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Abstract—The paper shows the equivalence between the ge-

ometric frequency of an electric quantity, namely, voltage and

current, and the Lagrange derivative of a stream-line of a fluid.

The geometric frequency is a concept recently proposed by the

author and is a generalization of the instantaneous frequency,

a quantity that is particularly important for the analysis and

the control of electric power systems. On the other hand, the

Lagrange derivative is mostly utilized in fluid dynamics and helps

decomposing the time derivative into various components. The

paper shows how these components relate to the elements of the

geometric frequency. The paper also shows, through a variety

of numerical examples, how the decomposition of the Lagrange

derivative helps identifying the distortion of the waveform of

a measured electric quantity and how this information can be

utilized to classify system operating conditions.

Index Terms—Instantaneous frequency, frequency control, dif-

ferential geometry, Lagrangian derivative.

I. INTRODUCTION

The estimation of the instantaneous frequency of electrical
signals is important in power system analysis and operation
[1]. Main applications are the frequency control of inverter-
based energy resources, over- and under-frequency protections,
wide-area measurement systems and monitoring of the overall
power balance of the system [2]. However, the estimation of
instantaneous frequency is a challenging task, especially in
real-time applications and for signals in transient conditions
or that include noise, harmonics and/or unbalances [3], [4].

A variety of approaches have been proposed to the esti-
mation of instantaneous frequency, for example, phase-locked
loops (PLLs) [5]–[10], discrete Fourier transform [11], [12],
inverse Park transform [13], Hilbert transform [14], Kalman
filters [15], [16], least squares, [17], [18], and adaptive notch
filters [19], [20]. The existence of such a variety of techniques
suggests that no method proposed so far is clearly superior
to the others and that the adequateness of each method,
while certainly showing some advantages, depends on the
application.

Reference [21] has recently proposed the formal analogy
between the voltage (current) at a point of an electrical multi-
phase circuit and a velocity. This analogy is supported by
the Faraday’s law, which states that the voltage is the time
derivative of a magnetic flux and the definition of electric
current as the time derivative of the flow of electric charges.
According to this analogy, the magnetic flux (electric charge)
are assumed to be generalized coordinates. This analogy has
been further exploited in [22] to link the geometric frequency
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and the energy stored in inductances and capacitances and
the instantaneous active and reactive powers to the second
derivative of the angular momentum commonly utilized in
classical mechanics for the study of rigid bodies.

The geometric approach has the advantage to require only
instantaneous measurements and is thus free of the issues
such as aliasing and spectral leakage that affect Fourier-based
methods. On the other hand, since it requires to estimate the
time derivative of the measured signal, its performance is
comparable to methods based on PLLs, which are affected
by noise, unbalances and harmonics.

In this work, we remove the hypothesis of rigid body and
extend the analogy above to fluid mechanics. In particular we
assume that magnetic fluxes (electric charge flows) in every
point of a multi-phase circuit represent stream lines of the
flow of a fluid. It is important to note that, according to this
assumption, each point of the circuit is a stream line, as the
fluxes, not the spatial position, are the “coordinates” of the
voltage.

The study of fluid mechanics is largely founded on the so-
called Lagrange derivative, which shows the dependency of
any time-dependent quantity on the velocity of the stream-
line of the flow of a fluid [23], [24]. In this work we are
interested in the expression of the Lagrange derivative when
it is applied to the velocity itself, which in our analogy is the
voltage (current) at a point of the electric circuit. When applied
to the velocity, the Lagrange derivative can be split into various
symmetric and skew-symmetric terms, each of them with very
specific meaning, such as strain, distortion and rotation, of the
element of the fluid stream line.

The main contribution of this work is the theoretical ap-
praisal of the equivalence of the terms that compose the La-
grange derivative of the velocity with the terms that compose
the geometric frequency of the voltage (current). These terms
provide a novel classification of the operating conditions of ac
and dc circuits. For example, the paper shows that a dc circuit
can be studied as an irrotational flow, whereas a stationary
ac circuit can be studied as an solenoidal flow. Moreover,
unbalances and harmonics can be interpreted in terms of the
symmetric and skew-symmetric components of the Lagrange
derivative. Finally, as a byproduct, the paper shows the link
between instantaneous frequency and the vorticity, a quantity
that is commonly utilized in fluid mechanics to describe the
local spinning motion of a continuum [24].

The motivation for this work stems from the observation that
the geometric frequency does not coincide, in many practical
cases, with the quantity that in electric power systems, one
would consider (or expect) to be the instantaneous frequency
of the voltage. For example, the geometric frequency is not
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constant for an unbalanced and/or non-sinusoidal system, even
if the system is stationary and its fundamental frequency is
constant. This work shows that the vorticity is the quantity
that actually matches the intuition of instantaneous frequency
of an ac circuit.

The remainder of the paper is organized as follows. Section
II recalls the definition of geometric frequency proposed in
[21] and shows that such a definition can be applied, in
fact, to any time-dependent vector as it is, in turn, a way
to express the time derivative of the vector itself. Moreover,
if the vector is a (generalized) velocity, such an expression
can be interpreted in terms of geometric invariants. Section
III recalls the Lagrange derivative and the various symmetric
and skew-symmetric term into which this derivative can be
decomposed. Section IV provides the main contribution of this
paper and shows the term-to-term equivalence of the geometric
frequency and the Lagrange derivative. Section V illustrates
the theoretical findings of Section IV though a variety of
analytical examples. Finally, Section VI draws conclusions and
outlines future work.

NOTATION

Unless otherwise indicated, scalars are represented in
Italic, e.g., x, X; vectors in lower case bold, e.g., x =
(x1, x2, . . . , xn); bivectors in upper case bold with a hat, e.g.,
X̂; second order tensor and matrices in bold upper case, e.g.,
X, and multivectors in upper case Italic with a hat, e.g., X̂ .

