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Abstract— The paper focuses on the estimation of the rotor
speeds of synchronous machines by means of phasor measure-
ment units. This estimation is aimed at on-line monitoring of
electro-mechanical transients and transient stability analysis. The
proposed technique is based on the concept of frequency divider
formula recently published by the first two authors in these
Transactions. The dynamic state estimation is formally stated as
a convex optimization problem and a thorough discussion of the
sensitivity analysis of the optimal solution is provided. The case
study considers a dynamic 1,479-bus model of the all-island Irish
system and discusses the effect of bad data, noise and latency on
the proposed estimation technique.

Index Terms— Dynamic state estimation (DSE), optimization,
phasor measurement unit (PMU), sensitivity analysis, synchronous
machine, transient stability analysis.

I. INTRODUCTION

A. Motivations

Dynamic State Estimation (DSE) is a fundamental tool of

energy management systems and control centers of trans-

mission system operators. DSE can also be useful for short-

term transient stability predictions and has become even more

important and challenging with the recent development of

the smart grid. This, in fact, typically requires faster and

system-wider controls than traditional power systems. With the

introduction of Phasor Measurement Units (PMUs), which have

a high sampling rate – up to 120 measurements per second

– and accurate synchronization, a fast and accurate DSE is

now possible. In this vein, the paper proposes an application

of PMUs for the on-line estimation of the rotor speeds of

synchronous machines.

B. Literature Review

There is a vast literature on DSE. Traditional methods are

based on a set of nonlinear Differential-Algebraic Equations

(DAEs) that models the machines and the controllers of the

system [1]. The nonlinearity of the model is a major challenge,

as the solution of the state estimation problem is iterative

and requires the calculation and factorization of the Jacobian

matrix of the DAEs [2]. Another important aspect of state
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estimation and, hence, also of DSE, is how to process bad data.

With this aim, several techniques mostly based on the Kalman

filter have been proposed [3], [4]. Other filtering techniques

include, for example, particle filter [5] and mean squared

estimator [6]. Finally, decentralization of the state estimation

is also important, especially for large systems [7].

With the advent of PMU technology, the state estimation has

gained the ability to acquire the measurements of bus voltage

and current phase angles. This has led to a variety of new state-

estimation models, mostly coupled with the Extended Kalman

Filter (EKF) [8]–[11]. In [12], frequency measurements from

PMUs are also utilized.

The models discussed so far are based on nonlinear DAEs.

References [13] and [14] propose linear state estimation

models. In all these works, the models of the synchronous

machines and their controllers as well as of dynamic loads

has to be defined a priori. The same requirement affects the

approaches discussed in [15]–[17], which are aimed at estimat-

ing the states of the machines using local PMUs measurements.

The approach proposed in this paper is conceptually differ-

ent from the current state of the art. We propose, in fact, a

linear and model-independent rotor-speed estimation problem

based on the concept of the Frequency Divider Formula

(FDF) [18]–[20]. Model-independent means that generator and

load dynamic models and parameters need not to be known.

The FDF only requires the bus frequencies measured by PMUs,

not voltage and current phasors. The proposed technique is a

novel application of the FDF, which, in recent works, has been

utilized to estimate bus frequencies [21], and the frequency of

the Center of Inertia (COI) [22].

In [18], the FDF was utilized in simulations to capture local

bus frequencies based on the exact values of the machine

rotor speeds. In a simulation tool, the vector of rotor speeds

is accessible at any time and thus the FDF is a consistent

and reliable tool. Transmission system operators, however, can

install PMUs at network buses, and have thus access to the bus

frequencies estimated by such PMUs, while the rotor speeds

of the synchronous machines are not accessible to them. This

paper considers a practical application of the FDF based on

available real-world measurements.

C. Contributions

Specific contributions of the paper are the following:

• A linear, model-agnostic optimization problem that esti-

mates the rotor speeds of synchronous machines based

on the FDF and PMU frequency measurements.

• A comparison of the proposed optimization problem and

a conventional Weighted Least Square (WLS) approach.



• An analytical expression that defines the minimum set of

PMU measurements required to estimate rotor speeds.

• A discussion on the tradeoff between centralized and

decentralized versions of the proposed DSE.

• A sensitivity analysis of the impact of bad data, noise and

latency on the solution of the proposed DSE.

The sensitivity analysis is inspired on the seminal works

on mathematical programming [23]–[25], which have been

applied to the analysis of power system operation [26], [27]

as well as to the classical state estimation problem [28].

D. Paper Organization

The remainder of the paper is organized as follows. Section

II outlines the formulation of the FDF while Section III de-

scribes the formulation of the proposed rotor-speed estimation

problem and the sensitivity analysis of the optimal solution.

The formulation of the standard WLS problem is also given

in Section III. Section IV illustrates the properties of the

proposed technique by means of the WSCC 9-bus, 3-machine

test system. The case study is provided in Section V and is

based on a 1,479-bus dynamic model of the all-island Irish

transmission network and considers different scenarios with

bad data, noise and latency. Finally, Section VI duly draws

conclusions and outlines future work directions.

II. FREQUENCY DIVIDER FORMULA

In [18], the first two authors have proposed an analytical

approach to calculate the bus frequencies based on the FDF.

