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Abstract—The paper discusses the relationships between elec-
trical quantities, namely voltages and frequency, and affine
differential geometry ones, namely affine arc length and cur-
vature. Moreover, it establishes a link between frequency and
time derivatives of voltage, through the utilization of affine
differential geometry invariants. Based on this link, a new
instantaneous frequency estimation formula is proposed, which
is particularly suited for unbalanced systems. An application of
the proposed formula to single-phase systems is also provided.
Several numerical examples based on balanced, unbalanced, as
well as single-phase systems illustrate the findings of the paper.

Index Terms—Frequency estimation, affine differential geom-
etry, instantaneous frequency, unbalanced systems, curvature,
phase-locked loop (PLL).

I. INTRODUCTION

A. Motivation

On-line frequency estimation in electric power systems is
known to be a complex problem, especially in conditions
characterized by the presence of harmonics and imbalances
of amplitude or phase angle within the measured signals.
Aiming in particular to tackle the complexities posed by
unbalanced systems, this paper introduces a technique for on-
line frequency estimation, based on the principles of affine
differential geometry.

B. Literature Review

The problem of frequency estimation has been studied for
many years and several solution approaches have been reported
in the literature, e.g. see [1]–[10]. These approaches rely on a
variety of methods, including phase-locked loops (PLLs) [1],
[2], discrete Fourier transform [3], [4], Kalman filtering [5],
[6], least-squares [7], [8], adaptive notch filters [9], [10], etc.

For grid synchronization and control applications in partic-
ular, PLLs are a popular solution due their performance char-
acteristics and straightforward structure and practical imple-
mentation. Three-phase PLLs, for example, are widely utilized
to provide on-line phase and frequency estimations in grid-
connected power converters. With this regard, a conventional
PLL configuration in three-phase system applications is the
synchronous reference frame (SRF) PLL, which relies on
transforming input voltages to the dq synchronous reference
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frame and on regulating the frame’s angular position so that
either the d- or q-axis component is zero. The analogous of
SRF-PLL for single-phase systems is the quadrature signal
generation (QSG)-based PLL. Given a single-phase voltage
signal, a QSG-PLL defines a second dimension through a
fictitious quadrature signal, required to enable the application
of the Park transform (and thus the formulation of dq-axis
voltage components). The simplest approach to do that is
using a transport delay of T/4, where T is the period of the
fundamental frequency, e.g. see [11].

Other approaches are based on the inverse Park transform
[12], the Hilbert transform [13], and on second-order general-
ized integrators [14]. Although they provide robust frequency
estimations under balanced conditions, they are also known
to perform poorly for unbalanced systems, wherein they often
result in estimations with sinusoidal ripple errors [15]–[19].
Reducing the bandwidth helps mitigate this issue and refine
accuracy, but also compromises dynamic performance [20].
In this regard, careful tuning of PLL parameters is essential
to achieve good trade-offs between dynamic performance
and estimation accuracy. Efforts to improve the performance
of PLLs under unbalanced conditions include, among other
studies, [1], [17], [21], [22].

PLLs belong to the broad family of time-domain meth-
ods. In this paper we also focus on time-domain methods
but approach the problem of frequency estimation from an
unconventional perspective, that is based on the theory of
differential geometry. The starting assumption is that any
voltage vector can be perceived as the velocity of a point
on a space curve and, as such, be analyzed using differential
geometrical invariants. In our recent work on the topic, we
described the definition of these curves in a Euclidean space
and, by applying the Frenet–Serret formulas, we derived a
correspondence between curvature and instantaneous electrical
frequency [23]–[26]. Despite providing accurate frequency
estimations for balanced systems, the curvature obtained in
these works is time-varying in stationary unbalanced operating
conditions, a result that clearly does not align well with the
notion of angular frequency of stationary ac signals.

In this paper, we aim at solving this issue through an
alternative theory of differential geometry of curves, namely
through affine differential geometry. This theory has found
applications in various areas, such as control of mechanical
systems [27], computer vision [28], and motion identification
[29]. But there has been, to the best of our knowledge, no
application to power system analysis or frequency estimation.



