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Abstract—This paper proposes the use of participation factors
of complex frequency variables to study the propagation of
oscillations in power systems. The method combines the recently
proposed concept of complex frequency with modal participation
analysis to derive a novel metric that locates the sources of
oscillations in the system and tracks their spatial propagation.
The proposed approach allows isolating the variables more
sensitive to oscillations, bus voltage or frequency, thus facilitating
the selection of corrective actions. The validity of the theoretical
results and the scalability of the method are supported with
extensive simulations performed for test networks of various sizes
and with both conventional and inverter-based generation.

Index Terms—Modal propagation, power system oscillations,
inverter-based resources (IBRs), small-signal stability analysis,
participation factors (PFs), complex frequency (CF).

I. INTRODUCTION

A. Motivation

The wide geographic dispersion and strong coupling of fre-
quency/voltage dynamics of Inverter-Based Resources (IBRs)
makes challenging the tracking of the propagation of oscil-
lations, the isolation of the components responsible for their
initiation, and hence, the design of efficient solutions for their
mitigation. This paper proposes a computational tool for the
study of frequency oscillation propagation in systems with
high proliferation of IBRs. The proposed technique builds on
the concept of complex frequency, first proposed in [1], and
combines it with modal participation analysis.

B. Literature Review

A central problem for the security of low-inertia systems is
understanding converter-driven frequency oscillations and the
degree of their propagation in the network. In this regard, a
well-known approach to study the propagation of frequency
oscillations in a synchronous machine dominated system is
modeling lines and generators as a distributed continuum
and representing oscillations with traveling waves [2–4]. The
major shortcomings of this approach are its highly topology-
dependent accuracy (i.e. the accuracy varies significantly
between radial and meshed networks), as well as its need
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for significant model simplifications. An alternative contin-
uum model that overcomes these limitations was recently
introduced based on the frequency divider, which provides
estimations of frequency variations across a transmission net-
work [5, 6]. Other methods focus on oscillation source local-
ization [7–9]. These methods have been partially driven by
the development and widespread use of synchronized phasor
measurement units.

The starting point of the present work is an application
of the concept of Complex Frequency (CF), which has been
recently proposed by the last author of this paper in [1]. The
CF generalizes the frequency divider and links, using minimal
approximations, the factors affecting frequency transients,
complex bus power injections and their rate of change. The
application of the CF has been extended to variables and
signals other than voltages, including e.g. current injections
and control references of power converters [10]. The CF has
been also used as a tool to evaluate the transient performance
of IBRs [11], to estimate the inertia provided by virtual power
plants [12], to draw an equivalency between complex droop
and virtual oscillator controls [13], and to design a virtual
impedance control for IBRs [14]. Finally, it has been recently
leveraged for the modelling of hybrid AC/DC systems [15].

C. Contributions

This paper employs the CF concept to investigate the
propagation of frequency oscillations in power networks using
the generalized model analysis proposed in [16].

The specific contributions of the paper are the following:
• Complex Frequency Participation Factors (CFPFs) are

proposed as a novel computational tool for modal prop-
agation analysis of power networks.

• The proposed tool is employed to study the propagation
of oscillations in systems with high penetration of IBRs.

The proposed method expands on the traditional Participation
Factor (PF) analysis, which can reveal potential oscillation
sources but is unable to track their propagation across the
network. Additionally, the analysis provides information re-
garding the oscillation type, i.e. if oscillations affect the
voltage magnitude, frequency or both. The provided infor-
mation facilitates the selection of targeted corrective actions,
for example the need for tuning problematic devices or the
optimal placement of network efficiency enhancing assets,
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e.g. STATCOMS. The theoretical results of this work are
supported by comprehensive analysis of systems of different
sizes and for various operating conditions and scenarios.

D. Paper Organization

The remainder of the paper is organized as follows. Sec-
tion II recalls the definition of CF and its application to the bus
voltages of a power system. Section III presents the proposed
approach to study the propagation of oscillations in a power
network through participation analysis of complex frequency
variables. Section IV presents two case studies based on the
two-area system and the Irish transmission system, respec-
tively. Finally, conclusions are drawn in Section V.