The mathematical background of the FDF is the augmented

admittance matrix of the system and the assumption that the

frequency along the impedances of transmission lines varies

as in a continuum matter where synchronous machine rotor

speeds define boundary conditions. A detailed discussion on

the assumptions and hypotheses behind the definition of the

FDF are beyond the scope of this paper. Full details are

provided in [18], to which we refer the interested reader. In

the remainder of this section, we briefly outline the expression

and relevant properties of the FDF.

Let consider a network with n buses and m synchronous

machines. The starting point is the augmented admittance

matrix, which is discussed in many books, e.g., [29]. Apart

from the transmission system connections, this matrix also

includes the m nodes of the electromotive forces behind the

internal reactances of the synchronous machines. The resulting

matrix has the following shape:

Ȳ =

[
Ȳ

GG
Ȳ

GB

Ȳ
BG

Ȳ
BB

]
, (1)

where the subscripts G and B stand for generator buses, and

for load and transition buses, respectively, and Ȳ
GG
∈ Cm×m,

Ȳ
BB
∈ Cn×n; Ȳ

GB
∈ Cm×n; and Ȳ

BG
∈ Cn×m. The submatrix

Ȳ
BB

is:

Ȳ
BB
= Ȳbus + Ȳ

G
, (2)

where Ȳbus is the well-known network admittance matrix, and

Ȳ
G

is a diagonal matrix whose i-th diagonal element is 0 if no

machine is connected to bus i, and the inverse of a machine

internal transient reactance if such a machine is connected at

bus i. As discussed in [30], Ȳ
BB

is full rank.

Based on (1), the FDF is defined as:

0n,1 = B
BB

(ω
B
− ω01n,1) + B

BG
(ω

G
− ω01m,1) , (3)

where ω
G
∈ Rm, is the vector of machine rotor speeds; ω

B
∈

R
n, are the frequencies at the system buses; ω0 is the nominal

system frequency; and

B
BB
= Im{Ȳ

BB
} , B

BG
= Im{Ȳ

BG
} ,

where B
BB

has same rank and symmetry properties as Ȳ
BB

.

To simplify the notation, we rewrite (3) in terms of fre-

quency deviations with respect to the nominal frequency ω0,

as follows:

0n,1 = B
BB
∆ω

B
+ B

BG
∆ω

G
, (4)

where ∆ω
B
= ω

B
− ω01n,1 and ∆ω

G
= ω

G
− ω01m,1. In [18],

bus frequency deviations are expressed explicitly as

∆ω
B
= −B

−1
BB

B
BG
∆ω

G
= D∆ω

G
. (5)

In the DSE optimization problem presented in the next section,

we utilize the acasual expression (4) as matrices B
BB

and B
BG

are very sparse whereas matrix D = −B
−1
BB

B
BG

is dense and its

calculation can be cumbersome for large systems.

Equation (4) expresses the dependency of bus frequencies

on the rotor speeds, which are weighted based on their elec-

trical proximity, not their inertia. However, since the internal

admittance of each machine is, in per unit, proportional to the

capacity of the machine itself, bigger machines weight more

than smaller ones in the system.

The frequency estimation method discussed in the remain-

der of the paper is intended to be a tool for TSOs, which

generally have full knowledge of the transmission network, but

might not have the detailed dynamic models and measurements

of internal quantities of the power plants and the loads

connected to the grid. The assumption, implied in the FDF,

of knowing generator internal impedances is acceptable as the

values of such impedances can be easily obtained from the

literature and manufacturer data sheets once the technology

and the capacity of the power plant is known.

III. ROTOR-SPEED ESTIMATION

This section is organized as follows. The proposed rotor-

speed estimation technique based on a convex quadratic pro-

gramming problem and the FDF is presented in Subsection

III-A. Subsection III-B discusses a standard WLS problem

that serves to discuss measurement redundancy and define

the minimum set of measurements required to estimate rotor

speed based on the FDF. Finally, Subsection III-C presents

a systematic approach to calculate all sensitivities of the

estimation problem given in Subsection III-A.

A. Proposed Optimization Problem

The proposed frequency dynamic state estimation is formu-

lated as the following optimization problem:

min.
(e

B
, ∆ω

G
)

J =
1

2
e
T
B

We
B

(6)

s.t. 0 = B
BG
∆ω

G
+ B

BB
(∆ω̃

B
+ e

B
) : µ

B
, (7)
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where ∆ω̃
B

is the input vector of measured bus frequency

deviations as provided by the PMUs; e
B

is the vector of

measurement errors; ∆ω
G

is the vector of estimated rotor speed

deviations of the synchronous machines; µ
B

are the dual vari-

ables associated with the equality constraints; and the weight

matrix W is defined as W = diag{w1,w2, . . . ,wn−1,wn}, where

wi = 1/σ2
i

and σ2
i

is the variance of the i-th measurement error

e
Bi

. Equation (6) is the conventional objective function that is

generally used in state estimation. While other expressions can

be utilized, (6) allows properly illustrating the effectiveness of

the proposed technique as it resembles the conventional state

estimation problem that is commonly solved in practice.

Matrix B
BG

is maximum rank, i.e., m, and B
BB

is full rank,

i.e., n, hence the gradient vectors of the constraints (7) at

the solution are linearly independent. The problem (6)-(7)

has thus the required regularity conditions. Moreover, since

W is positive definite, problem (6)-(7) is a convex quadratic

programming problem, whose solution is unique [31].

