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Frequency Participation Factors

Álvaro Ortega, Member, IEEE, Federico Milano, Fellow, IEEE

Abstract— This paper discusses two quantitative and comple-
mentary approaches to evaluate the participation of synchronous
generators and interconnection buses on local bus frequency
variations during electromechanical transients. Both approaches
are based on the concept of frequency divider formula recently
proposed by the authors on these transactions. A thorough
comparison of the two approaches is provided considering several
scenarios and three networks, namely the New England 39-bus
test system, the all-island 1,479-bus Irish transmission system,
and the ENTSO-E 21,177-bus transmission system.

Index Terms— Frequency estimation, frequency measurement,
participation factors, synchronous machines, transient stability
analysis.

I. INTRODUCTION

A. Motivations

The problem of how to define the participation of generators
to losses and transmission rights in transmission systems has
been under intense research for more than two decades [1]–
[10]. The solution of such a problem is particularly relevant
in electricity markets where the costs of the utilization of
the network should be shared among all participants. An
analogous emerging problem, which has not been investigated
so far, is the participation of synchronous machines and nodes
at which the frequency is imposed, e.g., interconnection buses,
to the frequency variations at network buses. To be able to
evaluate such participation is relevant as the high penetration
of non-synchronous, often renewable, generation leads to a
drastic reduction of the inertia and frequency control of the
system [11], [12] and, potentially, to a considerable impact
on the variation and rate of change of the frequency [13]–
[18]. This paper presents a formal procedure to evaluate
frequency participation factors (FPF) and proposes quantitative
tools to define how the inertia present in the system influences
frequency variations at network buses.

B. Rationale and Literature Review

In order to define FPFs, one has first to be able to estimate
how the frequency varies from point to point in the grid. This is
actually not a straightforward task, as the conventional power
system model for transient stability analysis only retains syn-
chronous machine electro-mechanical equations and neglects
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frequency variations in transmission lines, transformers and
loads.

With this aim, in [19]–[21], the authors have proposed and
validated through extensive simulations and comprehensive
case studies the frequency divider formula that, under some
approximations and assumptions, provides an accurate estima-
tion of the frequency variations at every bus of the network
by means of a linear combination of the variations of the rotor
speeds of all synchronous machines operating in the system.

The frequency divider formula involves a matrix (D, ac-
cording to the notation utilized in [19]) which, from a formal
point of view, is structurally similar to the matrix F̄LG defined
in [22], [23], which gives the percentage participation that
each generator has in establishing the no-load voltage at each
bus. Both matrices, in fact, are obtained from the partitioning
or augmentation of the network admittance matrix Ȳbus, as
originally proposed in [24] in the context of voltage stabil-
ity analysis. The observation that matrices D and F̄LG are
formally equivalent leads to the following relevant property,
which originates the present work: the elements of each row
of D are the FPF of each synchronous machine rotor speed (or
any other device and node at which the frequency is imposed)
to the bus frequencies.

In the literature, the concept of participation factors has
been extensively applied to a variety of electrical quantities.
In [10], two analytical expressions, referred to as power

divider laws, are proposed to define the sensitivities of line
current flows to nodal current injections, called current injec-

tion sensitivity factors. The aim of the power divider laws is to
map nodal active- and reactive-power injections to active- and
reactive-power flows on the lines of AC transmission networks.

In [25], the authors propose a Model Predictive Control
(MPC)-based coordinated control for multi-terminal HVDC

grids to ensure power balance in the system while avoiding
current and or voltage limit violations, in a time frame of
seconds/few minutes. To this aim, [25] considers the concept
of power participation factors (PPFs) to update the reference
powers of the converters of the HVDC systems, being the
summation of all PPFs equal to unity.

A MPC-based Automatic Generation Control (AGC) for
secondary frequency control of multi-area power systems is
proposed in [26]. In the optimization problem, participation
factors for all synchronous machines are defined as optimiza-
tion variables to determine the outputs of the AGC that are
distributed to each generator.

Finally, in [27] and [28], the authors propose to evaluate
the sensitivities of voltage and reactive power variations based
on a partition of the Jacobian matrix of the power flow
equations. The voltage participation factors (VPFs) proposed
in these references are computed based on the right and



left eigenvectors of the eigenvalues of such reduced Jacobian
matrix.

To the best of our knowledge, the concept of participation

factors applied to bus frequencies as proposed in this paper,
has not been yet applied in the literature. The proposed FPFs
show relevant differences both conceptually and/or in their
applications with respect to the references above, as follows.

First, the FPFs are not based on eigenvalue analysis as
opposed to the VPFs presented in [27], [28]. Rather, the FPFs
are the components of the linear expressions that relate each
bus frequency to the rotor speeds of synchronous machines.
Then, the proposed FPFs are a consequence of the topology
of the system and machine parameters. Therefore, FPFs cannot
be chosen/modified for/by a controller or any other agent such
as system operators. This is in contrast with the participation
factors described in [25] and [26], as they are chosen based
on the capability of each converter to reschedule their power
flows, and on the result of an optimal control problem,
respectively.