Scalars:

h harmonic order
vω, vε Clarke’s components of the voltage
ω voltage phase angle
ε magnitude shape factor for unbalanced voltage
ϑ frequency correction factor for unbalanced voltage
ϖt radial strain due to local time dependency
ϖr radial strain due to shear strain distortion
ϖv radial frequency of the voltage
ϱ̃ scalar potential for irrotational filed
ςo fundamental frequency

Vectors:

0n null vector of order n
A vector potential for solenoidal field
ei unit vector of coordinate basis
x position
v voltage (generalized velocity)
w vorticity
ω magnetic flux (generalized position)
εt rotation due to local time dependency
εr rotation due to shear strain distortion
εv azimuthal frequency (curvature) of the voltage

Bivectors:

0̂n null bivector of order n
!̂a geometric frequency bivector

Multivectors:

Â generic multivector, Â = a+ Â
!̂a geometric frequency multivector

Tensors and Matrices:

0n,m null matrix of dimensions (n,m)
C Clarke transform matrix
D pure strain tensor
In identity matrix of order n
J Jacobian matrix
R shear strain tensor
S normal strain tensor
Q rigid-body rotation tensor

Operators:

T matrix transpose
φt partial time derivative, φt = ϑ

ϑt
→ nabla operator, → = ( ϑ

ϑx1
, ϑ
ϑx2

, . . . , ϑ
ϑxn

)
→ total (Lagrange) time derivative → = d

dt

↑ conjugate, Â↑ = a ↓ Â
· inner product
↔ cross product
↗ outer (wedge) product
↼ Hodge operator, ↼Â = a

II. GEOMETRIC FREQUENCY

This section recalls the concept of geometric frequency
firstly introduced for voltages and currents in [21] and then
generalized to any quantity in [22].

Consider a smooth (i.e., differentiable) time-dependent vec-
tor in a n-dimensional space:

a(t) = (a1(t), a2(t), . . . , an(t)) , (1)

with time derivative:
d

dt
a = a→ = (a→1(t), a

→

2(t), . . . , a
→

n(t)) . (2)

The geometric frequency of a is defined as the following
multivector:

!̂a = ↽a + !̂a =
a · a→

|a|2
+

a ↗ a→

|a|2
, (3)

which has the dimension of a frequency and is composed of a
translation (scalar ↽a) and a rotation term (bivector !̂a). !̂a

is the sum of the directional and rotational derivatives of a
vector along its own direction.

If multiplied by the vector a itself, !̂a returns the total time
derivative of a, as follows:

a→ = !̂↑

a · a

= ↽a a ↓ !̂a · a ,
(4)

where ↑ indicates the conjugate operation, namely !̂↑

a = ↽a ↓

!̂a. The term ↽a a is parallel to a as ↽a is a scalar quantity.
On the other hand, the term !̂a · a is perpendicular to a, in
fact:

↓!̂a · a = a · !̂a =
1

|a|2
[a · (a ↗ a→)]

=
1

|a|2
[(a · a)a→

↓ (a · a→)a] ,
(5)

and, hence:

(a · !̂a) ·a =
1

|a|2
[(a ·a)(a→

·a)↓ (a ·a→)(a ·a)] = 0 , (6)
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where we have utilized the property that the inner product of
vectors is commutative. In three dimensions, one can write:

εa = ↼!̂a , (7)

where ↼ denotes the Hodge map [25], and

a ↔ εa = ↓a · !̂a = !̂a · a . (8)

Hence, in three dimensions, (4) can be rewritten as:

a→ = ↽a a+ εa ↔ a . (9)

In the reminder of this work, it is assumed that a voltage at
any given point of a multi-phase circuit is expressed as:

v(t) = (v1(t), v2(t), . . . , vn(t)) . (10)

Hence, assuming a = v represents a speed of a point along a
space curve, one can rewrite (4) as:

v→ = !̂↑

v · v = ↽v v ↓ !̂v · v , (11)

which, in three dimensions, becomes:

v→ = ↽v v + εv ↔ v . (12)

where εv is a vector the magnitude of which is proportional
to the curvature of the space curve with velocity v at that
point and direction equal to the binormal of the Frenet
frame at that point. Moreover, ↽v and |εv| are invariants and
correspond, respectively, to the radial frequency, represented
by a normal strain, and azimuthal frequency, represented by a
local rotation, of a curve [26].

III. LAGRANGE DERIVATIVE

The Lagrange (or convective or material) derivative ex-
presses the time derivative of a quantity as a function of the
velocity and the gradient of the vector itself. Let us consider
again a generic vector a and assume that a is a function of
time and of time-dependent coordinates x(t):

a(t,x(t)) = (a1(t,x(t)), a2(t,x(t)), . . . , an(t,x(t))) , (13)

where
x(t) = (x1(t), x2(t), . . . , xn(t)) , (14)

Then the Lagrange derivative is written as [24]:

a→ = φta+ (v · →)a , (15)

where v = x→ is the velocity vector.
In the reminder of this work, we are interested exclusively

in the time derivative of the velocity itself. Moreover, based on
[21], we assume that the voltage is a generalized velocity of a
curve defined by magnetic fluxes as generalized coordinates:

v(t) = ω→(t) = (ϱ→

1(t),ϱ
→

2(t), . . . ,ϱ
→

n(t)) , (16)

and, in order to link to classical fluid mechanics and to
the Lagrange derivative, we assume that the voltage can be
expressed as a function of time and of the magnetic fluxes:

v(t,ω(t)) = (v1(t,ω(t)), v2(t,ω(t)), . . . , vn(t,ω(t))) .
(17)

The same assumptions applies to electric currents (generalized
velocities) and electric charges (generalized positions). In the

reminder of this work, for simplicity but without lack of
generality, we consider only voltages.