The Lagrangian function L(ω
G
, e

B
, µ

B
) associated with the

optimization problem (6)-(7) is:

L = J (e
B
) − µ

T
B
·
[

B
BG
∆ω

G
+ B

BB
(∆ω̃

B
+ e

B
)
]

. (8)

Assuming an input vector of measurements ω̃
B

and the optimal

solution (ω∗
G
, e∗

B
, µ∗

B
) of problem of (6)-(7), the first order

optimality conditions are:

0m,1 =
∂L

∂∆ω
G

�����∗ = −B
T
BG
µ
∗
B
, (9)

0n,1 =
∂L

∂e
B

�����∗ =We
∗
B
− B

T
BB
µ
∗
B
, (10)

0n,1 =
∂L

∂µ
B

�����∗ = −B
BG
∆ω∗

G
− B

BB
(∆ω̃

B
+ e
∗
B
) . (11)

As it is thoroughly discussed in Subsection III-C and then

in Sections IV and V, (9)-(11) allow computing a wide set

of sensitivities and their solution is robust with respect to

noise and bad data. These features are not provided by the

weighted least square problem discussed in Subsection III-

B below. Equations (9)-(11) can also be readily included in

a time-domain integration algorithm and solved together with

the set of DAEs that describe the dynamics of the system. This

is the implementation utilized in the simulations carried out

in the paper.

The low computational burden of solving the linear set of

equations (9)-(11) allows its implementation in practical real-

world DSEs, as illustrated in Fig. 1. As the power system

evolves in time, PMU devices measure the voltages at the

network buses, v̄
B

(t), and return the estimated values for

the bus frequencies ω̃
B

(t). These are then collected by the

state estimator, which estimates the synchronous machine rotor

speeds ω
∗
G

(t) through the solution of (9)-(11). Finally, the

estimated ω
∗
G

(t) can be used by the system operator to take

control actions u(t) on the system.

The added value of (9)-(11) and, in general, of rotor speed

estimation is the ability to monitor on-line the transient behav-

ior of synchronous machines. This is a valuable information

for TSOs and can be utilized, for example, for on-line transient

stability corrective control; wide area monitoring and control;

and model validation in off-line stability analysis.

Power

System

System

Operator

Rotor Speed

Estimation

PMU

Devices

v̄
B
(t)

ω̃
B
(t)

u(t)

ω
∗
G
(t)

Fig. 1: Scheme of the proposed on-line frequency state estimator.

B. Weighted Least Square Problem

For the sake of comparison and the relevant topological

properties that can be deduced from it, this subsection dis-

cusses the conventional linear measurement problem:

∆ω̃
B
+ e

B
= D∆ω

G
, (12)

whose optimal solution is:

∆ω∗
G
= (DT

WD)−1
D
T

W∆ω̃
B
. (13)

Assuming that the diagonal elements of W are equal, i.e., all

PMUs are based on the same technology, the solution of (13)

reduces to that of a linear least square problem:

∆ω∗
G
= (DT

D)−1
D
T∆ω̃

B
= D

+∆ω̃
B
, (14)

where D
+ is the Moore-Penrose pseudo-inverse, or left inverse,

of D, which is unique as D has rank m.1 From (5), one has:

D
+
= −(B−1

BB
B

BG
)+ . (15)

Then, utilizing the matrix equivalence (AB)+ = B
+
A
−1, with

A square and invertible and B rectangular, we can rewrite the

right-hand side of (15):

D
+
= −B

+

BG
(B−1

BB
)−1
= −B

+

BG
B

BB
. (16)

From the discussion of (5), we already know that D is dense as

it is obtained from the inverse of B
BB

. The pseudo-inverse of

D, however, is extremely sparse. This can be readily deduced

from the observation of the structure of B
BG

. The elements of

B
BG

, say bi j , are non-zero only in the rows corresponding to

the buses at which each synchronous machine is connected.

Then, it is straightforward to show that the pseudo-inverse of

B
BG

is:

B
+

BG
= (BT

BG
B

BG
)−1

B
T
BG

⇒ b+ji =
1

b2
i j

· bi j =
1

bi j
, ∀ bi j , 0 .

(17)

1The interested reader can find in [22] an application of (14) to compute
the frequency of the COI based on PMU measurements and the FDF.
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For example, let assume that

B
BG
=


0 b12

0 0
b31 0

 ,
which represents a 3-bus grid with two machines connected

to buses 1 and 3, respectively. Then, from (17), we obtain:

B
+

BG
=
*,
[

0 0 b31

b12 0 0

] 
0 b12

0 0

b31 0


+-
−1 [

0 0 b31

b12 0 0

]

=

[
1/b2

31
0

0 1/b2
12

] [
0 0 b31

b12 0 0

]
=

[
0 0 1/b31

1/b12 0 0

]
.

Hence, B
+

BG
is as sparse as B

BG
and is effectively the

element-wise inverse of B
T
BG

. Non-zero elements of B
+

BG
are

in the columns corresponding to the buses at which each

synchronous machine is connected. The product B
+

BG
B

BB
and,

hence, D
+, have also the property that the number of non-zero

elements of each row are equal to the first order connectiv-

ity degree of each synchronous machine terminal bus. This

property has several relevant consequences, as follows.

• The non-zero elements of D
+ indicate the minimum

number of PMUs that have to be installed and at which

buses.

• Each rotor speed can be estimated independently from the

others, i.e., each row of D
+ allows estimating one rotor

speed.