II. COMPLEX FREQUENCY PRELIMINARIES

In this section, we recall the mathematical definition of the
CF concept, first proposed in [1], and describe its application
to the bus voltages of a dynamic power system model. The
CFs of bus voltages will be used in following sections for the
calculation of CFPFs and for modal propagation analysis.

A. Complex Frequency Definition

Any complex quantity, say v̄, can be written in polar
coordinates as:

v̄ = v eȷ θ , (1)

where ȷ is the imaginary unit. If we define u = ln(v), v > 0,
then (1) becomes:

v̄ = eu+ȷ θ . (2)

If v̄ is a function of time, then the derivative of (2) leads to:

˙̄v = (u̇+ ȷ θ̇) eu+ȷ θ = (u̇+ ȷ θ̇) v̄ . (3)

In [1], expression (3) is applied to the bus voltages of an ac
power grid written as Park vectors, namely, as time-dependent
complex quantities that utilise the dq-axis components of the
Park reference frame rotating at constant angular speed ωo, i.e.:

v̄p = vd + ȷ vq . (4)

Differentiating (1) and (4) and taking into account the rotation
of the Park reference frame, one has:

ω = θ̇ =
vdv̇q − vq v̇d

v2
+ ωo , (5)

ρ = u̇ =
v̇

v
=

vdv̇d + vq v̇q
v2

, (6)

where ω is the conventional instantaneous frequency of a time-
varying voltage and ρ can be defined as an instantaneous
bandwidth [17]. Alternatively, one can interpret ω and ρ as
azimuthal and radial speeds, respectively, that describe the
rotation and translation of a trajectory [18]. From (3), (5) and
(6), the voltage time derivative can be written as:

˙̄v = (ρ+ ȷ ω) v̄ = η̄ v̄ , (7)

where η̄ is the Complex Frequency (CF) of the voltage [1].

B. Bus Voltage Complex Frequencies in a Power System

A power system model for short-term dynamic studies can
be formed as a set of Differential-Algebraic Equations (DAEs):

ẋ = f(x,y) ,

0m,1 = g(x,y) ,
(8)

where x = x(t) : [0,∞) → Rn and y = y(t) : [0,∞) → Rm

are column vectors of state and algebraic variables, respec-
tively; f : Rn+m → Rn and g : Rn+m → Rm are nonlinear
functions; 0m,1 is the zero matrix of dimensions m× 1.

In DAEs (8) that describe the dynamic behavior of the
system, bus voltages (either magnitudes and phase angles or
dq-axis components) are generally represented as algebraic
variables. Hence, the calculation of CFs of the bus voltages
requires the definition of the voltages as functions of the
states of the system i.e., v̄(x). However, such expressions
cannot be obtained explicitly. We deal with this problem by
taking advantage of a property of the CF, i.e. it can always
be obtained as the solution of a set of linear – possibly time-
varying – equations, despite (8) being nonlinear. This property
is demonstrated below.

Let us consider the current injections at the network buses,
say ı̄. These are linked to the bus voltages through the well-
known admittance matrix Ȳ :

ı̄ = Ȳ v̄ . (9)

If the network has ν buses, then, ı̄ and v̄ are ν×1 vectors and
Ȳ is a ν×ν matrix. Let us also assume that the elements of the
voltage and current vectors are the time-dependent components
of the dq-axis Park reference frame. Finally, we also assume
that the elements of the admittance matrix Ȳ are constant,
or, equivalently, that the fast dynamics of the transmission
lines and transformers are negligible. One should note that this
assumption is the only requirement for the calculation of bus
voltage CFs in this work and no other assumption regarding the
network topology is necessary. Attempts to lift this assumption
have also been recently reported in the literature [15]. Then,
from (7), the time derivative of (9) is:

˙̄ı = Ȳ (η̄ ◦ v̄) = Ȳ V̄ η̄ = Ī η̄ , (10)

where ◦ indicates the Hadamard product of two vectors; V̄ =
diag(v̄); and Ī = Ȳ V̄ .