Despite all the aforementioned advantages of matrix D, it
nevertheless shows a significant limitation from the practical
implementation point of view. As the result of the product of a
matrix inverse by another matrix, in fact, D is generally fully
dense, i.e., each bus frequency depends on the rotor speeds of
all machines. It is to be expected, however, that rotor speeds do
not all weight in the same way when calculating the frequency
at a given bus. One thus needs an efficient and robust criterion
to define which elements of the rows of D are most relevant
for the calculation of bus frequencies without loss of accuracy.
To define such a trade-off is the main objective of this paper.

C. Contributions

The contributions of the paper are the following.

• A discussion on the formal equivalence of matrices D

and F̄LG.
• An exhaustive comparison of two approaches proposed

to reduce the density of matrix D while retaining the
accuracy of the bus frequency estimation.

• A comprehensive discussion of a proposed method to
retain the main advantages of robustness and efficiency of
both approaches by means of an appropriate combination.

• A discussion on the practical implications of FPFs.

D. Paper Organization

The remainder of the paper is organized as follows. Sec-
tion II shows the formal equivalence of matrices D and F̄LG

and Section III describes the two proposed approaches to
define most relevant FPFs and, in turn, reduce the density of
matrix D. Section III-C also illustrates the performance of both
approaches by means of the New England 39-bus, 10-machine
test system. An exhaustive case study is provided in Sec-
tion IV, that includes a large number of scenarios considering
the all-island Irish and the ENTSO-E real-world transmission
networks. A discussion of the practical applications of FPFs is
included in Section V. Finally, Section VI draws conclusion
and future work directions.

II. BACKGROUND

This section recalls the formulation of the frequency divider
formula and its equivalence to the F̄LG matrix used in [22]–
[24].

A. Definition and Properties of the F̄LG Matrix

The starting point is the well-known network admittance
matrix Ȳbus, which is discussed in many books, e.g., [29].
This matrix is first partitioned into load (L) and generation
(G) blocks:

Ȳbus =

[

ȲGG ȲGL

ȲLG ȲLL

]

(1)

where ȲGG ∈ CnG×nG , ȲLL ∈ CnL×nL ; ȲGL ∈ CnG×nL ;
and ȲLG ∈ CnL×nG . In this context, load buses are all
buses where there is no generation. Transition buses are thus
assumed to be load buses with zero consumption. If there
are no phase shifting transformers in the grid, then Ȳbus is

symmetrical and, hence, ȲGL = Ȳ
T
LG.

The F̄LG matrix is defined as:

F̄LG = −Ȳ
−1

LLȲLG (2)

which has the following properties: (i) its elements are almost
real-valued; and (ii) its rows sum close to unity. While these
properties have been noticed and exploited in various works,
e.g., [30], [31], it has been only recently, that formal proofs
of such properties have been found [32]. Note that, if ȲLL is
singular, i.e., no shunt elements are present, F̄LG can be still
defined using the Moore-Penrose pseudo-inverse of ȲLL.

B. Definition and Properties of the D Matrix

The frequency divider formula as proposed in [19] is based
on the augmented admittance matrix that is obtained including
the nodes of the emfs (denoted with subscript E) behind the
impedances of the synchronous machines:

[

ȲEE ȲEB

ȲBE Ȳbus + ȲE0

]

(3)

where ȲEE ∈ CnG×nG , ȲE0 ∈ CnB×nB ; ȲEB ∈ CnG×nB ;
and ȲBE ∈ CnB×nG , with nB = nG + nL being the
total number of buses. Matrix ȲE0 is a diagonal matrix
that accounts for the internal impedances of the synchronous
machines at generator buses. Matrix ȲEE is diagonal and
its elements are the inverse of the internal impedances of
the synchronous machines connected at buses G. Finally,

ȲEB = Ȳ
T
BE always holds.

According to the notation of (3), the frequency divider
formula is given by:

∆ωB = D∆ωG (4)

with:

D = −
(

Im{Ȳbus + ȲE0}
)−1

Im{ȲBE} (5)

where ∆ωB are the estimated frequency variations at system
buses and ∆ωG are synchronous machine rotor speed varia-
tions. Matrix Im{Ȳbus+ ȲE0} is full rank if Im{ȲE0} ≠ 0,
which is always satisfied in practice.
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We observe that all hypotheses that are assumed in Theorem
2.1 in [32] and that apply to (1) and (2) also apply to (3) and
(5), respectively. This leads to the conclusion that F̄LG and
D can be shown to have same properties and, hence, the rows
of D sum close to 1. Moreover, D is real by definition, hence
we do not need that the R/X ratio is the same for every
network branch, which is the condition to have a real FLG

(see Proposition 2.1 in [32]).
It is relevant to note that the quantities forming the vector

ωG do not need to be obtained from synchronous machines.
Boundary buses that define the interconnections with external
grids or buses at which the frequency is controlled by large
non-synchronous generators can be used in (4), provided that
accurate frequency measures are available at those buses, e.g.,
by means of phasor measurement unit (PMU) devices. In these
cases, the elements of the matrices ȲBE and ȲE0 are the
inverse of the Thevenin equivalent impedances of such external
networks. The interested reader can find more details in [19].
In the remainder of the paper, without loss of generality, we
will assume that ωG consists of synchronous machine rotor
speed measurements.