• The minimum set of measurements required to estimate

a rotor speed consists of only the measurements at the

machine bus and its neighboring buses (see Fig. 2.b).

• A corollary of the above is that no less than two bus

frequency measurements are needed to estimate the rotor

speed of a machine connected to the system (see Fig. 2.a).

• It is also possible to actually need less measurements than

twice the number of machines (see Fig. 2.c).

The latter three properties are relevant for large networks,

as only a few local measurements are needed per machine.

Moreover, given that the vast majority of power plants of

real-world networks is connected in antenna to the rest of the

system, the minimum number of bus frequency measurements

required to estimate all rotor speeds is about twice the number

of power plants.

The non-zero pattern of D
+ shows that each rotor speed

estimation in (14) is fully decoupled. It is thus possible to

reformulate (6)-(7) as a set of m decoupled (decentralized)

problems, each of which returns a single rotor speed. The

main issue of (14), however, is that it does not provide any

redundancy. D
+ indicates the minimum number of required

bus frequency measurements. All other measurements are

redundant and improve the robustness of the solution of (6)-

(7) but increase the “centralization” and the computational

burden of the estimation problem. Also, remote measurements

can be affected by delays. In practical applications, thus, one

should find a trade-off between the simplicity of (14) and the

robustness of (6)-(7). This point is duly discussed in Section

V.

Grid

Grid Grid

∆ω
Ga

∆ω
Ga

∆ω
Gb

∆ω
Gb

1

1
1

2

2
2

3

3
(a)

(b)

(c)

∆ω
∗

Ga
= d

+

a1∆ω̃
B1

+ d
+

a2∆ω̃
B2

∆ω
∗

Gb
= d

+

b1
∆ω̃

B1
+ d

+

b2
∆ω̃

B2
+ d

+

b3
∆ω̃

B3

∆ω
∗

Ga
= d

+

a1∆ω̃
B1

+ d
+

a3∆ω̃
B3

∆ω
∗

Gb
= d

+

b2
∆ω̃

B2
+ d

+

b3
∆ω̃

B3

Fig. 2: Examples of synchronous machines connectivity: (a) antenna;
(b) single machine connected to multiple buses; (c) multiple machines
connected a the same bus. d+

i j
are the non-zero elements of D

+.

C. Sensitivities

A relevant byproduct of solving an optimization problem

is the ability to calculate with no extra computational effort

the sensitivities of everything with respect to everything. This

property relies on the dual variables and has already had a

variety of applications in mathematical programming [23]–

[25] as well as in the analysis of power system operation [26],

[27] and state estimation [28].

To obtain the sensitivities of the convex problem (6)-(7),

we proceed as in [28]. In this case, however, the procedure is

quite straightforward as the starting optimization problem is

convex quadratic. First, let differentiate the objective function

(6) and the optimality conditions (9)-(11) with respect to

the optimal values of the objective function and the solution

(primal and dual), and the input bus frequency vector, namely

(J∗,ω∗
G
, e∗

B
, µ∗

B
, ω̃

B
):

0 = −dJ + e
∗
B

T
Wde

B
, (18)

0m,1 = −B
T
BG

dµ
B
, (19)

0n,1 =Wde
B
− B

T
BB

dµ
B
, (20)

0n,1 = −B
BG

dω
G
− B

BB
de

B
− B

BB
dω̃

B
, (21)

or, equivalently:

0p,1 =



−1 01,m e
∗
B

T
W 01,n 01,n

0m,1 0m,m 0m,n −B
T
BG

0m,n

0n,1 0n,m W −B
T
BB

0n,n

0n,1 −B
BG
−B

BB
0n,n −B

BB





dJ

dω
G

de
B

dµ
B

dω̃
B


, (22)

where p = m + 2n + 1. The sensitivities with respect to the

vector of measured bus frequencies ω
B

can be written as

U

[
dJ dω

G
de

B
dµ

B

]T
= S dω̃

B
, (23)

where

U =



−1 01,m e
∗
B

T
W 01,n

0m,1 0m,m 0m,n −B
T
BG

0n,1 0n,m W −B
T
BB

0n,1 −B
BG
−B

BB
0n,n


, (24)
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and

S = −
[
01,n 0m,n 0n,n −B

BB

]T
. (25)

Then one has:[
dJ dω

G
de

B
dµ

B

]T
= U

−1
S dω̃

B
, (26)

from which one can obtain the sensitivities of all primal and

dual variables with respect to ω
B
:[

∂J
∂ω̃

B

∂ω
G

∂ω̃
B

∂e
B

∂ω̃
B

∂µ
B

∂ω̃
B

]T
= U

−1
S . (27)

For example, from (27), one can obtain:

∂ω
G

∂ω̃
B

= −[BT
BG

HB
BG

]−1
B
T
BG

HB
BB
, (28)

where H = (B
BB

W
−1

B
T
BB

)−1. Equation (28) is consistent with

(13). This can be shown by exploiting the following matrix

properties:

• (ABC)−1
= C

−1
B
−1

A
−1;

• (AT )−1
= (A−1)T ;

• (A−1)−1
= A; and

• (AB)T = B
T

A
T

Then matrix H can be rewritten as:

H = (B
BB

W
−1

B
T
BB

)−1
= (BT

BB
)−1(W−1)−1

B
−1
BB

(29)

= (B−1
BB

)TWB
−1
BB
,

and, substituting the obtained expression into (28), we obtain:

∂ω
G

∂ω̃
B

= −[BT

BG
(B−1

BB
)T WB

−1
BB

B
BG

]−1
B
T

BG
(B−1

BB
)T WB

−1
BB

B
BB

(30)

= −[(B−1
BB

B
BG

)T WB
−1
BB

B
BG

]−1 (B−1
BB

B
BG

)T W,

which, recalling the definition of D in (5), namely D =

−B
−1
BB

B
BG

, is the same expression that can be obtained by

differentiating (13) with respect to ω̃
B

and ω
∗
G
.