With the assumption that the voltage is a generalized
velocity, (15) is written as:

v→ = φtv + (v · →)v , (18)

or, equivalently:

v→ = φtv +
1

2
→|v|

2
↓ (→ ↗ v) · v , (19)

where we have used the identity (see, e.g., [24]):

(v · →)v =
1

2
→|v|

2
↓ (→ ↗ v) · v . (20)

For n = 3, the expression above can be rewritten as:

v→ = φtv +
1

2
→|v|

2 + (→ ↔ v) ↔ v , (21)

or, equivalently:

v→ = φtv +
1

2
→|v|

2 +w ↔ v , (22)

where w = → ↔ v is called vorticity.
To show the correspondence of the Lagrange derivative with

the geometric frequency, we need first to rewrite (19) in a
convenient form. With this aim, observe that:

1

2
→|v|

2 = (→v)v = JTv , (23)

where J is the Jacobian of v. Moreover, one has:

↼(→ ↗ v) · v = ↓(J ↓ JT )v , (24)

in fact:

↼(→ ↗ v) = →v ↓ (→v)T = JT
↓ J . (25)

Merging (23) and (24) into (19) gives:

v→ = φtv + JTv + (J ↓ JT )v . (26)

Next, we observe that, from the Toeplitz transformation, every
square matrix can be uniquely decomposed into two matrices,
one symmetric and one skew-symmetric, as follows:

J =
1

2
(J+ JT ) +

1

2
(J ↓ JT ) = D+Q , (27)

where D is symmetric, i.e., DT = D, and Q is skew-
symmetric, i.e., QT = ↓Q. The symmetric part represents a
pure strain motion and D is called pure strain tensor, whereas
the skew-symmetric part represents a rigid-body rotation and
Q is a tensor that defines a local rigid-body angular rotation.

The symmetric term D can be further split into two sym-
metric matrices:

D = S+R , (28)

S =
1

n
tr(J) In , (29)

where In is the identity matrix of order n and tr(J) is the
trace of matrix J; and:

R = D ↓ S . (30)

In fluid mechanics, S and R are called normal strain tensor

and shear strain tensor, respectively. The normal strain tensor
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represents either an expansion or a compression and is perpen-
dicular to the curve x(t). The shear strain tensor represents a
distortion and is parallel to the curve x(t).

From (24), and the definition of tensor Q in (27), one
obtains:

Q =
1

2
→ ↗ v , (31)

and, in three dimensions:

↼Q =
1

2
→ ↔ v =

1

2
w . (32)

Tensor S is diagonal and have all diagonal elements equal
to each other. It represents velocities that are purely radial, in
fact:

tr(J) =
n∑

i=1

Jii =
n∑

i=1

φvi
φxi

= → · v , (33)

that is, the diagonal elements are proportional to the diver-
gence of the velocity vector.

Using the decomposition above, J and JT are written as:

J = S+R+Q ↘ JT = S+R ↓ Q , (34)

and substituting the expression of JT in (26), one has:

v→ = φtv + Sv +Rv +Qv . (35)

IV. EQUIVALENCE BETWEEN (11) AND (19)
We are now ready to show the equivalence between (11)

and (19). Substituting the expression of v→ from (35) in the
expression of the geometric frequency multivector (3) leads
to:

!̂v =
v · φtv

|v|2
+

v ↗ φtv

|v|2
+

vT (Sv)

|v|2
+

v ↗ (Sv)

|v|2

+
vT (Rv)

|v|2
+

v ↗ (Rv)

|v|2
+

vT (Qv)

|v|2
+

v ↗ (Qv)

|v|2
.

(36)

This expression can be simplified as discussed next. First,
observe that, by construction of Q, one has:

vT (Qv) =
1

2
(vT (Jv) ↓ vT (JTv)) = 0 , (37)

in fact
vT (Jv) = (vT (Jv))T = vT (JTv) . (38)

Then observe that S is diagonal and all its diagonal elements
are equal. Using (29) and (33), one has:

v↗(Sv) =
1

n
tr(J)(v↗(Inv)) =

1

n
(→·v)(v↗v) = 0̂n , (39)

where we have also utilized the identity v = In v and the
property of the outer product a ↗ a = 0̂n. Hence:

v ↗ (Sv) = 0̂n , (40)

where 0̂n is the null bivector of order n. Then, (36) can be
rewritten as:

!̂v =
v · φtv

|v|2
+

vT (Sv)

|v|2
+

vT (Rv)

|v|2

+
v ↗ φtv

|v|2
+

v ↗ (Rv)

|v|2
+

v ↗ (Qv)

|v|2
.

(41)

Under the conditions of the Helmoltz-Zorawski criterion,
also the following identity holds:

vT
↗ φtv = 0̂n , (42)

The Helmoltz-Zorawski criterion states that a necessary and
sufficient condition for the lines of a vectorial field a(t,x(t))
to be a material curves is that [23]:

a ↔ [φta+ → ↔ (a ↔ v) + v→ · a] = 0 , (43)

then if a = v, (43) reduces to the identity (42). In [27],
it is shown that (43) – and hence (42) – is satisfied if the
vectorial field satisfies the condition of flux conservation [28].
In the examples, we show that flux conservation is satisfied
for most operating conditions of voltages (currents). A relevant
exception is the case of stationary voltages with harmonics.