The elements of the current injections ı̄ are, in general,
functions of state and algebraic variables. For the sake of
derivation, it is convenient to separate the dq-axis components
vd and vq of the bus voltages from other algebraic variables.
Let us indicate with ŷ the remaining algebraic variables so that
y = (ŷ,vd,vq) := [ŷ⊺,v⊺

d ,v
⊺
q ]

⊺ (where ⊺ is the transpose).
Since the network has ν buses, vd and vq are ν × 1 vectors
and ŷ is a (m− 2ν)× 1 vector. Then, we can write:

ı̄ = ı̄(x, ŷ,vd,vq) , (11)

and differentiation with respect to time gives:

˙̄ı = ı̄x ẋ+ ı̄ŷ ˙̂y + ı̄vd
v̇d + ı̄vq

v̇q . (12)
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From (8), the time derivative of the full column vector of
algebraic variables can be written as:1

ẏ = −g−1
y gxẋ = Gẋ , (13)

where G has dimensions m × n. The submatrix Ĝ, with
dimensions (m − 2ν) × n, formed with the rows of G that
correspond to the subset of algebraic variables ŷ, gives:

˙̂y = Ĝ ẋ . (14)

Then, observe that the time derivatives of vd and vq can be
written as functions of vd and vq as well as of the components
ρ and ω of the complex frequency, as follows:

v̇d = V d ρ− V q ω ,

v̇q = V q ρ+ V d ω ,
(15)

where V d = diag(vd) and V q = diag(vq).
Merging (10), (12), (14) and (15) and splitting real and

imaginary parts, one obtains:

χ = B ẋ , (16)

where χ = (ρ, ω), and B has dimensions 2ν ×n and can be
obtained as:

B = H−1K . (17)

Matrix H has dimensions 2ν × 2ν and its order is twice the
number of buses of the grid. H has the following structure:

H =

[
Re{Ī} −Im{Ī}
Im{Ī} Re{Ī}

]
−
[
Re{Ī1} Re{Ī2}
Im{Ī1} Im{Ī2}

]
, (18)

with

Ī1 = ı̄vd
V d + ı̄vq

V q ,

Ī2 = ı̄vq
V d − ı̄vd

V q .

Finally, the 2ν × n matrix K is:

K =

[
Re{ı̄x}+Re{ı̄ŷ}Ĝ
Im{ı̄x}+ Im{ı̄ŷ}Ĝ

]
. (19)

Equations (16)-(19) describe the analytical derivation of the
bus voltage CFs as a solution to a linear, time-varying set of
equations. More information regarding the calculation of the
CF can be found in [1].

III. COMPLEX FREQUENCY PARTICIPATION FACTORS

In this section, we first recall standard small-signal stability
analysis using modal participation factors in the classical
sense. We then present the proposed approach to study the
propagation of dynamic modes in power networks through
participation factor analysis of complex frequency variables,
which is the main contribution of this work. Finally, the
similarities and differences with classical PF analysis are
highlighted via an example test case.

1Note that (13) requires that gy is invertible not only at an equilibrium
point, but at every instant t along the flow of the solution of (8).

A. Classical Small-Signal Stability Analysis

Consider that an equilibrium (xo,yo) of (8) is known. Then,
small-disturbance analysis permits linearization of (8) around
the equilibrium, as follows:

˙̃x = fxx̃+ fyỹ , (20)

0m,1 = gxx̃+ gyỹ , (21)

where x̃ = x − xo, ỹ = y − yo; and fx, fy , gx, gy are
Jacobian matrices at (xo,yo). From (21) and assuming that
gy is full rank, we get that:

ỹ = −g−1
y gxx̃ , (22)

and by substituting (22) in (20), we arrive to the following set
of linear ordinary differential equations:

˙̃x = Ax̃ , (23)

where A = fx − fyg
−1
y gx. The general solution of (23) is:

x̃(t) = U eJt Wx̃(0) , (24)

where U is modal matrix with columns n right eigenvec-
tors; W is modal matrix with rows n left eigenvectors, i.e.
U =

[
u1 u2 . . . un

]
, W =

[
w⊺

1 w⊺
2 . . . w⊺

n

]⊺
;

eigenvectors are normalized so that wiui = 1; J is the
system’s Jordan matrix defined as J = WAU and eJt its
matrix exponential. Then, system (23) is asymptotically stable
if for t → ∞, x̃(t) → 0n,1. This is true if and only if all
diagonal elements of J (i.e. the eigenvalues of the state matrix
A) have negative real parts.

