Db
Vb. (6)

It is easy to observe that Yb−1 = 1
Db−1

Vb−1 − Db−1,b

Db−1Db
Vb. We will replace k

with k = b− 2, b− 3, ..., b−m, m ∈ bZ. For k = b− 2:

Yb−2 =
1

Db−2
Vb−2 −

Db−2,b−1

Db−2Db−1
Vb−1 +

∣∣∣∣ Db−2,b−1 Db−2,b

Db−1 Db−1,b

∣∣∣∣
Db−2Db−1Db

Vb.

Whereby using mathematical induction for k = b−m and m ∈ bZ, we arrive
at:

Yb−m =
1

Db−m
Vb−m−

Db−m,b−(m−1)

Db−mDb−(m−1)
Vb−(m−1)+. . . (−1)m

Db−m,b

Db−m . . . Db−1Db
Vb.

Where

Db−m,b =∣∣∣∣∣∣∣∣∣∣∣∣∣

Db−m,b−(m−1) Db−m,b−(m−2) Db−m,b−(m−3) · · · Db−m,b−1 Db−m,b

Db−(m−1) Db−(m−1),b−(m−2) Db−(m−1),b−(m−3) · · · Db−(m−1),b−1 Db−(m−1),b

0 Db−(m−2) Db−(m−2),b−(m−3) · · · Db−(m−2),b−1 Db−(m−2),b

0 0 Db−(m−3) · · · Db−(m−3),b−1 Db−(m−3),b
...

...
...

. . .
...

...
0 0 0 · · · Db−1 Db−1,b

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Equivalently:

Yb−m =

b∑
j=b−m

(−1)j−(b−m) Db−m,j

Πj
i=b−mDi

Vj .

Where Db−m,b−m = 1, and for j ̸= b−m:

Db−m,j =∣∣∣∣∣∣∣∣∣∣∣∣∣

Db−m,b−(m−1) Db−m,b−(m−2) Db−m,b−(m−3) · · · Db−m,j−1 Db−m,j

Db−(m−1) Db−(m−1),b−(m−2) Db−(m−1),b−(m−3) · · · Db−(m−1),j−1 Db−(m−1),j

0 Db−(m−2) Db−(m−2),b−(m−3) · · · Db−(m−2),j−1 Db−(m−2),j

0 0 Db−(m−3) · · · Db−(m−3),j−1 Db−(m−3),j
...

...
...

. . .
...

...
0 0 0 · · · Dj−1 Dj−1,j

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and hence:

Yk =

b∑
j=k

(−1)j−k Dk,j

Πj
i=kDi

Vj .
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Where Dk,j is defined by (4). Equivalently:

Yk = (−1)b−k Dk,b

Πb
i=kDi

Vb +
b−1∑
j=k

(−1)j−k Dk,j

Πj
i=kDi

Vj ,

or, equivalently, by using (6):

Yk = (−1)b−k Dk,b

Πb
i=kDi

YbDb +

b−1∑
j=k

(−1)j−k Dk,j

Πj
i=kDi

Vj ,

or, equivalently, and by setting Yb = C, C constant:

Yk = (−1)b−k Dk,b

Πb−1
i=kDi

C +

b−1∑
j=k

(−1)j−k Dk,j

Πj
i=kDi

Vj .

The proof is completed.

Remark 2.1. If the condition Yb is known, then the solution is unique
and is given by:

Yk = (−1)b−k Dk,b

Πb−1
i=kDi

Yb +
b−1∑
j=k

(−1)j−k Dk,j

Πj
i=kDi

Vj .

Remark 2.2. We consider (2) for r = m = 1, and Vk = 0. Then (2) is
homogeneous and:

Yk = (−1)b−k Dk,b

Πb−1
i=kDi

C, k ∈ bZ.

Remark 2.3. For (2) and r = m = 1 the general solution can be written
as:

Yk = Y
(h)
k + Y

(p)
k , k ∈ bZ,

with

Y
(h)
k = (−1)b−k Dk,b

Πb−1
i=kDi

C, Y
(p)
k =

b−1∑
j=k

(−1)j−k Dk,j

Πj
i=kDi

Vj .

Where Y
(h)
k is the solution of the homogeneous equation Ek b∆

−nYk =∑b
j=k A

(j)
k Yj , and Y

(p)
k a partial solution of (2).
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3 Numerical Examples

In this section we present illustrative examples that justify our theory.

Example 3.1.

We consider the following fractional equation:

5∆
−0.5Yk = AYk + k3, k ∈ 5Z,

with Yk : 5Z → C and A ∈ C with A ̸= 1. From (3) the solution is given by:

Yk = (−1)5−k Dk,5

Π4
i=kDi

C +
4∑

j=k

(−1)j−k Dk,j

Πj
i=kDi

j3, k ∈ 5Z.

This is a practical formula of solutions. For example at k = 3 we get:

Y3 =
D3,5

Π4
i=3Di

C +

4∑
j=3

(−1)j−3 D3,j

Πj
i=3Di

j3.