Using again (29) and (33), one can observe that:

vT (Sv)

|v|2
=

1

n
tr(J)

vT Inv

|v|2
=

1

n
tr(J) =

1

n
→ · v . (44)

Equaling the scalar and the multivector terms of (11) and
(41), one obtains:

↽v =
v · φtv

|v|2
+

1

n
→ · v +

vT (Rv)

|v|2
, (45)

!̂v =
v ↗ φtv

|v|2
+

v ↗ (Rv)

|v|2
+

v ↗ (Qv)

|v|2
. (46)

and substituting (31) into (46):

!̂v =
v ↗ φtv

|v|2
+

v ↗ (Rv)

|v|2
+

1

2

v ↗ (↼(→ ↗ v) · v)

|v|2
. (47)

In three dimensions, (47) can be written as:

εv =
v ↔ φtv

|v|2
+

v ↔ (Rv)

|v|2
+

1

2

v ↔ (w ↔ v)

|v|2
, (48)

From the Lagrange’s formula of triple vector product, one has:

v ↔ (w ↔ v) = (v · v)w ↓ (w · v)v = |v|
2w , (49)

where w · v = 0 as, for the definition of the the curl of a
vector, the vorticity is perpendicular to the velocity. Equation
(48) can be thus written as:

εv =
v ↔ φtv

|v|2
+

v ↔ (Rv)

|v|2
+

1

2
w . (50)

The special case, in three dimensions, that satisfies φtv =
0, which implies stationarity, and presents no distortion, i.e.,
R = 03,3, gives:

↽v =
1

3
→ · v , εv =

1

2
w =

1

2
→ ↔ v . (51)

V. EXAMPLES

In this section we consider typical stationary ac cases,
namely balanced and unbalanced, sinusoidal and non-
sinusoidal, as well a time-varying dc case. All ac cases are
based on the Clarke’s transform of a three-phase voltage vector
(see the Appendix). This simplifies the notation and makes
simpler visualizing the results while, at the same time, no
information is lost.
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To ease the notation of the examples discussed below, we
introduce the following quantities:

ϖt =
v · φtv

|v|2
, εt =

v ↔ φtv

|v|2
,

ϖr =
vT (Rv)

|v|2
, εr =

v ↔ (Rv)

|v|2
.

A. Stationary balanced sinusoidal ac voltage

We consider first a stationary balanced sinusoidal voltage of
a three-phase circuit. In this scenario, the Clarke components
of the voltage are given by:

v(t) = (vω(t) , vε(t) , vϖ(t))

= (V cos(ςot+ ⇀) , V sin(ςot+ ⇀), 0)

= vω(t) eω + vε(t) eε ,

and the vϖ = 0 as the voltages are balanced. The geometric
frequency of v(t) gives (see also a similar example in [26]):

ϖv =
vωv→ω + vεv→ε

V 2
= 0 ,

εv =
vωv→ε ↓ vεv→ω

V 2
(eω ↔ eε) = ςo eϖ ,

where we have used the identities ↼(eω↗eε) = eω↔eε = eϖ .
eϖ is the unit binormal in the Clarke transform space (⇁,β, γ)
and is perpendicular to the (⇁,β) plane. As ϖv and |εv| are
geometrical invariants, the same results can be obtained using
any other coordinate system, hence including the original abc
voltages that can be measured at the phases of the physical
circuit.

Using the notation common to fluid mechanics, one can
rewrite the voltage vector as a function of the fluxes, namely,
v(ω(t)), where:

ω(t) = (ϱω(t) ,ϱε(t) ,ϱϖ(t))

=

(
V

ςo
sin(ςot+ ⇀) ,↓

V

ςo
cos(ςot+ ⇀) , 0

)

= ϱω(t) eω + ϱε(t) eε ,

where we have assumed that the fluxes have no constant terms,
i.e., the circuit does not include fixed permanent magnets.
Then the voltage can be written as:

v(ω(t)) = ↓ςoϱε(t) eω + ςoϱω(t) eε ,

and the divergence and curl of the voltage are:

→ · v =
φvω
φϱω

+
φvε
φϱε

= 0 ,

→ ↔ v =

(
φvε
φϱω

↓
φvω
φϱε

)
eϖ = 2ςo eϖ ,

which indicates that the vorticity has magnitude 2ςo. Then,
as the voltage is stationary, φtv = 03. It remains to determine
the distortion of the strain and of rotation due to the shear
strain tensor R. First, we note that, as → · v = 0, S = 03,3

and, hence, R = D. Then, we observe that also D = 03,3, in
fact, J is skew-symmetric:

J =




0 ϑvω

ϑϱε
0

ϑvε
ϑϱω

0 0
0 0 0



 =




0 ↓ςo 0
ςo 0 0
0 0 0



 = Q .

Substituting the results above in (45) and (48), one obtains
that ϖv = 0 and εv = 1

2w = ςo eϖ , as expected.
In field theory, this condition makes a field solenoidal.

We can thus say that, using this analogy, v is a solenoidal
vector field that is obtained from a vector potential, say A,
that satisfies the condition v = → ↔ A. Moreover, in fluid
mechanics, a fluid for which → · v = 0 applies everywhere is
incompressible as this condition implies that the volume of a
particle of the fluid cannot vary [24]. This suggests that an ac
electric circuit in stationary conditions, can be studied as an
incompressible fluid.

B. DC voltage

We consider a dc voltage and proceed similarly to what done
in [21]. In dc circuits, the voltage has only one component
along the single coordinate of the system, say edc, hence:

v(t) = vdc(t) edc , v→(t) = v→dc(t) edc ,

and, from the definition of geometric frequency:

ϖv(t) =
v(t) · v→(t)

v2dc(t)
=

v→dc(t)

vdc(t)
,

εv =
↼(v(t) ↗ v→(t))

v2dc(t)
=

v→dc(t)

vdc(t)
(edc ↔ edc) = 01 .