Under the assumption that all eigenvalues λi, i = 1, 2, . . . , n
of A have equal algebraic and geometric multiplicities2, J is
diagonal and the evolution of the k-th element of x̃ is:

x̃k(t) =

n∑
i=1

eλit wi x̃(0)uki , (25)

where with uki, wik we denote the k-th elements of ui, wi,
respectively. Moreover, by exciting in the k-th differential
equation the k-th state, e.g. by applying the initial conditions
x̃k(0) = 1, and x̃h(0) = 0, h ̸= k [20], we get:

x̃k(t) =

n∑
i=1

wik uki e
λit =

n∑
i=1

p
[x]
ki e

λit , (26)

where:
p
[x]
ki = wik uki , (27)

is known as mode-in-state participation factor and is a clas-
sical measure of the relative contribution of the i-th dynamic
mode (as represented by the eigenvalue λi) in the evolution
of the k-th state variation x̃k(t). Then, the matrix

Px = (p
[x]
ki )1≤(k,i)≤n , (28)

is the system’s mode-in-state participation matrix.

2Note that this comes with simplicity but with no loss of generality. For the
general case of a dynamical system that includes eigenvalues whose geometric
multiplicity ̸= algebraic multiplicity, the interested reader is referred to [19].
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B. Proposed Complex Frequency Participation Factors

Consider a set of µ defined state-space system outputs. The
k-th output zk ∈ R, 1 ≤ k ≤ µ, is defined as a nonlinear
function of the system’s states, as follows:

zk = h(x,y) , 1 ≤ k ≤ µ ,

where h : Rn → R. Differentiation around (xo,yo) gives:

z̃k = hxx̃+ hyỹ , 1 ≤ k ≤ µ , (29)

where hx, hy are the gradients with respect to state and
algebraic variables, respectively. Using (22) in (29) yields:

z̃k = ck x̃ = ck1 x̃1 + ck2 x̃2 + . . .+ ckn x̃n , (30)

where ck = hx − hyg
−1
y gx, ck ∈ R1×n. Equivalently:

z̃k = ck1

n∑
i=1

p
[x]
1i e

λit+ck2

n∑
i=1

p
[x]
2i e

λit+. . .+ckn

n∑
i=1

p
[x]
ni e

λit

or:

z̃k =

n∑
i=1

(ck1 p
[x]
1i +ck2 p

[x]
2i +. . .+ckn p

[x]
ni ) e

λit =

n∑
i=1

p
[z]
ki e

λit

where we define

p
[z]
ki = ck1 p

[x]
1i + ck2 p

[x]
2i + . . .+ ckn p

[x]
ni , (31)

as the mode-in-output participation factor. The quantity p
[z]
ki

determines the relative contribution of the i-th dynamic system
mode in the evolution of the l-th system output z̃l(t). To
ensure that the participation factors that correspond to different
outputs are comparable independently of their units and gains,
(31) is normalized, as follows:

p̂
[z]
ki =

ck1 p
[x]
1i + ck2 p

[x]
2i + . . .+ ckn p

[x]
ni

||ck||
, (32)

where || · || denotes the Euclidean norm.
Assembling all µ system output rows in a single matrix

C =
[
c⊺1 c⊺2 . . . c⊺µ

]⊺
, the participation matrix Pz corre-

sponding to the output column vector:

z̃ = C x̃ , (33)

is
Pz = C Px , (34)

where Pz = (p̂
[z]
ki )1≤k≤µ,1≤i≤n, is called the system’s mode-

in-output participation matrix.
An important special case for the ouput matrix is C =