2

C. Contributions

The specific contributions of the paper are as follows.
• A derivation of the expressions for the affine arc length

and affine curvature in terms of the voltage of an ac
system.

• An approximated yet accurate formula of the instanta-
neous angular frequency of a three-phase voltage as a
function of affine geometrical invariants.

• A demonstration of the effectiveness of the proposed
formula to serve as an instantaneous frequency estimation
technique for unbalanced three-phase systems, as well as
for single-phase systems.

The last two points are fully supported through a variety
of examples, which are provided in the case study section.
The examples show, in particular, that the proposed expres-
sion yields a more precise estimation of the instantaneous
frequency in unbalanced systems, compared to PLLs and the
Frenet-frame based method from [23].

D. Paper Organization

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of basic concepts from affine
geometry. These concepts are essential for the derivation of
the theoretical results of the paper presented in Section III.
Section IV tests the proposed approach through analytical
examples, as well as through a case study based on a fully-
fledged EMT model of the IEEE 39-bus system. Finally,
Section V draws relevant conclusions.

II. OUTLINES OF AFFINE DIFFERENTIAL GEOMETRY

This section provides a brief overview of affine quantities
that are relevant for the derivation of the instantaneous fre-
quency formula for ac systems presented in Section III. The
interested reader can find a comprehensive presentation of the
theory of affine differential geometry in [30].

Affine geometry can be defined as a Euclidean geometry
without measuring distances or angles. In other words, it
is a Euclidean geometry whose metric structure has been
removed [29]. For the affine plane, a pair of non-collinear
vectors determines a parallelogram whose area is given by the
determinant of the two-by-two matrix formed by these vectors.

Let us consider a smooth parametric curve in the plane:

x(t) = x1(t) e1 + x2(t) e2 , (1)

where x1(t), x2(t) : R 7→ R are smooth and e1 and e2 form
an orthogonal basis of the plane. Let us also assume that the
curve x does not have inflection points, that is, the magnitude
of the bracket operator

[ẋ(t), ẍ(t)] ̸= 0, ∀t , (2)

never vanishes. In (2), ẋ = dx/dt and ẍ = d2x/dt2, and the
bracket operator of two vectors, say [a, b], with a, b ∈ R2, is
defined as:

[a, b] = det

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ = a1b2 − b1a2 , (3)

The affine arc length or equi-affine arc length, indicated with
σ, is defined as:

σ(t) =

∫ t

t0

[ẋ(t), ẍ(t)]1/3dt , (4)

or, equivalently:

σ̇(t) =
dσ(t)

dt
= [ẋ(t), ẍ(t)]1/3 . (5)

A curve x is said to be parameterized with σ if, for all σ, it
satisfies the condition:

[x′(σ),x′′(σ)] = 1 , (6)

where x′ = dx/dσ is the affine tangent and x′′ = d2x/dσ2

is the affine normal. Applying the chain rule, x′ becomes:

x′(σ(t)) =
dx

dσ
=

dx

dt

dt

dσ
=

ẋ(t)

[ẋ(t), ẍ(t)]1/3
, (7)

and, differentiating (6) with respect to σ, one obtains:

[x′(σ),x′′′(σ)] = 0 . (8)

This result implies that x′ and x′′′ are linearly independent,
leading to the relationship:

x′′′(σ) = −κa(σ)x
′(σ) , (9)

where κa is the affine curvature or equi-affine curvature of
the curve x and is defined as:

κa(σ) = [x′′(σ),x′′′(σ)] . (10)

The affine curvature is represented by the area of the parallel-
ogram formed by the vectors x′′ and x′′′.

It is relevant for the following discussion on the estimation
of the instantaneous frequency to note that for non-singular
conic sections, κa is constant, as follows [30], [31]:

• for κa = 0, the curve is a parabola;
• for κa > 0, the curve is an ellipse;
• for κa < 0, the curve is an hyperbola.