III. PROPOSED APPROACHES TO DEFINE RELEVANT FPFS

This section presents the two approaches proposed in this
paper to reduce the density of the frequency divider matrix D

while retaining the accuracy of bus frequency estimation. The
aim of this density reduction is to define the most relevant
FPFs. The features of each approach are duly discussed.

Let σD,i be the summation of the elements of the i-th row of
D. As stated in the previous subsection, the following applies:

σD,i =
nG
∑

j=1

Di,j ≈ 1, ∀i = 1, . . . , nB (6)

Each element Di,j of the frequency divider matrix D thus
represents the FPF – or normalized weight – of the syn-
chronous machine rotor speed or the frequency measurement
ωG,j to the frequency of bus ωB,i.

As anticipated in the introduction, matrix D is dense as it
is obtained from the product of two matrices, one of which
is the inverse of the imaginary part of the admittance matrix,
as shown in (5). Even though the admittance matrix is very
sparse, in fact, the inverse is generally fully dense. Hence, the
FPFs Di,j tends to be all non-zero.

Let dD be the density index of matrix D, such that:

dD = 100 ·
nNNZ

(nG · nB)
(7)

where nNNZ is the number of non-zero elements of D. Accord-
ing to the discussion above, one has, in general, dD ≈ 100%.
For large networks, however, one would expect that generators
that are geographically (and electrically) far away from a given
bus, do not significantly participate to the frequency of that
bus. This intuition is confirmed by the observation that, at least
in large networks, a large number of elements of D are small.
To quantify how small an element has to be such that it can
be safely neglected without compromising the accuracy of the
estimation of bus frequencies, however, is not a trivial task.
In the following subsections, we propose two complementary
approaches to tackle this problem.

A. Approach 1 (A1)

In this approach, the elements of each row i of D are sorted
in descending order according to their magnitudes. Then, the
first, and thus the biggest mi elements of each row of the
sorted matrix D̃ are summed such that:

mi
∑

h=1

D̃i,h < αDσD,i (8)

where αD ∈ [0, 1] is a given threshold. Finally, the reduced
matrix Dr is obtained by setting to zero all elements D̃i,h∗

with h∗ = mi+1, . . . , nB , and rearranging D̃i,h∪h∗ according
to their original positions before the sorting, i.e., Di,j . There-
fore, if αD → 0, the number of elements of D̃, and thus of
D, that are neglected increases. Limits cases are as follows:

Dr =

⎧

⎨

⎩

0 , if αD = 0 ;

D , if αD = 1 .
(9)

Hence, the closer αD is to 0, the sparser and less accurate is
the matrix Dr.

The main advantage of this approach is that it guarantees
at least the specified accuracy of the frequency estimation
at every bus. However, the sorting of D̃, and the evaluation
of (8) must be done for each row, thus leading to a high
computational burden for large networks.

B. Approach 2 (A2)

The reduced matrix Dr is obtained by neglecting all the
elements of D that are below a threshold, as follows:

Dri,j =

⎧

⎨

⎩

0 , if Di,j < ϵD ·max (D);

Di,j , otherwise.
(10)

where max (D) is the maximum value of the elements in D,
and ϵD ∈ [0, 1] is a given parameter and, generally, ϵD ≪ 1.

While this approach is considerably simpler and compu-
tationally more efficient than the previous one, it lacks the
capability to control the desired accuracy of the estimated bus
frequencies as provided by A1. In fact, if the FPFs of ωG

to the frequency of the i-th bus are similar, and if ϵD is too
high, there would be the risk of neglecting several relevant
measures. On the other hand, if ϵD is too low, all FPFs and
thus also non-meaningful ones would be taken into account.
Therefore, a careful, network-based tuning of ϵD is required.

C. Illustrative Example

In this section, the features of the two approaches A1 and
A2 proposed above are illustrated by means of the well-known
New England 39-bus, 10-machine test system [33].

Results are shown in Tables I and II, respectively. Consid-
ering αD = 0.6 and ϵD = 0.123, the density of Dr, dDr

, is the
same for both approaches, and equal to 34.62%. It can be seen
that, despite achieving the same dDr

in both cases, matrix Dr

is substantially different. Note that using A1, the values of the
normalized summations of the rows of Dr over their respective
rows of D, i.e., σDri

/σDi
, are more uniformly distributed than

those using A2. While the minimum σDri
/σDi

obtained using
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TABLE I: Matrix Dr of the 39-bus test system using A1.
αD = 0.6; dDr

= 34.62%.