−g−1
y gx, for which Pz corresponds to the participation matrix

Py of the system’s algebraic variables [16]:

Py = −g−1
y gx Px . (35)

We proceed to define the proposed participation factors
of complex frequency variables. To this aim, we note that
equation (16) is valid at any point of a transient, including
equilibria. At an equilibrium, merging (23) and (16) gives:

χ̃ = BAx̃ , (36)

Fig. 1: Single-line diagram of a simple radial system.

which is in the same form as (33), with C = BA. Thus,
following from (33), (34), and (36), we propose computing the
2ν×n participation factors that link the real (ρ) and imaginary
(ω) parts of the bus CFs to the oscillatory modes of the system,
as follows:

Pχ = BAPx . (37)

It is also relevant to define the participation factors of η,
which provide information regarding the combined impact of
oscillatory modes on the rate of change of both voltage mag-
nitudes and phase angles. We propose the following definition
of these participation factors. Let Bρ and Bω be the matrices
composed of the first and last ν rows, respectively, of B. Then,
we define the complex ν × n participation matrix P̄η as:

P̄η = (Bρ + ȷBω)APx , (38)

and the real ν × n participation matrix Pη as the matrix
composed of the absolute values of the elements of P̄η , which,
with a loose notation, one can write as:

Pη = |P̄η| . (39)

Matrix Pχ (respectively Pη) relates the contribution of each
bus to the system’s oscillatory modes while distinguishing
between oscillations that affect the voltage magnitude or
frequency (as well as their combined effect). Compared to the
standard participation matrix Px, matrices Pχ and Pη link
oscillatory modes to every point in the network, regardless of
whether a dynamic element is connected to it or not. Finally,
Pχ and Pη relate the oscillatory modes to CF variables, which
have consistent physical meaning and measurement units, thus
avoiding the comparison of the participation of dissimilar
state variables (as is the case for standard PF analysis). The
elements of Pχ and Pη are the CFPFs that we use in the
remainder of this work as a computational tool to study the
propagation of oscillations across power system networks.

C. Illustrative Example

To illustrate the consistency of the proposed approach with
the conventional PF analysis and highlight its merits, in this
section we consider a radial system comprising a standard
Synchronous Generator (SG), a converter-interfaced generator,
and a load. The single-line diagram of the system is shown in
Fig. 1. The SG is equipped with Automatic Voltage Regulator
(AVR) and Turbine Governor (TG), while the converter-
interfaced generator is controlled with a Virtual Synchronous
Machine (VSM) control structure [21]. Detailed description
of the models and internal variables of the SG and converter-
interfaced generator and their controls can be found in [10, 22].

Table I showcases how CFPFs compare to the PFs of the
system’s state variables. For three of the system’s dynamic
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TABLE I: Illustrative Example: Small-Signal Stability Analysis.

Eigenvalue State variable max
1≤k≤n

p
[x]
ki CF component max

1≤k≤2ν
p
[χ]
li

−16.329± 3.245ȷ vr,AVR 0.380886 ρ9 0.259857
−10.112 xTG 0.964367 ω9 0.236702
−4.260± 0.480ȷ xq,VSM 0.313891 ρ1 0.089138

modes, the mostly participating state (x) and bus CF compo-
nent (χ) are shown in the table, along with their numerical
values. In Table I, the states vr,AVR and xTG refer to the con-
ventional SG and denote, respectively, the output of the AVR
amplifier and the internal state of the TG. The state variable
xq,VSM signifies the internal state of the PI-controller of the
q-channel of the VSM voltage controller. We observe that the
PFs of the different states consistently indicate the controller
with the highest impact on each mode. Similarly, the mostly
participating bus CF components are the ones at the connection
point of the device that mostly affects each mode. Thus, the
results confirm that both approaches identify the source of
potential oscillations. Additionally, we note that there is a link
between variables that refer to synchronization/d-axis control
and ω variables and voltage/q-axis control and ρ variables.
This shows one of the advantages of CFPFs over the traditional
approach, namely their capacity to identify modes that mostly
drive changes in the frequency or the voltage, regardless of
the type of the connected device and its control system.