In the next section, we consider the specific case of the ellipse,
that is κa > 0.

III. VOLTAGE IN THE AFFINE PLANE

We adopt the assumption made in [25], that is, the magnetic
flux φ is the position of a point on a space curve in generalized
coordinates and, from Faraday’s law, the speed of such a point
is the voltage, as follows:

φ(t) ≡ −x(t) ⇒ v(t) = −φ̇(t) ≡ ẋ(t) . (11)

Reference [23] shows that one can express electrical quan-
tities such as voltage and current in terms of the coordinates
of the Frenet frame and of geometric invariants such as arc
length, curvature and torsion [23]. In the same vein, but using
the definitions of coordinates, arc length and curvature given
by affine differential geometry, this section derives a new for-
mula for the instantaneous frequency of electrical quantities. In
the remainder of this section, we discuss exclusively voltages,
but the same procedure and results can be obtained using
currents. We consider two scenarios, namely unbalanced three-
phase systems; and single-phase systems.
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A. Three-Phase Unbalanced Voltages

Let’s assume that the phases abc of a three-phase voltage
v(t) constitute a set of orthogonal coordinates:

v(t) = va(t) ea + vb(t) eb + vc(t) ec . (12)

In order to employ the theory described in the previous
section, which applies to curves in two dimensions, we first
need to transform the voltage v(t) into the following shape:

v(t) = v1(t) e1 + v2(t) e2 . (13)

This is conveniently achieved by applying the Clarke transform
to (12) and taking the α and β components, as follows:[

vα(t)
vβ(t)

]
=

2

3

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]va(t)vb(t)
vc(t)

 . (14)

Thus, the components of the voltage in (13) are:

v1(t) = vα(t) , v2(t) = vβ(t) . (15)

1) Stationary Sinusoidal Voltages: We discuss in this sec-
tion a “base case” scenario for which the theory of affine
differential geometry allows obtaining the exact value of
the frequency of the voltage. This is the case of an unbal-
anced stationary sinusoidal (i.e., without harmonics) three-
phase voltage. As discussed above, since we apply the Clarke
transform, the components of the voltage vector in (13) are:

v1(t) = V1 cos θ(t) , v2(t) = V2 sin θ(t) , (16)

where V1 and V2 are constant with V1 ̸= V2, and:

θ(t) = ωot+ θo , (17)

where ωo is the fundamental synchronous reference frequency
of the system and θo is constant and depends on the chosen
phase angle reference of the system.

With the equivalence given in (11), the time derivative of
the affine arc length σ̇ in (5) can be written as:

σ̇ = [v(t), v̇(t)]1/3 = (ωoV1V2)
1/3 . (18)

Note that while v and v̇ depend on time, σ̇ does not. Then,
imposing that the components of the voltage are as those given
in (16), one obtains:

x′(t) =
v(t)

σ̇
, x′′(t) =

v̇(t)

σ̇2
, x′′′(t) =

v̈(t)

σ̇3
, (19)

where
v(t) = V1 cos θ(t) e1 + V2 sin θ(t) e2 ,

v̇(t) = −ωoV1 sin θ(t) e1 + ωoV2 cos θ(t) e2 ,

v̈(t) = −ω2
oV1 cos θ(t) e1 − ω2

oV2 sin θ(t) e2 .

(20)

Then, using (10), (18) and (19), the expression of the affine
curvature κa becomes:

κa =
1

σ̇5
[v̇(t), v̈(t)] =

ω3
oV1V2

σ̇5
, (21)

where κa is constant, which is as expected since (16) describes
an ellipse in the plane (v1, v2). Merging (18) and (21) we
obtain:

ωo =
√
κa σ̇ =

√
[v̇(t), v̈(t)]

[v(t), v̇(t)]
. (22)

Equation (22) indicates that, in order to calculate the angular
frequency of the voltage in unbalanced conditions, it suffices
to measure v and estimate its first and second time derivatives.