Generator

Bus 1 2 3 4 5 6 7 8 9 10 σDi

σDri
σDi

1 0 0 0 0 0 0 0 0 0 0.67 1.109 0.604

2 0.3 0 0 0 0 0 0 0.093 0 0.358 1.152 0.652

3 0.236 0 0.085 0 0 0 0 0 0.09 0.35 1.171 0.65

4 0.182 0.098 0.118 0 0 0 0 0 0 0.378 1.171 0.662

5 0.159 0.117 0.126 0 0 0 0 0 0 0.41 1.165 0.697

6 0.157 0.122 0.129 0 0 0 0 0 0 0.407 1.164 0.7

7 0.152 0 0.122 0 0 0 0 0 0 0.436 1.162 0.612

8 0.15 0 0.118 0 0 0 0 0 0 0.451 1.16 0.62

9 0 0 0 0 0 0 0 0 0 0.693 1.115 0.622

10 0.158 0.106 0.162 0 0 0 0 0 0 0.373 1.167 0.685

11 0.158 0.111 0.151 0 0 0 0 0 0 0.385 1.167 0.689

12 0.161 0.108 0.152 0 0 0 0 0 0 0.38 1.175 0.682

13 0.162 0.103 0.152 0 0 0 0 0 0 0.371 1.17 0.674

14 0.172 0.095 0.129 0 0 0 0 0 0 0.362 1.175 0.645

15 0.174 0 0 0.111 0 0.118 0 0 0 0.313 1.181 0.606

16 0.174 0 0 0.123 0 0.13 0 0 0 0.291 1.181 0.608

17 0.197 0 0 0 0 0.111 0 0 0.109 0.308 1.186 0.612

18 0.212 0 0 0 0 0.101 0 0 0.102 0.325 1.182 0.626

19 0.152 0 0 0.205 0 0.113 0 0 0 0.255 1.17 0.62

20 0.139 0 0 0.187 0.109 0 0 0 0 0.233 1.101 0.607

21 0.162 0 0 0 0 0.167 0.13 0 0 0.271 1.176 0.621

22 0.149 0 0 0 0 0.205 0.153 0 0 0.249 1.167 0.649

23 0.148 0 0 0 0 0.184 0.177 0 0 0.248 1.166 0.65

24 0.171 0 0 0.12 0 0.138 0 0 0 0.286 1.18 0.605

25 0.263 0 0 0 0 0 0 0.14 0 0.326 1.166 0.625

26 0.219 0 0 0 0 0 0 0.102 0.194 0.302 1.208 0.676

27 0.209 0 0 0 0 0.097 0 0 0.155 0.306 1.201 0.639

28 0.196 0 0 0 0 0 0 0 0.309 0.27 1.216 0.637

29 0.187 0 0 0 0 0 0 0 0.344 0.258 1.209 0.652

30 0.481 0 0 0 0 0 0 0 0 0.256 1.091 0.675

31 0.128 0.224 0 0 0 0 0 0 0 0.333 1.077 0.636

32 0.13 0 0.254 0 0 0 0 0 0 0.307 1.08 0.639

33 0.13 0 0 0.261 0 0.097 0 0 0 0.218 1.086 0.65

34 0.132 0 0 0.177 0.149 0 0 0 0 0.22 1.087 0.623

35 0.133 0 0 0 0 0.272 0.136 0 0 0.222 1.126 0.677

36 0.128 0 0 0 0 0.159 0.29 0 0 0.214 1.143 0.692

37 0.226 0 0 0 0 0 0 0.241 0 0.279 1.121 0.666

38 0.163 0 0 0 0 0 0 0 0.406 0.225 1.161 0.684

39 0 0 0 0 0 0 0 0 0 0.846 1.062 0.796

TABLE II: Matrix Dr of the 39-bus test system using A2.
ϵD = 0.123; max (D) = 0.846; dDr

= 34.62%.