IV. CASE STUDIES

This section presents two case studies. The first is based
on the well-known two-area benchmark system [23] and illus-
trates how CFPFs capture the spatial distribution of oscillations
under different scenarios. The second case study considers a
detailed model of the all-island Irish transmission system and
demonstrates the ability of the proposed technique to track the
propagation of both critical, low-frequency and non-critical,
high frequency modes in a large, realistic model of a power
system. The two case studies demonstrate the suitability of
the proposed method for oscillation propagation analysis of
systems with different topologies, both radial and meshed.

All results in this section are produced with the software
tool Dome [24], wherein standard linear algebra calculations
are performed with LAPACK [25]. CFPFs are calculated with
the procedure described in Sections II and III.

A. Two-area System

The single-line diagram of the system is shown in Fig. 2. It
comprises two areas connected to each other with a double tie-
line; 11 buses and 4 SGs, G1-G4. Each SG is modelled with
a 6-th order model and equipped with an AVR and a TG [23].
The system feeds the loads connected to buses 7 and 9.

1) Validation for Interarea Electromechanical Oscillations:
In this section, we illustrate the information provided by
the proposed CFPFs on the original two-area system. To
this aim, we start by carrying out an eigenvalue analysis,
which indicates that the system is stable, and that the most
critical complex pair of eigenvalues is −0.071± 3.429ȷ, with

Fig. 2: Single-line diagram of the two-area system.

natural frequency 0.55 Hz and damping ratio 2.08 %. This
pair represents the system’s interarea electromechanical mode
between Areas 1 and 2.

Classical PF analysis provides information on the most
dominant for the interarea mode state variables, yet it does not
reveal how the mode propagates across the network’s buses.
In this case, the most dominant variables are the rotor angles
and speeds of generators G3 and G4, followed by a relatively
smaller contribution of the angles and speeds of generators
G1 and G2. The PFs of the SG rotor speeds for the interarea
mode are summarized in Table II (original system).

TABLE II: Two-area system: PFs of interarea mode in SG speeds. Results
are given for the original system and for the modified system with halved
distance between Areas 1 and 2.

ω PF (original system) PF (modified system)

G1 0.0256 0.1580
G2 0.0135 0.0517
G3 0.2729 0.2100
G4 0.1496 0.0846

CFPF

1

2

3

4

5 6 7 8 9 10 11

0.00

0.05

0.10

0.15

0.20

0.25

(a) Original system.

CFPF

1

2

3

4

5 6 7 8 9 10 11

0.00

0.05

0.10

0.15

(b) System with halved distance between Areas 1 and 2.

Fig. 3: Two-area system interarea mode: PFs of η.

The information of how the system’s modes propagate along
the network can be acquired through the proposed CFPFs.
With this goal, we proceed to compute matrix P̄η from (39).
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The results for the interarea mode are presented in Fig. 3a in
the form of a graph, where the size and color of each vertex
is setup according to the magnitude of the corresponding bus
CFPF, illustrating the tracking of the mode at any network bus
by the proposed method. Moreover, a check of the values of
CFPFs at the buses where G1-G4 are connected confirms that
the results are consistent with those of the classical analysis
of Table II. The graphs in Fig. 3a have been generated with
the Python library networkx [26].

We further check the ability of CFPFs to track the prop-
agation of interarea oscillations along the network. To this
aim, the original two-area system is modified by reducing by
50 % the length of the double line that interconnects Areas 1
and 2. Eigenvalue analysis of the modified system shows
that the interarea mode is now given by the complex pair
−0.141±5.002ȷ. Moreover, classical PF analysis (see Table II)
indicates that, compared to the original system, the contri-
bution to interarea oscillations of SGs from Area 1 (i.e. G1
and G2), has significantly increased, whereas the contribution
of generators from Area 2 (i.e. G3 and G4), has relatively
decreased. Again, the change on the propagation of the mode
at each bus of the network due to the system modification
can not be tracked by classical PF analysis. To do that, we
calculate the bus CFPFs. The CFPF results are illustrated in
Fig. 3b. Viewing these results in comparison to Table II further
confirms the alignment of the proposed approach with classical
PF analysis at generator buses.