Another relevant sensitivity vector that can be obtained from

(27) is ∂J
∂ω̃

B

. Since the manipulation of (27) is rather involved,

we determine such sensitivities as follows. First, observe that,

from (18):

∂J

∂e
B

= e
∗
B

T
W . (31)

Then, from (10), one obtains:

e
∗
B

T
W = µ

∗
B

T
B

BB
, (32)

where we have used the well-known property (AT
B)T = B

T
A.

Then, multiplying (21) by µ
∗
B

T and observing from (9) that

µ
∗
B

T
B

BG
= 01,m, one has:

∂e
B

∂ω̃
B

= −1n,1 . (33)

Finally, multiplying together (31) and (33), imposing (32) and

applying the chain rule, lead to the sought expression:

∂J

∂ω̃
B

=

∂J

∂e
B

∂e
B

∂ω̃
B

= −e∗
B

T
W = −µ∗

B

T
B

BB
. (34)

The significance of the sensitivites determined in this section

is shown in the illustrative example and the case study below.

Such sensitivities can also be utilized to identify the buses

whose frequency measurements improve the robustness of the

rotor speed estimation. This topic is beyond the scope of this

paper and will be the object of future work.

IV. ILLUSTRATIVE EXAMPLE

This section presents an illustrative example based on the

WSCC 9-bus system shown in Fig. 3. This network includes

three synchronous machines, loads and transformers, and six

transmission lines, as well as primary frequency and voltage

regulation. The interested reader can find all data in [32].

G

G G

1

2 3

4

5 6

7 8 9

Fig. 3: WSCC 9-bus system utilized in the illustrative example.

In this example, one PMU is installed at every bus of the

network. It is assumed that all PMU devices are based on

the same technology and have same measurement standard

deviations, namely, σi = 10−3, ∀i = 1, . . . , 9. Hence, W =

106 · I9. Matrices B
BB

, B
BG

and D for the WSCC 9-bus system

are shown in Tables I, II and III, respectively.

TABLE I: Matrix BBB for the WSCC 9-bus system.

Bus Bus #

# 1 2 3 4 5 6 7 8 9

1 -30.04 0 0 17.36 0 0 0 0 0

2 0 -22.32 0 0 0 0 16.00 0 0

3 0 0 -21.70 0 0 0 0 0 17.06

4 17.36 0 0 -39.31 11.60 10.51 0 0 0

5 0 0 0 11.60 -17.34 0 5.975 0 0

6 0 0 0 10.51 0 -15.84 0 0 5.588

7 0 16.00 0 0 5.975 0 -35.45 13.70 0

8 0 0 0 0 0 0 13.70 -23.30 9.784

9 0 0 17.06 0 0 5.588 0 9.784 -32.15

TABLE II: Matrix B
T
BG

for the WSCC 9-bus system.

Gen. Bus #

# 1 2 3 4 5 6 7 8 9

1 12.682 0 0 0 0 0 0 0 0

2 0 6.315 0 0 0 0 0 0 0

3 0 0 4.637 0 0 0 0 0 0

From the structure of B
BG

, it is relevant to observe that

the dual variables µ
B

are always null at the generation buses.

Matrix B
BG

, in fact, has non-null elements only in the columns

corresponding to the buses where generators are connected.

The optimality condition (9) for the WSCC 9-bus system gives:

0 = 12.682 µ∗
B1
, 0 = 6.315 µ∗

B2
, 0 = 4.637 µ∗

B3
. (35)

Then, Lagrangian multipliers µ
B

are non-null only at load or

transition buses.

The sensitivities ∂ω
G
/∂ω̃

B
, obtained from (28) are shown

in Table IV. Since W is diagonal and all its diagonal elements

are equal, the sensitivities do not depend on its values and, in

this case, one has:

∂ω
G

∂ω̃
B

= D
+ . (36)
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TABLE III: Matrix D
T for the WSCC 9-bus system.

Gen. Bus #

# 1 2 3 4 5 6 7 8 9

1 0.8225 0.2510 0.2847 0.6928 0.5843 0.5874 0.3500 0.3578 0.3620

2 0.1249 0.6499 0.2327 0.2163 0.3211 0.2479 0.5118 0.4251 0.2959

3 0.1041 0.1708 0.5668 0.1801 0.2027 0.2780 0.2383 0.3287 0.4492

These sensitivities are constant if there is no change of the

topology of the network. Note also that (36) can be obtained

directly from differentiating (14).

As discussed in Subsection III-B, D
+ is very sparse. In this

example, the three machines are connected in antenna and,

hence, at least 6 PMU measurements at buses 1-4, 7 and 9 are

needed to estimate all rotor speeds.