Following the approach based on the Lagrange derivative,
rewriting the voltage vector as v = vdc(t,ϱdc(t)) edc, and
substituting the terms in (45), one has:

ϖv(t) =
φtvdc(t)

vdc(t)
+

φvdc(t)

φϱdc(t)
. (52)

where we used the fact that R = 01,1 as J = D = ϑvdc(t)
ϑϱdc(t)

.
Then, it descends that also Q = 01,1 and, hence, εv = 01.
This last condition implies that → ↔ v = 01 and hence, the
voltage is an irrotational field, which can be obtained from a
scalar potential, say ϱ̃(t), which satisfies the condition v(t) =
→ϱ̃(t). But, in one dimension, one has:

v(t) = →ϱ̃(t) = → · (ϱ̃(t) edc) ,

which leads to rewrite (52) as:

ϖv(t) =
dvdc(t)

dϱdc(t)
.

where ϱdc(t) ≃ ϱ̃(t), that is, the potential of the voltage is
the magnetic flux, as expected. This result is also consistent
with Faraday’s law and the chain rule:

dvdc(t)

dt
=

dvdc(t)

dϱdc(t)

dϱdc(t)

dt
= ϖv(t) vdc(t) . (53)

C. Stationary unbalanced sinusoidal ac voltage

We consider now a stationary unbalanced sinusoidal volt-
age of a three-phase circuit. Let us assume that the Clarke
components of the voltage are given by:

v(t) = (Vω cos(ςot+ ⇀) , Vε sin(ςot+ ⇀)) ,
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which leads to:

ϖv(t) =
1

2

ςo(V 2
ε ↓ V 2

ω ) sin(2ω(t))

|v(t)|2
,

εv(t) = ςv(t) eϖ =
ςoVωVε

|v(t)|2
eϖ .

where ω(t) = ςot + ⇀. Using the formalism of the Lagrange
derivative, we can write the fluxes as:

ω(t) =

(
Vω

ςo
sin ω(t) , ↓

Vε

ςo
cos ω(t) , 0

)
,

and, hence:

v(ω(t)) =

(
↓ςo

Vω

Vε
ϱε(t) , ςo

Vε

Vω
ϱω(t) , 0

)
.

Then the Jacobian matrix becomes:

J = (→v)T =




0 ↓ςo

Vω
Vε

0

ςo
Vε

Vω
0 0

0 0 0



 ,

which can be decomposed as:

J = R+Q , (54)

where S = 03,3, which also implies → · v = 0 as well as
solenoidal field and incompressible fluid, and:

R =




0 εςo 0

εςo 0 0
0 0 0



 , Q =




0 ↓ϑςo 0

ϑςo 0 0
0 0 0



 ,

with

ε =
1

2

(
Vε

Vω
↓

Vω

Vε

)
, ϑ =

1

2

(
Vω

Vε
+

Vε

Vω

)
.

As the voltage is stationary, φtv = 0, then:

ϖv(t) = ϖr(t) = εςo
VωVε sin

2 ω(t)

|v(t)|2
,

where εVωVε = 1
2 (V

2
ε ↓ V 2

ω ) and which indicates that the
unbalance in the voltage magnitudes creates a shear strain
that is responsible of periodically stretching and shrinking the
radius of the trajectory in order to obtain an ellipse. Note
that, as expected, the expressions of ϖv obtained using the
differential geometry approach and the Lagrange derivative
coincide.

The rotation, on the other hand, has two terms:

εv(t) = εr(t) +
1

2
w ,

where the local distortion of the rotation is:

εr = ςr eϖ = εςo

V 2
ω cos2 ω ↓ V 2

ε sin2 ω

|v|2
eϖ

=
1

2
ςo

(
VωVε

|v|2
↓

V 3
ω

Vε
cos2 ω ↓

V 3
ε

Vω
sin2 ω

)
eϖ ,

where the dependency on time has been dropped for simplicity,
and the rigid-body rotation is:

1

2
w =

v(t) ↔ (Qv(t))

|v(t)|2
= ϑςo eϖ .

It is interesting to observe that while the magnitude of εv

is time varying, the magnitude of the vorticity is constant.
The angular frequency ϑςo can be interpreted as the constant
curvature of a stationary balanced voltage and the term due to
the shear strain as the distortion on top of the constant rotation.
Note also that, if Vω = Vε , ε = 0 and ϑ = 1, which leads to
the results obtained in Example 1. Moreover for unbalances
for which the difference between Vω and Vε is below 15%,
ϑ ↓ 1 < 1%. This means that in usual unbalanced conditions,
one can assume that the angular speed of the rigid body is
approximately ςo.

Figure 1 illustrates an example of unbalanced voltage. The
parameters are: Vε/Vω = 1.2, ςo = 2▷ 50 rad/s, and ⇀ = ▷/6.
Then one has:

ε = 0.1833 , ϑ = 1.0167 .

Moreover, as discussed above ϖv(t) = ϖr(t). As expected, the
figure shows that ςv(t) = ςr(t) + ϑςo. This means that the
average of ςv is ϑςo > ςo. This is due to the fact that the
distortion ςr is not a symmetrical function with respect to the
horizontal axis.

This example demonstrates how the breakdown of the geo-
metric frequency obtained using the Lagrange derivative and
fluid mechanics formalism allows a natural separation between
various components with precise geometrical meaning, as
follows:

(i) Half the magnitude of the vorticity, namely ϑςo, is the
equivalent (virtual) frequency of the balanced voltage
after removing the distortion.

(ii) ςr is the distortion of the frequency due to the unbalance.
(iii) ϖr indicates the radial distortion (stretching/shrinking) of

the radius of the voltage curve (in this case, an ellipse)
in the (⇁,β) plane.