2) Transient Voltages: Section III-A1 considers an ideal
scenario for which the magnitude and the angular frequency
of a three-phase voltage are constant. This scenario leads
to a compact and elegant analytical result. However, such
scenario is hardly found in practice, wherein the presence of
noise, harmonics, and transient conditions prevents obtaining
a general explicit expression for the instantaneous frequency.

Under certain conditions, however, it is still possible to
utilize the results of Section III-A1 for a voltage of time-
varying angular frequency and/or magnitudes of v1 and v2.
Consider a time-varying voltage vector:

v(t) = V1(t) cosϑ(t) e1 + V2(t) sinϑ(t) e2 , (23)

where ϑ(t) = ωot + ϕ(t). The conditions so that (22) holds
for a voltage v(t) in the form of (23) are:

dh

dth
ϕ(t) ≪ ωh

o , h = 1, 2 , (24)

dh

dth
Vi(t)

⟨Vi⟩
≪ ωh

o , i, h = 1, 2 , (25)

where ⟨·⟩ denotes the average value. Condition (24) for h = 1
indicates that the variation of the instantaneous frequency
of the voltage is close to the synchronous reference angular
frequency of the system; for h = 2, (24) imposes a boundary
to the rate of change of frequency (RoCoF); and conditions
(25) impose that the variations of the radial frequency (see
definition in [25]) are small compared to the fundamental
frequency of the grid. All these assumptions are generally well
satisfied in power systems.

Conditions (24) and (25) are sufficient for (22) to hold at
least as a first order approximation. In fact, the first time
derivative of the voltage vector in (23) is:

v̇ = (V̇1 cosϑ− ϑ̇V1 sinϑ) e1 + (V̇2 sinϑ+ ϑ̇V2 cosϑ) e2 ,

and the second time derivative is:

v̈ =−
(
ϑ̈V1 sinϑ+ ϑ̇2V1 cosϑ+ ϑ̇V̇1 sinϑ− V̈1 cosϑ

)
e1

+
(
ϑ̈V2 cosϑ+ ϑ̇2V2 sinϑ+ ϑ̇V̇2 cosϑ− V̈2 sinϑ

)
e2 ,

where the dependency on time has been omitted for economy
of notation.

It is straightforward to show that by applying (24) and (25),
the voltage derivatives can be approximated with the second
and third equations of (20) and, hence, the instantaneous
frequency can be approximated using (22). In summary, (24)
and (25) lead to the following approximated expression of the
instantaneous frequency of a time-varying unbalanced voltage:

ϑ̇(t) ≈ ωa(t) =

√
[v̇(t), v̈(t)]

[v(t), v̇(t)]
(26)

The expression of ωa in (26) is the main result of this work.
We test the accuracy of (26) through a variety of examples
and a case study in Section IV.
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B. Single-Phase Voltages

In this section we consider a single-phase voltage with
instantaneous value v(t). To apply the theory described in
Section II, we first need to transform v(t) into the shape
of (13). To this aim, we construct the second dimension by
employing the voltage derivative. That is:

v1(t) = v(t) , v2(t) = v̇(t) . (27)

Since the time derivative of sinusoidal signals gives a 90◦

rotation, using the time derivative is equivalent to defining
a quadrature axis (see also discussion on quadrature signal
generation in Section I).

1) Stationary Sinusoidal Voltages: The result obtained in
the previous section can be easily extended to a stationary
sinusoidal single-phase voltage using (27). Let the voltage be:

v(t) = V cos θ(t) , (28)

where V is constant and θ is defined in (17). Then, from (27),
the components of the voltage vector are:

v1(t) = V cos θ(t) , v2(t) = −ωoV sin θ(t) . (29)

Substituting V1 = V and V2 = ωoV in (18) and (21), one
obtains:

σ̇ = (ωoV )2/3 , κa =
ω4
oV

2

σ̇5
. (30)

Apart from the fact that calculation of v̈(t) in this case
requires the additional step of computing the third derivative
of v(t), equation (22) holds and allows estimating the angular
frequency also for a single-phase voltage.