Generator

Bus 1 2 3 4 5 6 7 8 9 10 σDi

σDri
σDi

1 0.155 0 0 0 0 0 0 0 0 0.67 1.109 0.743

2 0.3 0 0 0 0 0 0 0 0 0.358 1.152 0.571

3 0.236 0 0 0 0 0 0 0 0 0.35 1.171 0.501

4 0.182 0 0.118 0 0 0 0 0 0 0.378 1.171 0.579

5 0.159 0.117 0.126 0 0 0 0 0 0 0.41 1.165 0.697

6 0.157 0.122 0.129 0 0 0 0 0 0 0.407 1.164 0.7

7 0.152 0.115 0.122 0 0 0 0 0 0 0.436 1.162 0.711

8 0.15 0.111 0.118 0 0 0 0 0 0 0.451 1.16 0.716

9 0 0 0 0 0 0 0 0 0 0.693 1.115 0.622

10 0.158 0.106 0.162 0 0 0 0 0 0 0.373 1.167 0.685

11 0.158 0.111 0.151 0 0 0 0 0 0 0.385 1.167 0.689

12 0.161 0.108 0.152 0 0 0 0 0 0 0.38 1.175 0.682

13 0.162 0 0.152 0 0 0 0 0 0 0.371 1.17 0.585

14 0.172 0 0.129 0 0 0 0 0 0 0.362 1.175 0.564

15 0.174 0 0 0.111 0 0.118 0 0 0 0.313 1.181 0.606

16 0.174 0 0 0.123 0 0.13 0.107 0 0 0.291 1.181 0.699

17 0.197 0 0 0.105 0 0.111 0 0 0.109 0.308 1.186 0.701

18 0.212 0 0 0 0 0 0 0 0 0.325 1.182 0.454

19 0.152 0 0 0.205 0 0.113 0 0 0 0.255 1.17 0.62

20 0.139 0 0 0.187 0.109 0 0 0 0 0.233 1.101 0.607

21 0.162 0 0 0.114 0 0.167 0.13 0 0 0.271 1.176 0.718

22 0.149 0 0 0.105 0 0.205 0.153 0 0 0.249 1.167 0.739

23 0.148 0 0 0.105 0 0.184 0.177 0 0 0.248 1.166 0.74

24 0.171 0 0 0.12 0 0.138 0.117 0 0 0.286 1.18 0.705

25 0.263 0 0 0 0 0 0 0.14 0.114 0.326 1.166 0.723

26 0.219 0 0 0 0 0 0 0 0.194 0.302 1.208 0.592

27 0.209 0 0 0 0 0 0 0 0.155 0.306 1.201 0.558

28 0.196 0 0 0 0 0 0 0 0.309 0.27 1.216 0.637

29 0.187 0 0 0 0 0 0 0 0.344 0.258 1.209 0.652

30 0.481 0 0 0 0 0 0 0 0 0.256 1.091 0.675

31 0.128 0.224 0.106 0 0 0 0 0 0 0.333 1.077 0.735

32 0.13 0 0.254 0 0 0 0 0 0 0.307 1.08 0.639

33 0.13 0 0 0.261 0 0 0 0 0 0.218 1.086 0.561

34 0.132 0 0 0.177 0.149 0 0 0 0 0.22 1.087 0.623

35 0.133 0 0 0 0 0.272 0.136 0 0 0.222 1.126 0.677

36 0.128 0 0 0 0 0.159 0.29 0 0 0.214 1.143 0.692

37 0.226 0 0 0 0 0 0 0.241 0 0.279 1.121 0.666

38 0.163 0 0 0 0 0 0 0 0.406 0.225 1.161 0.684

39 0 0 0 0 0 0 0 0 0 0.846 1.062 0.796

A1 is 0.604 at bus 1 highlighted in light gray in Table I, one
can find 9 buses with equal or lower σDri

/σDi
in Table II,

namely 2, 3, 4, 13, 14, 18, 26, 27, and 33. In fact, in buses
3 (σDr3

/σD3
= 0.501) and 18 (σDr18

/σD18
= 0.454), these

values are 17.1% and 24.8% lower than 0.604, respectively.
On the other hand, while only 2 buses have a σDri

/σDi
≥ 0.7

using A1, highlighted in dark gray in Table I, this number
increases to 12 in the case of A2. This means that, using A1,
one can estimate not only the frequency at a given bus, but
also the accuracy of such a signal. On the other hand, A2 leads
to a higher uncertainty of the accuracy of the estimated signal
with respect to the full matrix D.

IV. CASE STUDIES

In this section, two real-world systems are considered,
namely, a 1,479-bus model of the all-island Irish transmission
system; and a 21,177-bus model of the ENTSO-E transmission
system. These systems are used to compare the accuracy
and computational efficiency of the two proposed approaches
to define the most relevant FPFs, namely A1 and A2. The
topology and the steady-state data of both systems are based on
the actual real-world systems provided by and the Irish TSO,
EirGrid, and ENTSO-E,1 respectively. However, dynamic data

1ENTSO-E system data have been licensed to the second author by ENTSO-
E. Data can be requested through an on-line application at www.entsoe.eu.

are guessed based on the knowledge of the technology of
power plants.

All simulations and plots presented in this section were
obtained using the software tool Dome [34] running on a 4
core 2.60 GHz Intel c⃝ Core i7TM with 8 GB of RAM.

A. Irish Transmission System

This subsection considers a dynamic model of the all-
island Irish transmission system. This includes 1,479 buses,
1,851 transmission lines and transformers, 245 loads, 22
conventional synchronous power plants modeled with 6th

order synchronous machine models with AVRs and turbine
governors, 6 PSSs and 176 wind power plants, of which 34 are
equipped with constant-speed (CSWT) and 142 with doubly-
fed induction generators (DFIG).

1) Sensitivity Analysis: Figure 1 shows the density dDr
of

matrix Dr using A1 and A2 for a range of values of αD and
ϵD, respectively, with increments of 0.01.