Where D3,j =
(j−2)−0.5

Γ(0.5) for j ̸= 3, and Dj =
(1)−0.5

Γ(0.5) −A = 1−A. In addition:

D3,5 =

∣∣∣∣ D3,4 D3,5

D4 D4,5

∣∣∣∣ =
∣∣∣∣∣∣

(2)−0.5

Γ(0.5)
(3)−0.5

Γ(0.5)

1−A (2)−0.5

Γ(0.5)

∣∣∣∣∣∣ =
∣∣∣∣ 0.5 3

8
1−A 0.5

∣∣∣∣ = 3A− 1

8
,

and

D3,4 = D3,4 =
(2)−0.5

Γ(0.5)
= 0.5, D3,3 = 1.

Note that (2)−0.5

Γ(0.5) = Γ(1.5)
Γ(2)Γ(0.5) = Γ(1.5)

2Γ(1.5) = 1
2 ,

(3)−0.5

Γ(0.5) = Γ(2.5)
Γ(3)Γ(0.5) = Γ(2.5)

2 4
3
Γ(2.5)

=

3
8 .
Thus:

Y3 =
3

8(1−A)2
C +

27

1−A
− 32

(1−A)2
.

In Figure 1 we see Y3 for C,A ∈ [−400, 400]. In Figure 2 we set the condition
Y5 = C = 200 and see Y3 as A changes.
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A

−400−200
0

200
400

C

−400
−200

0
200

400

Y
3

−100
−75
−50
−25

0
25
50
75
100

Figure 1: A vs C vs Y3, Example 3.1.

−100 −75 −50 −25 0 25 50 75 100
A

−10

0

10

20

30

40

50

Y
3

Figure 2: A versus Y10 for C = 200, Example 3.1.

Example 3.2.

We consider the following fractional equation:

k 10∆
−0.5Yk = (k − 2)Yk + (k − 7)3Yk+1,
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with Yk : 10Z → C. Its solution is given by (3):

Yk = (−1)10−k Dk,10

Π9
i=kDi

C, k ∈ 10Z.

At k = 7 we get:

Y7 = − D7,10

Π9
i=7Di

C

From (5) we have d0 = 1, d1 = 0.5, d2 = 3
8 , d3 = 5

16 , D7 = D8 = D9 = 2,
and:

D7,8 = d1E7 −A
(8)
7 = 7

2

D7,9 = d2E7 −A
(9)
7 = 21

8

D7,10 = d3E7 −A
(10)
7 = 35

16

D8,9 = d1E8 −A
(9)
8 = 3

D8,10 = d2E8 −A
(10)
8 = 3

D9,10 = d1E9 −A
(10)
9 = −7

2

In addition:

D7,10 =

∣∣∣∣∣∣
D7,8 D7,9 D7,10

D8 D8,9 D8,10

0 D9 D9,10

∣∣∣∣∣∣ =
∣∣∣∣∣∣

7
2

21
8

35
16

2 3 3
0 2 −7

2

∣∣∣∣∣∣ = −245

8
,

Thus

Y7 =
245

64
C.

Example 3.3.

We consider the following fractional equation:

12∆
−0.5Yk = Ak,

with Yk : 12Z → C and A ∈ R with A ̸= 1. From (3) the solution is given
by:

Yk = (−1)12−k Dk,12

Π11
i=kDi

C +
11∑
j=k

(−1)j−k Dk,j

Πj
i=kDi

Aj , k ∈ 12Z.

At k = 10 we get:

Y10 =
D10,12

Π11
i=10Di

C +
11∑

j=10

(−1)j−10 D10,j

Πj
i=10Di

Aj .
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0
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−400
−200
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400
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3

×1
0

2
8

−2
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2

Figure 3: A vs C vs Y10, Example 3.3.

−3 −2 −1 0 1 2 3
A

−1000

−750

−500

−250

0

250

500

750

1000

Y
10

Figure 4: A versus Y10 for C = 200, Example 3.3.

From (5) we have d0 = 1, d1 = 0.5, d2 = 3
8 , and D10,11 = D11,12 = 0.5,

D10,12 =
3
8 , D10 = D11 = 1. In addition:

D10,12 =

∣∣∣∣ D10,11 D10,12

D11 D11,12

∣∣∣∣ = ∣∣∣∣ 0.5 3
8

1 0.5

∣∣∣∣ = −1

8
.
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Thus:

Y10 = −1

8
C +A10 − 0.5A11.

In Figure 3 we see Y10 for C,A ∈ [−400, 400]. In Figure 4 we set the condition
Y12 = C = 200 and see Y10 as A changes.

4 Concluding remarks

We studied a class of non-autonomous linear fractional difference equations
which are constructed by using a fractional delta-forward discrete opera-
tor. We obtained a practical formula of solutions and provided numerical
examples to justify our theory.

As a further extension of this article we aim to use this fractional operator
to construct a new mathematical model for electricity markets which will
provide further insights in decision making. We also aim to extend the
results in [13] and construct a fractional forward operator for non-causal
systems of differential equations. With this regard, there is already some
research in progress.
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