TABLE IV: Sensitivities
∂ω

G

∂ω̃
B

= D
+ for the WSCC 9-bus system

∂ωGi
∂ω̃B j

1 2 3 4 5 6 7 8 9

1 2.369 0 0 -1.369 0 0 0 0 0

2 0 3.534 0 0 0 0 -2.534 0 0

3 0 0 4.680 0 0 0 0 0 -3.680

We next analyze the sensitivities ∂J
∂ω̃

B

which are given by

(34). For the sake of example, we consider the sensitivity at

the generator bus 1, namely ∂J
∂ω̃

B1

, and the sensitivity at load

bus 8, namely, ∂J
∂ω̃

B8

. From (34), one has:

∂J

∂ω̃
B1

= 30.04 µ∗
B1
− 17.36 µ∗

B4
= −17.36 µ∗

B4
,

∂J

∂ω̃
B8

= −13.7 µ∗
B7
+ 23.3 µ∗

B8
− 9.784 µ∗

B9
,

(37)

where in the first of (34), we have imposed the condition µ∗
B1
=

0 obtained from the first of (35). From (6) and again from (34),

the sensitivities in (37) are equivalent to the expressions:

∂J

∂ω̃
B1

= −
e∗

B1

σ2
B1

= −106 · e∗
B1
,

∂J

∂ω̃
B8

= −
e∗

B8

σ2
B8

= −106 · e∗
B8
,

(38)

which indicate that the sensitivities of the objective function

with respect to the bus frequency measurements are inversely

proportional to the variance of the measurements themselves.

Let consider the loss of load connected at bus 5 occurring

at t = 1 s. Figure 4 shows the trajectory of the actual rotor

speed ω̂
G1

of the synchronous machine connected at bus 1;

the estimated rotor speed ω∗
G1

obtained by solving (9)-(11);

and the error |ω̂
G1
−ω∗

G1
|. Note that ω̂

G1
is the state variable of

the machine swing equation, which, in this paper, is obtained

through the numerical integration of the system model. In

real-life applications, however, ω̂
G1

is actually not available

to system operators (see also the scheme of Fig. 1). Along

the time domain simulation, the bus measurements ω̃
B

are

obtained using PMU devices equipped with a synchronous

reference-frame phase-locked loop [33].

No noise is considered in this example. The error between

the ideal and the estimated rotor speeds is due exclusively

to the PMU tracking. Apart from the first instants after the

contingency, such an error is below 0.0002 pu, i.e., 0.012 Hz

for a 60 Hz system and 0.01 Hz for a 50 Hz one.

The average error decreases as the rotor speed stabilizes

after the contingency, thus leading to the conclusion that the

average error is proportional to the rate of change of frequency.

This is a consequence of the dynamic behaviour of the swing

equations of synchronous machines. Following a contingency,

the power imbalance in the grid accelerates or decelerates

the machines, thus creating frequency variations, which are

different from bus to bus and maximum in the first few seconds

after the contingency. Then, the primary frequency controllers

act on the turbine governors of the machines and help recover

a synchronous condition, i.e., a condition in which the rotor

speeds of the machines converge to a common value. In the

first seconds after a contingency, thus, machine rotor speeds

show the largest rate of change and, consequently, the highest

estimation errors.
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Fig. 4: Upper panel: Actual rotor speed ω̂G1 of the synchronous
machine 1 and the estimated quantity ω∗

G1
. Lower panel: Estimation

error of the rotor speed of machine 1 for the WSCC 9-bus system.

Figure 5 shows the trajectories of the sensitivities ∂J/∂ω̃
B1

and ∂J/∂ω̃
B8

for the contingency discussed above. Similarly

to the error between actual and estimated rotor speeds, the

corresponding sensitivities decrease as the rate of change of

frequency decreases. In steady-state all sensitivities ∂J/∂ω̃
Bi

are null, since the frequency is the same at every bus of the

network.

Finally, we illustrate the formulation of the decoupled state

estimation problem to determine a single rotor speed. Let

consider ∆ω
G1

. Equation (14) and Table IV indicate that

the minimum set of measurements required to estimate this
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Fig. 5: Sensitivities ∂J/∂ω̃
B1

and ∂J/∂ω̃
B8

for the WSCC 9-bus
system.

rotor speed are ∆ω̃
B1

and ∆ω̃
B4

. The resulting state estimation

problem is:

min.
(e

B1
,e

B4
,∆ω

G1
)

J =
1

2

(

w1e2
B1
+ w2e2

B4

)

s.t. 0 = 12.682∆ω
G1
− 30.04 (∆ω̃

B1
+ e

B1
)

+ 17.36 (∆ω̃
B4
+ e

B4
) : µ

B
.

The KKT conditions lead to e∗
B1
= e∗

B4
= µ∗

B
= 0, and:

∆ω∗
G1
= 2.369∆ω̃

B1
− 1.369∆ω̃

B4
.

The latter can be directly obtained from (14). The full opti-

mization problem (6)-(7) provides significantly more redun-

dancy than (14), which is to be expected as (6)-(7) exploit

a higher number of measurements. For example, if ω̃
B4

is

missing, the estimation provided by (14) is compromised,

but one can still reconstruct ω̃
B4

from ω̃
B1

, ω̃
B5

and ω̃
B6

(see the fourth row of matrix B
BB

in Table I). Figure 6

shows the estimation of ω∗
G1

considering different sets of PMU

measurements.
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Fig. 6: Actual rotor speed ω̂G1 of the sync. machine 1 and the esti-
mated quantity ω∗

G1
considering different sets of PMU measurements.