Figure ?? shows a saturation at αD ≈ 0.7, from which
dDr

increases faster with αD. This indicates that the FPFs of
the synchronous machine rotor speeds of the system have a
similar weight, due to the short electrical distances between
the generation buses with the rest of the grid that characterize
the Irish system. Thus, one must take into consideration a high
number of elements of D in order to obtain a good accuracy
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TABLE III: FPFs of the generators of the Irish system to the bus frequencies. Top: A1 (αD = 0.75). Bottom: A2 (ϵD = 0.04).

Generator Bus 715 699 682 857 989 953 987 988 1283 756 992 1221 505 1220 993 1353 1174 1011 1013 1143 1010 1012

Number of

Participations 1468 1459 1432 1256 1224 1214 888 746 534 513 457 455 422 342 316 218 160 29 29 18 5 5

Average

FPF 0.086 0.066 0.155 0.085 0.057 0.061 0.05 0.054 0.038 0.055 0.064 0.034 0.049 0.033 0.07 0.044 0.024 0.052 0.052 0.163 0.14 0.14

Generator Bus 715 682 699 857 989 953 987 988 756 992 505 993 1283 1221 1220 1353 1010 1011 1012 1013 1174 1143

Number of

Participations 1234 1231 1228 1177 1170 1154 1140 1104 717 548 533 526 442 288 181 102 82 82 82 82 21 18

Average

FPF 0.099 0.178 0.075 0.089 0.064 0.063 0.049 0.049 0.05 0.059 0.046 0.057 0.041 0.038 0.049 0.068 0.038 0.038 0.038 0.038 0.079 0.163
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Fig. 1: Density of matrix Dr of the Irish transmission system. (a)
A1; αD ∈ [0, 1]. (b) A2; ϵD ∈ [0, 1].

from Dr. On the other hand, Fig. ?? shows a stiff saturation
for ϵD ∈ [0, 0.1]. This indicates that the value of most elements
of D are very small and of similar magnitude.

2) Evaluation of FPFs: Subsection III-C illustrates the fact
that, for similar densities dDr

, A2 shows a higher variance of
the normalized summations of the FPFs, σDri

/σDi
, than A1.

This is shown in Fig. 2, where the histograms of σDri
/σDi

for all buses of the Irish system using A1 (Fig. ??) and A2
(Fig. ??) are depicted. The chosen values of αD and ϵD are
0.75 and 0.04, which imply densities of 40.5% and 40.4%,
respectively.

Figure ?? shows that, using A1, σDri
/σDi

is always greater
than αD = 0.75 (marked with a vertical dotted line), and
that the number of buses with values greater than 0.8 is very
small. Using A2, such a distribution is more spread, and a
large number of buses have σDri

/σDi
lower than 0.75 or higher

than 0.8. Moreover, some buses have σDri
/σDi

= 0, meaning
that all FPFs of the ωG at such buses are very similar and of
small value, and have been neglected in the computation of
Dr, leaving a null row in the matrix.
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Fig. 2: Histograms of the normalized summations of the FPFs of the
Irish transmission system for dDr

≃ 40.5%. (a) A1; αD = 0.75. (b)
A2; ϵD = 0.04.

3) Most Significant Measures: When using the dense ma-
trix D, from the mathematical point of view, all ωG’s are
needed in the estimation of the frequency variations at system
buses, in the sense that all of them contribute to every ωB,i

in some measure. However, the reduced matrix Dr allows
determining which elements of ωG are most significant for
the frequency estimation. To this aim, for a given αD or
ϵD, one can determine the number of times a certain ωG,j

contributes in matrix Dr, and/or its average FPF. This is
shown in Table III, where the number of FPFs, and their
average values, are listed when using A1 (αD = 0.75) and
A2 (ϵD = 0.04).

The columns of Table III have been sorted in descending
order according to the total number of non-null FPFs of each
generator in Dr. The 6 generators with the highest average
value have been highlighted in gray (the darker, the higher).

An important remark from Table III is that the most relevant
generators are those located in buses 682, 715, 857, 699, 989
and 953, regardless of the approach used. This indicates that,
from the practical point of view, it is important to have an
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accurate and reliable measure of at least the rotor speeds
of these machines, or of the frequency variations at these
generator buses recorded with PMUs.

4) Dynamic Analysis: In this subsection, the accuracy of
matrix Dr computed using A1 and A2 for different values of
αD and ϵD is studied by means of time domain simulations
(TDSs). To this aim, a three-phase fault is simulated at t = 0.5
s, and cleared after 250 ms by disconnecting the line.