The scenario discussed in this section is a special case
where vϖ = 0, which requires that the sum of phase voltages
satisfies the condition va + vb + vc = 0, ⇐t. There exist, of
course, unbalanced cases for which vϖ ⇒= 0. However, the
curve associated to stationary unbalanced sinusoidal three-
phase voltage is a plane curve, as shown in [26]. Thus, the
example discussed in this section has general validity, as one
can always find a transformation of the abc coordinates for
which one component is null for all t and the curve in the
other two coordinates is an ellipse.

D. Stationary balanced non-sinusoidal ac voltage

Stationary balanced non-sinusoidal ac voltages allow show-
casing the added value of the proposed analogy with stream
lines and Lagrange derivative. Without lack of generality, we
consider the case of a voltage with two harmonics. As done in
the previous examples, we use the Clarke transform in order
to reduce the coordinates to a two-dimensional space:

v(t) =




vω(t)
vε(t)
vϖ(t)



 =




V cos ω(t) + Vh cos ωh(t)
V sin ω(t) + Vh sin ωh(t)

0



 ,

where
ω(t) = ςot+ ⇀ ,

ωh(t) = hςot+ ⇀h ,
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Fig. 1: Stationary unbalanced sinusoidal ac voltage and components
of its geometrical frequency and Lagrange derivative.

and where all parameters are constant, h is typically an odd
integer > 3, and from where one can obtain the magnetic flux
vector:

ω(t) =




ϱω(t)
ϱε(t)
ϱϖ(t)



 =




! sin ω(t) + !h sin ωh(t)

↓! cos ω(t) ↓ !h cos ωh(t)
0



 ,

where ! = V/ςo and !h = Vh/(hςo). The voltages can be
rewritten as follows:

v(t,ω(t)) =




↓ςoϱε(t) ↓ ◁h Vh cos ωh(t)
ςoϱω(t) ↓ ◁h Vh sin ωh(t)

0



 ,

where ◁h = (h↓1)/h. The extension to systems with multiple
harmonics is readily obtained with a summation of h-terms.

It is relevant to observe that, despite being considered in
the literature of harmonic analysis as a “stationary” set of
voltages, the voltages are not actually stationary from the
point of view of a stream line of a fluid flow. This is only

an apparent inconsistency. From the harmonic analysis point
of view, the voltage is stationary as its Fourier transform
gives crisp constant spectrum parameters. The voltage is thus
stationary in frequency domain. From the fluid mechanics
point of view, on the other hand, which is in time domain, the
voltage is not stationary as the velocity (voltage) cannot be
described only in terms of its position coordinates (magnetic
flux). Thus, in this case, φtv ⇒= 0. Moreover, one has:

v · φtv = ↓(h ↓ 1)(V Vh sin(ω + ωh) + V 2
h sin(2ωh) ,

v ↔ φtv = ↓(h ↓ 1)(V Vh cos(ω + ωh) + V 2
h cos(2ωh)) eϖ ,

where time dependency has been omitted for simplicity of
notation. The latter expression indicates that the curve is not a
material curve as the Helmoltz-Zorawski criterion – see (42)
– is not satisfied in this case.

Then, similarly to Examples 1 and 3, one has S = R = 03,3

and → ·v = 0, which means that the voltage can be associated
to an incompressible fluid and a solenoidal field. Then, one
has:

ϖv(t) = ϖt(t) , εv(t) = εt(t) +
1

2
w ,

where the vorticity is:

w = → ↔ v = 2ςo eϖ .

At this point, it is relevant to observe that the expression of the
velocity v(t,ω(t)) is not unique. In fact, one can also write
the voltage as:

vh(t,ω(t)) =




↓hςo ϱε(t) + h◁h V cos ω(t)
hςo ϱω(t) + h◁h V sin ω(t)

0



 ,

which leads to rewrite the vorticity as:

wh = → ↔ vh = 2hςo eϖ .

While surprising at first, this result is justified by the fact
that the vorticity, unlike the azimuthal frequency εv , is not an
invariant. The vorticity depends on the reference frame chosen
to describe the motion for the stream line. For this reason, the
vorticity can be 2ςo or 2hςo depending on the coordinates.
In ac circuits, the natural choice for the reference frame is the
one that rotates at ςo, i.e., the fundamental frequency of the
system. Then the time-varying components:

ϖh =
ςoV (h ↓ 1)Vh sin(ωh ↓ ω)

V 2 + V 2
h + 2V Vh cos(ωh ↓ ω)

,

εh = ςh eϖ = ↓
ςo(h ↓ 1)Vh(V cos(ωh ↓ ω) + Vh)

V 2 + V 2
h + 2V Vh cos(ωh ↓ ω)

eϖ ,

can be interpreted as measures of the harmonic distortion with
respect to a balanced fundamental frequency. In particular,
the first term defines the distortion of the magnitude and the
second term the distortion of the frequency. Note that one can
calculate the distortion for each harmonic individually as well
as the total distortion for systems with multiple harmonics, as
follows:

ϖt =
∑

h↓H

ϖh =
ςoV

∑m
h↓H

(h ↓ 1)Vh sin(ωh ↓ ω)

|v|2
,

ςt =
∑

h↓H

ςh = ↓
ςo

∑m
h↓H

(h ↓ 1)Vh(V cos(ωh ↓ ω) + Vh)

|v|2
,
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where H is the set of harmonics present in the voltage.
Figure 2 shows an example of balanced non-sinusoidal case

with two harmonics plus the fundamental frequency voltage.
Parameters are: H = {7, 11}, Vh = V/(3h), ςo = 2▷ 50 rad/s,
⇀ = ▷/6, ⇀h = h⇀.
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Fig. 2: Stationary balanced non-sinusoidal ac voltage and components
of its geometrical frequency and Lagrange derivative.