2) Grid-Forming (GFM) Converter-Driven Oscillations:
In this section, we show the ability of CFPFs to capture the
propagation of high-frequency oscillations driven by converter-
interfaced generators. With this goal, the conventional gener-
ator G1 is replaced by a VSM of the same rating. The VSM
synchronization loop is modelled as in [21], while the inner
current and voltage control loops are modelled as in [27]. The
power injected by the converter to the network is provided
by an ideal voltage source connected to the dc-side of the
converter.

For the purposes of this scenario, we include in the system
unsuppressed oscillations by setting the damping parameter in
the VSM loop to zero. Figure 4 shows, through the CFPFs
of ρ, ω and η, how three selected dynamic modes propagate
across the network buses. These include two critical modes,
namely Mode 1 and Mode 2, with corresponding eigenvalues
−0.73±41.76ȷ and −0.16±3.92ȷ, and damping ratios 1.74 %
and 4.02 %, respectively, as well as a high-frequency mode,
namely Mode 3, with eigenvalues (−0.25 ± 1.2ȷ) · 106 and
damping ratio 20.85 %.

CFPFs indicate bus 1, i.e. the VSM connection bus, as the
source of the oscillatory Mode 1, with CFPF values remaining
high for buses located close to the connection point (Area 1).
Given the higher values of ρ PFs over ω PFs, it is deduced
that bus voltage magnitudes are more susceptible to Mode 1
than phase angles. This information is of particular interest for
cases where the complex VSM control structure deteriorates
the frequency/voltage decoupling of the grid [28]. This in-
formation cannot be easily derived from standard PF analysis,

since deep knowledge of the converter control structure and the
significance of the internal control states would be required.

Fig. 4: Two-area system with GFM converter at bus 1: CFPFs of Modes 1-3.

CFPFs also indicate that G3 is the source of Mode 2.
Moreover, apart from locating the oscillation source, CFPF
analysis also provides insights on the physical interpretation
of the oscillation. Namely, the higher values for the PFs of
ω compared to the ones of ρ, tie the oscillation to the phase
angles of the voltages at the connection bus, which are in turn
linked to the rotor angle/speed of the generators.

Similarly to Mode 1, the CFPFs for Mode 3 indicate that
the VSM connection bus has the highest participation to this
mode. Compared to Mode 1, however, it can be seen that
the participation of network buses decreases radically along
the long transmission lines that interconnect Areas 1 and 2.
This observation aligns with the current understanding that
high frequency modes do not effectively propagate through
long inductive lines. The above analysis of Modes 1-3 also
shows that CFPFs are able to capture the evolution through
the network of oscillations of different nature and timescales,
which can be present concurrently in the same system.

Figure 5 shows the active power injections of VSM, G2, G3
and G4, after the disconnection of 38 % of the load at bus 7 at
t = 0.1 s. The time response is consistent with the findings of
CFPF analysis, illustrating the timescale difference between
the two undamped modes (Mode 1 and 2), and confirming
that devices connected to dominant buses are indeed strongly
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Fig. 5: Two-area system with GFM converter at bus 1: Active power injections
of VSM, G2, G3 and G4 after the disconnection of 38 % of the load at bus 7.
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Fig. 6: Two-area system with GFL load at bus 9: CFPFs of critical mode
for Area 2. Two different values for gain Kp of the outer loops of the GFL
converter are used.
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Fig. 7: Two-area system with GFL load at bus 9: Voltage magnitude at bus
10 after disconnecting 6.92 % of the load at bus 7. Different values for gain
Kp of the outer control loop of the GFL converter are used.

linked to these modes. Additionally, it highlights how the cal-
culation of PFs of ρ and ω offers complementary information,
not easily discernible from time domain simulations, on the
type of buses’ susceptance to these oscillations.