Figure ?? shows the frequency estimated at a bus where a
wind power plant is installed, for different values of αD, and
their respective densities dDr

. The absolute errors ϵω between
the trajectories and the ideal case, i.e., using the full matrix
D, are depicted in Fig. ??. The frequency of the center of
inertia, ωCOI, is also included as a limit case for the desired
accuracy of Dr. It can be seen that, while the density of matrix
Dr can be reduced considerably with the A1, it nevertheless
captures the local frequency oscillations with a high level
of accuracy. Note that, in any case considered, the reduced
frequency divider formula outperforms the accuracy of the
ωCOI widely-used in these type of studies.

A similar analysis has been performed using A2, and results
are shown in Fig. ??. The values of ϵD have been chosen
such that the respective densities dDr

are similar to the A1
scenario. In this case, a better accuracy of the estimation of the
frequency at the bus is obtained for equivalent dDr

. However,
if other buses are to be analysed, one must take into account
the uncertainty that characterizes the accuracy of A2 discussed
in Section III-C.

5) Computational Efficiency: The last analysis carried out
in the Irish system concerns the computational burden of the
two proposed approaches. The CPU times required to initialize
the full set of differential algebraic equations (DAEs), and
to complete the TDSs of the scenarios described in Subsec-
tion IV-A.4 above, are listed in Table IV. The initialization of
the full set of DAEs includes the computation of the power
flow analysis, and of the reduced matrix Dr. The implicit
trapezoidal method is used for the time integration, with a
time step of 0.01 s, and each integration step is solved with
the dishonest Newton-Raphson method [29].

TABLE IV: Computational times in seconds of the two approaches
studied. Left: A1. Right: A2.

αD

Init. of
TDS

full DAEs

0.95 0.1355 4.0445

0.9 0.1222 3.8408

0.8 0.1157 3.6970

0.6 0.1031 3.5750

ϵD
Init. of

TDS
full DAEs

0.012 0.1103 3.8216

0.02 0.1037 3.6604

0.035 0.0851 3.4736

0.06 0.0832 3.3643

It can be seen that A2 is slightly more efficient than A1.
Both approaches show a similar sensitivity to the density
reduction, being considerably faster for lower dDr

. This is also
reflected in the TDSs, since matrix Dr needs to be computed
twice during the simulation (one at the initialization, and
another one after the line disconnection due to the change
in the system topology).
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Fig. 3: Frequency estimated at a non-synchronous generation bus of
the Irish system facing a three-phase fault using A1. (a) Trajectories.
(b) Error.
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Fig. 4: Frequency estimated at a non-synchronous generation bus of
the Irish system facing a three-phase fault using A2. (a) Trajectories.
(b) Error.

B. ENTSO-E Transmission System

This subsection considers a dynamic model of the
ENTSO-E transmission system. The model includes 21,177
buses (1,212 off-line); 30,968 transmission lines and trans-
formers (2,352 off-line); 1,144 coupling devices, i.e., zero-
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impedance connections (420 off-line); 15,756 loads (364 off-
line); and 4,832 power plants. Of these power plants, 1,160
are off-line. The system also includes 364 PSSs.

The size of matrix D, including the off-line buses and power
plants, is thus (21,177×4,832), with a density dD = 84.21%.
This means that, on average, the estimation of the frequency
variations of each bus depend on more than 4,000 power plants
with synchronous machines. From the practical point of view,
it is clearly not realistic to assume such a dependency, and the
need of a reduction of matrix D density becomes apparent.

To demonstrate that one does not require to retrieve the
information of such a large number of generator rotor speeds to
estimate the frequency variations at a certain bus, a sensitivity
analysis of the ENTSO-E system similar to the one performed
in Subsection IV-A.1 is carried out, and results are shown
in Fig. 5. In this case, the depicted intervals αD ∈ [0.8, 1]
and ϵD ∈ [0, 0.01] have been split into 50 segments with
logarithmic increments in order to better capture saturation.

The curves show very stiff saturations, confirming the
intuition that the only a small number of generator rotor
speeds have significant weights (from Fig. ??), and that a very
high percentage of these weights are extremely small (from
Fig. ??).

In order to ensure a minimum σDri
/σDi

of, e.g., 0.75
using A1 (i.e., αD = 0.75), it is required a density dDr

=
1.48%. However, the time needed to initialize the set of DAEs
(including the computation of matrix Dr) using A1 is 37.021 s.
On the other hand, this time is reduced to 8.123 s when using
A2 to obtain the same dDr

(ϵD = 0.0042). As opposed to using
A1, the minimum σDri

/σDi
of 0.75 can not be guaranteed

using A2, and a significant number of buses are below this
threshold as shown in Fig. 6.

Therefore, one must choose a trade-off between two crucial
aspects such as accuracy and speed of computation. To solve
this issue, A1 and A2 can be combined to take advantage of
the accuracy achieved with the former, and the computational
efficiency of the latter. Combining A1 and A2 consists of the
following steps. A2 is firstly applied with a relatively low
ϵD. The aim is to reduce considerably dDr

without implying a
relevant impact on the accuracy of the estimations, as observed
from Fig. 5. In this way, the computational burden of the
sorting and calculation of (8) can be considerably reduced.
Finally, A1 can be then applied with the desired αD.