This example illustrates again the breakdown of the geo-
metric frequency obtained using the Lagrange derivative and
fluid mechanics formalism. The components are as follows.

(i) If the reference frame is properly chosen, half the magni-
tude of the vorticity is the fundamental frequency (ςo) of
the voltage. The vorticity is constant if the fundamental
frequency is constant.

(ii) ςt is the ripple of the frequency due to harmonic content.
This content can be split into each component per
harmonic.

(iii) ϖt is the radial ripple of the radius of the voltage curve
in the (⇁,β) plane.

E. Concluding Remarks

Based on the results of the examples, the following con-
cluding remarks are relevant.

(i) All stationary ac voltages can be associated to a
solenoidal field or, in the language of fluid mechanics,
to the flow of an incompressible fluid.

(ii) The vorticity is constant in all stationary cases, as
opposed to the azimuthal frequency obtained with a
purely differential geometry approach. This is well in
accordance with the intuition that in stationary condi-
tions where the voltages have a constant fundamental
frequency, the fundamental “rotation” is also constant.
This results is also in accordance with a theorem due to
Cauchy that proves that the vorticity is the mean value
of the rates of rotation of perpendicular axes [28].

(iii) The vorticity is not an invariant, i.e., its expression
depends on the choice of the coordinates. Thus, in
general, it is different from εv , which is invariant. In
practical applications, however, it is straightforward to
choose a set of coordinates for which the interpretation
of the vorticity has a clear physical meaning.

(iv) In unbalanced conditions, half the magnitude of the
vorticity (ϑςo, with ϑ > 1) does not coincide with the
fundamental frequency. Rather, the term ϑςo represents
an equivalent frequency of a balanced voltage after
removing the distortion due to the unbalance. The scale
factor ϑ is a function of the unbalance of the magnitude
of the voltages. In common situations, ϑ ⇑ 1.

(v) In unbalanced conditions, ςr ⇒= 0 and ϖr ⇒= 0, whereas
ςt = 0 and ϖt = 0.

(vi) In non-sinusoidal conditions, ςr = 0 and ϖr = 0,
whereas ςt ⇒= 0 and ϖt ⇒= 0.

(vii) The conditions indicates in the two dual points above
allow a straightforward identification of the operating
condition of the system.

VI. CONCLUSIONS

This work provides the foundations for a formal equivalence
between the geometric frequency of the voltage or current
of an electric circuit and the symmetric and skew-symmetric
terms that compose the Lagrange derivative of a stream-line
of the flow of a fluid. This equivalence highlights that the
radial and azimuthal frequencies that compose the geometric
frequency can be further decomposed into terms that have
precise physical and/or geometrical meaning. These are lo-
cal time-variance φtv, normal strain (compression/expansion),
shear strain (radial and tangential distortion) and rigid-body
rotation (vorticity). These terms are useful to interpret the
operation of an electric circuit. Specifically, if the distortion
is not null, the voltage is unbalanced, if φtv ⇒= 0, the voltage
has harmonics. The work also shows that a stationary balanced
sinusoidal ac circuit is equivalent to a solenoidal field and to
an incompressible fluid, whereas a dc voltage is equivalent to
an irrotational field.

We believe that this work constitutes the seed for a novel
approach to study ac circuits. The formal analogy with fluid
mechanics provides a well established discipline from which
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one can obtain theoretical tools as well as analysis tech-
niques. Future work will delve into this discipline to gain
further insights in the study of electrical circuits. Another
work direction that will be pursued is the applications of the
proposed approach to practical problems such as power quality
improvement and control of electrical devices and networks.

Finally, it is relevant to note that the framework of the
Lagrangian derivative requires to write the expressions of
the elements of the generalized velocity vector (voltages or
currents) as functions of the elements of the generalized
position vector (fluxes or charges). This happens to be a
challenging problem to solve, especially when considering
voltages and currents for which the generalized positions can-
not be measured directly. A hint on how to solve this problem
is given by the Cauchy’s theorem mentioned in the remarks
of the case study that proves that the vorticity is, in effect,
an average value of the rate of rotation of the stream-line.
Future work will focus on exploiting this theorem to evaluate
the vorticity based on voltage and current measurements.

APPENDIX

The Clarke’s transform, often also called ⇁βγ-transform,
applied to three-phase voltages is as follows [29]:

vωεϖ(t) = Cvabc(t) =
2

3




1 ↓

1
2 ↓

1
2

0
↔
3
2 ↓

↔
3
2

1
2

1
2

1
2








va(t)
vb(t)
vc(t)



 , (55)

where vabc(t) is a three-phase voltage vector and vωεϖ(t) is
the corresponding voltage vector given by the transformation
C. The inverse transform is:

vabc(t) = C↗1vωεϖ(t) =




1 0 1

↓
1
2

↔
3
2 1

↓
1
2 ↓

↔
3
2 1








vω(t)
vε(t)
vϖ(t)



 . (56)

This formulation of the Clarke’s transform preserves the
amplitude of the electrical quantities. For example, consider
the following three-phase balanced voltage:

va(t) =
⇓

2V cos ω(t) ,

vb(t) =
⇓

2V cos
(
ω(t) ↓

2
3▷

)
,

vc(t) =
⇓

2V cos
(
ω(t) + 2

3▷
)
,

(57)

where V is the rms magnitude of va(t), vb(t) and vc(t), and
ω(t) and arbitrary function of time. In ⇁βγ coordinates, the
voltage becomes:

vω(t) =
⇓

2V cos ω(t) ,

vε(t) =
⇓

2V sin ω(t) ,

vϖ = 0 .