2) Transient Voltages: Consider a time-varying single-
phase voltage:

v(t) = V (t) cosϑ(t) , (31)

where ϑ(t) = ωot+ ϕ(t). The voltage vector is defined as:

v(t) = V (t) cosϑ(t) e1

+ [V̇ (t) cosϑ(t)− V (t)ϑ̇(t) sinϑ(t)] e2 .
(32)

If one assumes:

dh

dth
ϕ(t) ≪ ωh

o , h = 1, 2, 3 , (33)

dh

dth
V (t)

⟨Vi⟩
≪ ωh

o , h = 1, 2, 3 , (34)

then (26) is also a good approximation of the instantaneous
frequency of the time-varying single-phase voltage in (31).

IV. CASE STUDIES

The examples discussed in this section are aimed at il-
lustrating the accuracy of (26) for both unbalanced three-
and single-phase voltages in various non-sinusoidal and non-
stationary conditions. The proposed approach is compared
with a conventional technique, namely the SRF-PLL, as well
as with the Frenet frame-based method proposed in [23].
The first section of the study focuses on three-phase systems
under various conditions. Both balanced and unbalanced cases
are discussed. The IEEE 39-bus system is also utilized to

illustrate the accuracy of the proposed method under transient
unbalanced conditions. Finally, an example discussing the
frequency estimation for a non-stationary single-phase voltage
is presented.

In all figures shown in this section, ωa represents the esti-
mated angular frequency derived from the proposed approach,
while ωκ represents the estimated angular frequency obtained
using the Frenet frame-based method from [23], as follows:

ωκ(t) =
[v(t), v̇(t)]

|v(t)|2 . (35)

The three-phase voltage trajectories are given in per unit (pu)
with respect to a base of 12 kV, and ωa and ωκ are in pu
with respect to ωo = 100π rad/s. Finally, note that in all
examples, (26) is calculated using a sampling of the voltage
signal, transforming it through the Clarke transform and then
evaluating numerically the time derivatives of the α and β
components.

A. Three-Phase Voltage

Let us consider the three-phase voltage vector given in (12),
which we repeat here for convenience:

v(t) = va(t) ea + vb(t) eb + vc(t) ec , (36)

with components:

va(t) = Va sin(ωot+ ϕa(t)) ,

vb(t) = Vb sin(ωot+ ϕb(t)− ζb) ,

vc(t) = Vc sin(ωot+ ϕc(t) + ζc) .

(37)

Recall that the proposed approach operates in two dimensions,
and that we use Clarke transform to convert (12) to the two-
dimensional (α, β) plane.

1) Balanced Three-Phase Voltage: We discuss two exam-
ples: the first example involves a stationary condition, whereas
the second example considers a signal with time-varying
voltage magnitude. In both examples, the angular frequency
is constant and equal to ωo. The parameters used are:

• E1: Vi = 12 kV, with ωo = 100π rad/s, ϕi = 0 and
ζb = ζc =

2π
3 rad.

• E2: Vi = 12+3 sin(πt) kV, with ωo = 100π rad/s, ϕi = 0
and ζb = ζc =

2π
3 rad.

Figure 1 shows the phase voltages, the geometric frequencies
ωa and ωκ, as well as the instantaneous frequency ωPLL

obtained with a conventional SRF-PLL for E1 and E2. As
expected, since the voltage is balanced and the curve in the
plane (α, β) is a circle, there is a perfect match between the
estimations obtained with the two differential geometry-based
methods. Note, however, that the two approaches return the
right results for two different reasons: the Frenet frame-based
formula returns a constant ωκ because the circle has a constant
curvature; whereas the proposed affine differential geometry
approach returns a constant ωa because the circle is a special
case of an ellipse. We note that the conventional PLL also
works well in this balanced-voltage case.
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Fig. 1: Balanced three-phase voltages and estimated frequency.