V. CASE STUDY

This section considers a dynamic model of the all-island

Irish transmission system. The model includes 1,479 buses,

1,851 transmission lines and transformers, 245 loads, 22

conventional synchronous power plants modeled with 6th order

synchronous machine models with d-axis saturation, AVRs and

turbine governors; 6 PSSs; and 176 wind power plants, 34 of

which are equipped with constant-speed and 142 with doubly-

fed induction generators.

The topology and the steady-state data of the all-island Irish

system are made available by the Irish TSO, EirGrid.2 Dynamic

data of generators and controllers, while guessed, have been

determined case by case, based on power plant capacity and

technology, in order to be as close as possible to the real-world

Irish system. No load dynamic is considered. All simulations

and plots presented in this section were obtained using the

software tool Dome [34] running on a 4 core 2.60 GHz Intel c©

Core i7TM with 8 GB of RAM.

Four scenarios are considered in the case study. In Sub-

section V-A, the sensitivities ∂ωG/∂ω̃B of the Irish system

are analyzed. Subsection V-B studies the robustness of both

estimation approaches against the loss of some key PMU

measurements. Finally, Subsections V-C and V-D compare the

sensitivity of the optimization problem (OPT) (6)-(7) and the

WLS estimation techniques considering noise and latency in

the PMU signals ∆ω̃
B
, respectively. In the following subsec-

tions, due to space limitation, we show the results only for one

machine. Results obtained for all other machines are similar

in terms of both accuracy and sensitivity to bad data, noise

and latency.

The contingency considered in all scenarios is a three-

phase fault occurring at t = 1 s, and cleared after 150 ms by

disconnecting the corresponding line. We wish to emphasize

that the proposed frequency estimation is particularly relevant

for the very first few seconds following severe events that

trigger electromechanical oscillations of the machines. Only

in this time frame and scenario, frequencies are different from

bus to bus.

Due to the linear formulation, the high sparsity of all

matrices involved, and the fact that no matrix factorization

is required, the computational burden of the two problems is

negligible. Solving the full OPT and WLS problems for the

whole Irish system requires about 100 µs and 5 µs, respec-

tively, per time step, on the platform indicated above. These

times are orders of magnitude smaller than the phenomenon

to be analyzed, i.e., synchronous machine electromechanical

oscillations, and thus these problems are suited for implemen-

tation in real-life applications.

A. Sensitivity Analysis

In this subsection, we consider the sensitivities ∂ωG/∂ω̃B.

To this aim, matrix D
+ is computed from (16). The submatrix

of D
+ including generator buses (columns) and neighboring

buses (rows) is shown in Fig. 7.

Matrix D
+ has only 44 non-zero elements over a total

of 32,538, thus showing that, if measurement redundancy

is neglected, one only needs a very reduced set of PMU

measurements to estimate the rotor speeds of all synchronous

machines, even for large systems. For the Irish system, in fact,

the minimum set includes 42 PMUs, as two pairs of machines

are connected with the topology depicted in Fig. 2.c.

2See webpage: http://www.eirgridgroup.com/
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Fig. 7: Sensitivities ∂ωG/∂ω̃B for the Irish system.

B. Measurement Redundancy and Robustness

The robustness against the loss of one of the measurement

signals of the two proposed estimation approaches is studied

next. In this scenario, the accuracy of each approach is

compared when estimating the rotor speed of a synchronous

machine connected to the system as in Fig. 2.a when a large

transient occurs in the system, and one of the two PMUs fails to

send the measurement ω̃
B, i

. The accuracy of the OPT and WLS

problems assuming that all PMU measurements are available

is shown in Fig. 8.
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Fig. 8: Actual rotor speed (ω̂G ) and estimated (ω∗
OPT

and ω∗
WLS

) of
a synchronous machine of the Irish system, and PMU frequency
measurement at the machine bus (ω̃PMU ).

Both techniques are able to capture the machine rotor

speed variations with better accuracy than the measurement

provided by the PMU connected at the machine bus. The OPT

estimation is slightly better than that obtained with the WLS.

The total amplitude of the characteristic spikes of the PMU

during the discontinuous events (fault and line outage), and the

consequent spikes of the estimation techniques, is not shown

in order to better capture the more relevant electromechanical

oscillations.

To study the impact of a PMU malfunction, it is assumed that

∆ω̃
B, i
= 0 from the beginning of the simulation, and results

are shown in Fig. 9.
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Fig. 9: Actual rotor speed (ω̂
G

) and estimated (ω∗
OPT

and ω∗
WLS

) of
a synchronous machine of the Irish system. Upper panel: Failure of
PMU at machine neighboring bus. Lower panel: Failure of PMU at
machine bus.

In the two cases simulated, namely the failure of the PMU at

the machine neighboring bus (Fig. 9.a), and at the machine bus

(Fig. 9.b), the measurement redundancy of the OPT problem

allows correcting the erroneous ω̃
B, i

, thus providing a highly

accurate estimation of ω̂
G
. Bad data considerably impact on

the WLS-based estimation, in particular if the bad signal is

that of the PMU at the machine bus, where the estimation is

in counter-phase with the actual ω̂
G
.