(58)
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[1] F. Milano and Á. Ortega, Frequency Variations in Power Systems:

Modeling, State Estimation, and Control. Hoboken, NJ: Wiley, 2020.
[2] IEEE Power System Instrumentation and Measurements Committee,

“IEEE standard definitions for the measurement of electric power
quantities under sinusoidal, non-sinusoidal, balanced, or unbalanced
conditions,” IEEE Std 1459-2010, pp. 1–40, 2010.

[3] H. Kirkham, W. Dickerson, and A. Phadke, “Defining power system
frequency,” in IEEE PES General Meeting, 2018, pp. 1–5.

[4] H. Kirkham, “Measuring bus frequency during transients: Some funda-
mentals,” in IEEE PES General Meeting, 2019, pp. 1–5.

[5] B. Liu, F. Zhuo, Y. Zhu, H. Yi, and F. Wang, “A three-phase PLL
algorithm based on signal reforming under distorted grid conditions,”
IEEE Trans. on Power Electronics, vol. 30, no. 9, pp. 5272–5283, 2014.

[6] G. Escobar et al., “Cascade three-phase PLL for unbalance and harmonic
distortion operation (CSRF-PLL),” in IECON, 2014, pp. 5489–5493.

[7] A. Kulkarni and V. John, “Design of synchronous reference frame phase-
locked loop with the presence of dc offsets in the input voltage,” IET

Power Electronics, vol. 8, no. 12, pp. 2435–2443, 2015.
[8] M. S. Reza et al., “Three-phase PLL for grid-connected power converters

under both amplitude and phase unbalanced conditions,” IEEE Trans. on

Ind. Electronics, vol. 66, no. 11, pp. 8881–8891, 2019.
[9] M. Eskandari and A. V. Savkin, “Robust PLL synchronization unit

for grid-feeding converters in micro/weak grids,” IEEE Trans. on Ind.

Informatics, vol. 19, no. 4, pp. 5400–5411, 2022.
[10] A. Sahoo, J. Ravishankar, and C. Jones, “Phase-locked loop independent

second-order generalized integrator for single-phase grid synchroniza-
tion,” IEEE Trans. on Instr. and Meas., vol. 70, pp. 1–9, 2021.

[11] P. Romano, M. Paolone, J. Arnold, and R. Piacentini, “An interpolated-
DFT synchrophasor estimation algorithm and its implementation in an
FPGA-based PMU prototype,” in IEEE PES General Meeting. IEEE,
2013, pp. 1–6.

[12] J. Song, A. Mingotti, J. Zhang, L. Peretto, and H. Wen, “Fast iterative-
interpolated DFT phasor estimator considering out-of-band interfer-
ence,” IEEE Trans. on Instr. and Meas., vol. 71, pp. 1–14, 2022.

[13] S. Filho et al., “Comparison of three single-phase PLL algorithms for
ups applications,” IEEE Trans. on Ind. Electronics, vol. 55, no. 8, pp.
2923–2932, 2008.

[14] P. Hao, W. Zanji, and C. Jianye, “A measuring method of the single-
phase ac frequency, phase, and reactive power based on the hilbert
filtering,” IEEE Trans. on Instr. and Meas., vol. 56, no. 3, pp. 918–
923, 2007.

[15] S. Reza, M. Ciobotaru, and V. G. Agelidis, “Accurate estimation of
single-phase grid voltage fundamental amplitude and frequency by using
a frequency adaptive linear Kalman filter,” IEEE J. of Emerging and

Selected Topics in Power Elec., vol. 4, no. 4, pp. 1226–1235, 2016.
[16] X. Nie, “Detection of grid voltage fundamental and harmonic com-

ponents using Kalman filter based on dynamic tracking model,” IEEE

Trans. on Ind. Electronics, vol. 67, no. 2, pp. 1191–1200, 2019.
[17] S. Giarnetti, F. Leccese, and M. Caciotta, “Non recursive multi-harmonic

least squares fitting for grid frequency estimation,” Measurement,
vol. 66, pp. 229–237, 2015.

[18] A. Pradhan, A. Routray, and A. Basak, “Power system frequency
estimation using least mean square technique,” IEEE Trans. on Power

Delivery, vol. 20, no. 3, pp. 1812–1816, 2005.
[19] F. Wilches-Bernal, J. Wold, and W. H. Balliet, “A method for correcting

frequency estimates for synthetic inertia control,” IEEE Access, vol. 8,
pp. 229 141–229 151, 2020.

[20] M. Mojiri, M. Karimi-Ghartemani, and A. Bakhshai, “Estimation of
power system frequency using an adaptive notch filter,” IEEE Trans. on

Instr. and Meas., vol. 56, no. 6, pp. 2470–2477, 2007.
[21] F. Milano, “A geometrical interpretation of frequency,” IEEE Trans. on

Power Systems, vol. 37, no. 1, pp. 816–819, 2021.
[22] F. Milano, G. Tzounas, and I. Dassios, “Instantaneous power theory

revisited with classical mechanics,” IEEE Transactions on Circuits

and Systems I: Regular Papers, pp. 1–14, 2024, preprint available at
ieeexplore.ieee.org.

[23] T. Petrila and D. Trif, Basics of Fluid Mechanics and Introduction to

Computational Fluid Dynamics. New York: Springer, 2005.
[24] T. Kambe, Elementary Fluid Mechanics. Singapore: World Scientific,

2007.
[25] B. Jacewicz, Multivector and Clifford Algebra in Electrodynamics.

Singapore: World Scientific, 1989.
[26] F. Milano, G. Tzounas, I. Dassios, and T. Kërçi, “Applications of the
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