2) Unbalanced Three-Phase Voltage: Three examples of
unbalanced voltages with constant angular frequency ωo are
considered in this section. The first example involves unequal
constant voltage magnitudes; the second example examines
a system with unequal and time-varying voltage magnitudes;
and the third example examines a system with unequal phase
displacements. The following three cases are considered:

• E3: Va = Vc = 12 kV, Vb = 8 kV, with ωo = 100π rad/s,
ϕi = 0 and ζb = ζc =

2π
3 rad.

• E4: Va = Vc = 12+3 sin(πt) kV, Vb = 8+2 sin(2πt) kV,
with ωo = 100π rad/s, ϕi = 0 and ζb = ζc =

2π
3 rad.

• E5: Va = Vb = Vc = 12 kV, with ωo = 100π rad/s,
ϕi = 0 and ζb = −2π

3 , ζc =
1.5π
3 rad.

Figure 2 shows the voltage components and estimated
geometric and PLL frequencies for examples E3-E5. In all
these examples, the curves in the (α, β) plane are ellipses.
This means that the curvature obtained using the Frenet frame
is time-varying and periodic, thus leading to a time-varying
and periodic ωκ. Moreover, the conventional PLL also outputs
a time-varying frequency in the form of a significant ripple
around the frequency ωo. On the other hand, the proposed
affine geometry formula returns a constant ωa equal to ωo (in
pu), which is consistent with the expected in this case result.

B. Three-Phase Voltage with Time-Varying Frequency

Two examples of three-phase system with varying angular
frequency are considered in this section. The first example con-
siders a voltage with angular frequency that varies periodically
around its average value. This example is used to resemble the
transient behavior of the voltage following a contingency in a
power system, where voltage phase angle oscillations arising
due to electro-mechanical swings of synchronous machines
are poorly damped and thus sustain for a relatively long
time. The second example is an extreme and uncommon
situation in power systems, where the components of the
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Fig. 2: Unbalanced three-phase voltages and estimated frequencies.

three-phase voltage are time-varying and have unequal angular
frequencies. The following parameters are used:

• E6: Vi = 12 kV, with ωo = 100π rad/s and ζb = ζc =
2π
3

rad and ϕi(t) = π sin(0.4πt) rad.
• E7: Vi = 12 kV, with ωo = 100π rad/s and ζb = ζrmc =

2π
3 rad and ϕa(t) = ϕb(t) = π sin(0.4πt), ϕc(t) =
1.1π sin(0.4πt) rad.

Figure 3a shows the estimated frequency with the proposed
formula, the frequency estimated with the PLL, and the
geometrical frequency ωκ, for E6. Despite the approximations
imposed by assuming (24) and (25), we note that (26) is able
to precisely track the exact instantaneous frequency. In this
example, also ωκ and ωPLL track well IF. On the other hand,
for E7, while ωa and ωPLL still track well the exact frequency,
ωκ shows significant fluctuations. This behavior is illustrated
in Fig. 3b.

C. Stationary Three-Phase Voltage with Harmonics

As a last example on three-phase voltage, we discuss the
effect of harmonics on the estimation of the frequency based
on (26). A fundamental condition for the affine differential
geometry approach to work properly is that (2) is satisfied at
all times. Harmonics, however, introduce inflection points, that
is, points for which [ẋ, ẍ] ≤ 0. Moreover, since the term [ẋ, ẍ]
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Fig. 3: Estimated angular frequency.

appears in the denominator of (26), this leads to numerical is-
sues. Figure 4b shows the performance of (26) as well as of the
PLL and Frenet-based estimated frequencies for a stationary
balanced three-phase voltage. For the fundamental frequency,
Vi = 12 kV, with ωo = 100π rad/s and ζb = ζc = 2π

3 rad
and ϕi(t) = 0 are assumed. Then, 7-th and 11-th harmonics
are added with magnitudes 0.02Vi and 0.01Vi, respectively. To
overcome numerical issues, we have set ωa = 0 if [ẋ, ẍ] ≤ 0.
As expected, in this scenario, ωa shows a poor performance.
The best estimation is obtained with the PLL.
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Fig. 4: E8: Three-phase voltage with harmonics and estimated angular
frequency.