C. Noise

The last scenario studies the sensitivity of the two estimation

approaches to the presence of noise in the input signals of

the PMUs. The noise is modeled as an Ornstein-Uhlenbeck’s

process with Gaussian distribution is applied to all bus voltage

phase angles [35]. The noisy time-varying voltages are then

utilized as input signals to the Phase-Locked Loop (PLL) of

the PMUs that measure bus frequencies (see the Appendix

for the PLL model). Results are depicted in Fig. 10. As

expected, the OPT problem shows a lower sensitivity to noise

than the WLS. The OPT problem, in fact, can include more

measurements than the WLS problem. The higher the number
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of measurements, the lower the impact of measurement errors

on the estimation of rotor speeds.
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)
of a synchronous machine of the Irish system under the presence of
noise. Upper panel: Trajectories. Lower panel: Absolute errors of the
estimation.

D. Latency

Latency is modeled as a constant delay that is introduced

in the PLL output signals of the PMUs that provide bus

frequency measurements. Each delay is composed of a term

due to the measurement process plus a communication delay in

transmitting the signal to the control center. In the simulations,

we consider only a difference in communication delays, τ,

between PMUs and, hence, the latency is applied to all but

one PMUs involved in the estimation of each rotor speed. Two

cases are considered, namely τ = 25 ms (short distance) and

τ = 100 ms (long distance). Results are shown in Figs. 11 (τ

in the signal of the machine bus) and 12 (τ in the signal of

the machine neighboring bus).

Regarding the scenario involving noise, the OPT problem

shows good robustness with respect to measurement latencies,

regardless of the affected PMU and the value of τ. The WLS

is more sensitive to latency. WLS accuracy is compromised if

τ = 100 ms and shows significantly more and larger spikes

than the OPT.

E. Remarks on Simulation Results

Simulation results for the all-island Irish system indicate

that the OPT shows a fairly good accuracy of its estimation.

It also shows a high robustness against the malfunctioning of

PMU devices, and a low sensitivity to the presence of noise
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Fig. 11: Actual rotor speed (ω̂G) and estimates (ω∗
OPT

and ω∗
WLS

) for
a synchronous machine of the Irish system with latency in the PMU

signal of the synchronous machine bus. Upper panel: Optimization
problem. Lower panel: Weighted Least Square.

and latency in the PMU measured signals. The rotor speed

of a given machine, in fact, can be estimated with a good

approximation even if no PMU measurement at the machine

bus is available.

The WLS approach based on the pseudo-inverse of the FDF

matrix indicates that only 42 PMUs are required for the con-

sidered model of the all-island Irish system and provides the

location of such measurements. The WLS approach minimizes

the computational burden and shows that the implementation

the rotor speed estimation is viable in practice. However, due

to the reduced number of measurements, this approach tends

to be sensitive to bad data, noise and latency. Note, however,

that the impact of noise and latency can be reduced through

appropriate filtering and/or compensation techniques, as stated,

e.g., in [36].

VI. CONCLUSIONS

The paper proposes a linear, model-agnostic optimization

problem that estimates the rotor speeds of synchronous ma-

chines based on the FDF and PMU frequency measurements.

The paper also provides all sensitivities of the proposed

optimization problem as well as an analytical expression of

the conventional WLS problem, that gives the minimum set of

PMU measurements required to estimate rotor speeds. Such a

minimum set also allows implementing a fully decentralized

state estimation. The decentralized problem, however, gives

up redundancy and is less robust than the full optimization

problem. Real-world implementation of the proposed DSE have
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thus to find a tradeoff between the robustness of the optimiza-

tion problem and the low requirements and decentralization of

the WLS approach.

Future work will focus on studying the effect of system

parameter inaccuracies on the performance of the rotor-speed

estimation technique. We will also study how to improve the

robustness of the proposed optimization problem through, for

example, an EKF technique and consider practical implemen-

tation aspects, such as communication issues of PMU data.

APPENDIX

The synchronous reference frame phase-locked loop (SRF-

PLL) is one of the simplest and most commonly used PLLs

configurations [20], [37]. A fundamental-frequency model of

a SRF is depicted in Fig. 13, where the phase detector (PD)

is modeled as lag transfer function; the loop filter (LF) is a

PI controller; and the voltage-controlled oscillator (VCO) is

implemented as an integrator. In this scheme, vq is the q-axis

component of the bus voltage and v̂q is the corresponding

estimated quantity. The output of the LF is an estimation of

the frequency deviation ∆ω̂ at the bus.

v̂qvq ǫq ∆ω̂

PD VCOLF

vabc +

−

Fig. 13: Scheme of the SRF-PLL.
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Álvaro Ortega (S’14, M’16) received the degree in
Industrial Eng. from Escuela Superior de Ingenieros
Industriales, Univ. of Castilla-La Mancha, Ciudad
Real, Spain, in 2013. In 2017, he received the
Ph.D. in Electrical Eng. from Univ. College Dublin,
Ireland, where he is currently a senior power systems
researcher. His research interests include dynamic
modelling and control of energy storage systems,
and transient and frequency stability analysis of
power systems.

Antonio J. Conejo (F’04) received the M.S. de-
gree from the Massachusetts Institute of Technology,
Cambridge, MA, in 1987, and the Ph.D. degree
from the Royal Institute of Technology, Stockholm,
Sweden, in 1990. He is currently a full professor in
the Department of Integrated Systems Engineering
and the Department of Electrical and Computer
Engineering, The Ohio State University, Columbus,
OH. His research interests include control, opera-
tions, planning, economics and regulation of electric
energy systems, as well as statistics and optimization

theory and its applications.

11