The effectiveness of the combined approach is considered
below. A2 is applied first with ϵD = 0.0007 and dDr

is reduced
from the initial 84.21% to 4.45%. As expected, the accuracy
has not been deteriorated significantly, as shown in Fig. 7,
where all σDri

/σDi
are above 0.9. A1 is then applied with

αD = 0.75, with a resulting dDr
= 1.48% and with a similar

distribution of σDri
/σDi

to the one shown in Fig. ??. However,
the computational time required to initialize the set of DAEs
has been reduced from 37.021 s to 18.772 s.

C. Discussion of Results

Based on the results presented in Section IV, the following
remarks on the proposed approaches are relevant.

i. Only A1 guarantees the desired accuracy of the frequency
estimation at every bus of the network. This is particularly
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Fig. 5: Density of matrix Dr of the ENTSO-E transmission system.
(a) A1; αD ∈ [0.8, 1]. (b) A2; ϵD ∈ [0, 0.01].
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Fig. 6: Histograms of the normalized summations of the FPFs of the
ENTSO-E transmission system for dDr

= 1.48%. (a) A1; αD =
0.75. (b) A2; ϵD = 0.0042.

relevant for applications such as dynamic and/or real-time
studies, control design, etc.

ii. The applicability of A2 becomes evident in studies that
involve very large systems such as the ENTSO-E, due
to the simplicity and computational efficiency of this
approach.
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Fig. 7: Histogram of the normalized summations of the FPFs of the
ENTSO-E transmission system using A2.

iii. Both A1 and A2 provide similar information about
the subset of generators and/or PMU measurements that
mostly participate to estimate local frequencies.

iv. A trade-off between computational efficiency and accu-
racy can be obtained when combining both approaches.
The combination can allow carrying out dynamic/real-
time studies considering very large systems.

V. FINAL REMARKS ON THE FPFS

In Section IV, it has been demonstrated that one does not
need to take into account of the fully dense D matrix, but
only a very reduced number of elements of such a matrix, to
accurately estimate the frequency at every bus of the network
in the event of a severe contingency.

The assumption that every bus frequency depends on all
synchronous machines, while mathematically correct, is far
from convenient in practice, specially if large networks are to
be studied. In this vein, Section IV also demonstrates that one
can find the most relevant FPFs of every bus frequency signal
accurately and efficiently by means of an appropriate combi-
nation the two approaches presented in the paper, namely A1
and A2. As a result, this combination allows the application
of the proposed FPFs even for very large, real-world networks
such as the ENTSO-E transmission system.

It is also important to remark that the study of the sys-
tem FPFs is only relevant in the time frame of transient
stability analysis (i.e., up to few tens of seconds after a
large disturbance), as all local bus frequencies will tend to
the synchronous frequency after such a time frame (if no
instabilities occur).

In particular, accurately defining these FPFs has a significant
impact on the following areas.

• Frequency Stability and Control: analogously to the tech-
niques aimed at improving voltage stability that are based
on bus VPFs, e.g., [22]–[24], [30], [31], FPFs can be
used to determine the buses that are most significant for
frequency control, e.g., pilot buses as those defined for
voltage control (see, for example, [35] and, more recently,
[36]).
FPFs can be also utilized for sensitivity analysis, similarly
to the participation factors proposed in [27], to determine
which rotor speed mostly affect bus frequency deviations.

In fact, differentiating the frequency divider formula (4),
one obtains:

∂ωB,i

∂ωG,j
= Di,j , (11)

i.e., the sensitivity of the frequency at bus i with respect
to the rotor speed of machine j is given by the element
(i, j) of matrix D.
Note that, despite the aforementioned analogies between
VPFs and FPFs, the applications of both types of partici-
pation factors lie in significantly different time frames: up
to tens of minutes for the former, and up to few seconds
for the latter. In fact, FPFs can be particularly relevant for,
e.g., Rate of Change of Frequency (RoCoF) evaluation,
fast frequency control of non-synchronous generation,
and identification of weak areas of the system in terms
of inertial response of synchronous machines.

• Frequency State Estimation: FPFs are useful to design a
redundant set of measurements to guarantee a proper sys-
tem frequency estimation in the event of, e.g., malfunc-
tioning of PMU devices, saturation of the communication
system, etc.

VI. CONCLUSIONS

The paper discusses two quantitative approaches to evaluate
the participation of generators and interconnection buses to
the estimation of bus frequencies. These FPFs are relevant for
several practical applications, such as the definition of weak
areas, from the point of view of the frequency regulation, of
the network and frequency state estimation.

The case studies prove the intuition that, in real-world
transmission systems, only a reduced number of generators
contribute to the frequency of a given bus of the network. Re-
sults based on the ENTSO-E system also show that combining
the two proposed approaches together leads to an accurate and
computationally efficient method.

Future work will focus on the definition of suitable control
schemes and state estimation techniques based on FPFs.
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