D. IEEE 39-Bus System in Unbalanced Conditions
In this section, the accuracy of (26) is tested using a fully-

fledged EMT model of the IEEE 39-bus system. The system
setup is the same as the unbalanced scenario described in [24],
where it was utilized to show the performance of the Frenet
frame-based frequency estimation. In particular, the power
consumption of all 19 loads of the system is unbalanced, with
imbalances ranging from 5 to 10% on one of the phases. A
three-phase fault is simulated at bus 4. The fault occurs at
t = 0.2 s and is cleared at t = 0.3 s. The behavior of the
three-phase voltage at bus 26 following the contingency is
illustrated in Fig. 5.

Figure 6 shows the results of the frequency estimation for
the unbalanced voltage at bus 26. The ωa is more accurate
than ωPLL. Note that (26) has been evaluated using numerical
differentiation of the time series of the three-phase voltage
components that have a constant time sampling rate of 10
ms. The numerical derivatives are filtered using a second
order Butterworth digital filter and a IIR filter. Note that,
in this scenario, ωκ shows a bigger ripple than ωPLL and,
thus ωκ is omitted in Fig. 6 for clarity. The interested reader
can find a comprehensive comparison between PLL frequency
estimations and ωκ in [24].
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Fig. 5: Voltage at bus 26 of IEEE 39-bus system following a three-
phase fault at bus 4.
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Fig. 6: Estimated frequency for IEEE 39-bus system for unbalanced
time-varying voltage.

E. Single-Phase Voltage

This last example illustrates the performance of the pro-
posed formula (26) when applied to a single-phase voltage
with time-varying angular frequency ωt + ϕ(t) and constant
amplitude V :

v(t) = V sin(ωot+ ϕ(t)) . (38)

The parameters considered for this example are: V = 12 kV,
ωo = 100π rad/s and ϕ(t) = 0.05ωoe

−t(1− cos(πt)) rad.
As discussed in Section III-B, we construct the second

dimension by using the derivative of the original signal, as
in (27). Figure 7 illustrates the accuracy of (26) in matching
the actual analytical value of the instantaneous frequency, that
is, IF = ωo + ϕ̇.
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Fig. 7: Estimated frequency, analytical instantaneous frequency (IF)
and frequency estimated using a phase shift for the single-phase
voltage.
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Figure 7 also shows the frequency estimated using a con-
ventional PLL where the quadrature signal is obtained using
v(t− τ), where the transport delay is τ = 0.25T = 0.5π/ωo.
Despite the approximations resulting from the assumptions
(33) and (34), also in this case the proposed approach shows
very good accuracy, whereas the PLL shows some ripples due
to the fact that the quadrature signal is not exact because the
frequency is time-varying.

V. CONCLUSIONS

This paper presents an approach based on affine differential
geometry to estimate the angular frequency of unbalanced
three-phase voltages as well as of single-phase voltages. The
main contribution of this work is the approximated formula
(26), that estimates the angular frequency of the voltage
through measurements of the voltage, and calculation of the
first and second derivatives of the voltage itself.

Approximations based on the nature of typical power system
transients are assumed in order to achieve a compact explicit
expression of the proposed angular frequency estimation for-
mula. Then, a variety of examples are provided to demonstrate
the adequateness of such approximations and the performance
of the proposed formula. When compared to PLLs as well as
to the Frenet frame-based estimation from [23], the proposed
formula proves to be accurate and robust in balanced and
unbalanced conditions, as well as for voltages of time-varying
magnitude and frequency.

Future work will focus on testing the proposed formula with
real-world measurements and on extending its formulation to
process signals with harmonic contents as well as with multi-
phase systems with a number of phases higher than three.
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