3) Damping from Grid-Following (GFL) Loads: This sec-
tion showcases an application of the CFPF analysis when
the control systems of non-synchronous devices affect the
system’s damping. For this scenario, the original two-area
system is modified to substitute the static load at bus 9 with a
converter-interfaced load of the same steady-state power con-
sumption. All four conventional SGs remain connected. For
the converter, a standard GFL, cascaded control configuration
is used, as in [10, 27]. The d-channel of the outer control loop
is regulating the active power load consumption while the q-
channel is used for ac voltage support. The proportional gain
Kp of the outer PI controllers is set initially to 0.1 for both
channels and it is increased subsequently to Kp = 1.

Figure 6 shows the PFs for η and ω and for the buses of
Area 2 of the system. For the first parameter setting (Kp =
0.1) a critical mode exists with corresponding eigenvalues
−0.1187 ± 3.2792ȷ and damping 3.62 %. For the second
parameter setting (Kp = 1), the eigenvalues corresponding to
the same mode become −0.1924± 3.0162ȷ and the damping
increases to 6.37 %. The distribution of the PFs of η identifies
G3 as the source participating mostly in the mode, for both pa-
rameter settings. The distribution of ω PFs provides additional

(a) Most critical mode. (b) Fast, non-critical mode.

Fig. 8: Irish system: CFPFs of η.

information. Firstly, it can be seen that their values remain high
across a wider portion of buses and with no gradual decrease,
moving away from the generator. Also, variable ω9 of bus 9
contributes more to the critical mode, despite being connected
to a different bus than G3 and G4. This indicates that a
device contributing to the increased damping of the mode is
connected to that specific bus. This example demonstrates that
the trend shown for the previous cases, i.e. the CFPFs being
larger at the connection point of the sources and decreasing
moving away from them, can be reversed in the presence of
converter-interfaced, non-synchronous devices. The proposed
method tracks the oscillation propagation in the network and
implicitly considers the change in the parameter setup and its
effect on the system damping.

Finally, to showcase the increased damping by the GFL
converter, a time-domain simulation is performed. The con-
tingency applied is the loss of 6.92 % of the load at bus 7
at t = 0.1 s. Figure 7 shows the voltage response at bus 10
after the contingency, and for the two different control pa-
rameter values, i.e. Kp = {0.1, 1}. It is verified that, despite
the increased overshoot, the post-contingency oscillations are
damped more quickly for Kp = 1.

B. Irish Transmission System

For this case, a model of the all-island, Irish power system
is used [29]. The model consists of 1479 buses, 1851 trans-
mission lines and transformers, 22 conventional SGs, along
with their appropriate control systems, 169 wind power plants
and 245 loads. This application showcases the scalability of
the proposed method as well as the effect that the timescale
of a mode has on its ability to propagate in a large network.

For the illustration of modal propagation, two modes are
selected. Their representing eigenvalues are −0.003 ± 2.43ȷ
and −1.9 ± 10.95ȷ, with natural frequencies 0.387 Hz and
1.743 Hz and damping ratios 0.11 % and 17.17 %, respectively.
One should note that from the selected modes, the first one
is critical while the second one is non-critical. These modes
are obtained by adapting the parameter tuning of the Irish
system for illustration purposes and do not represent the actual
dynamics of the system. Figures 8a-8b show the distribution
of the CFPFs of η in the form of network graphs, with the
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size of each vertex depending on the CFPF value. The Irish
network graphs are generated using the Python module graph-
tool [30]. We note that the position of each vertex in the graph
does not represent the actual geography of the Irish network.

Figure 8a shows the participation of the different network
buses for the slow mode (−0.003 ± 2.43ȷ). It can be seen
that the oscillation is visible in most of the network buses. In
comparison, Figure 8b shows the participation of the buses to
the high frequency mode (−1.9± 10.95ȷ). It can be seen that
only the connection bus of the oscillation source presents a
high PF value while the participation of the rest of the system
buses sharply diminishes.

V. CONCLUSIONS

The paper proposes the use of participation factors of CF
variables as a metric for the analysis of modal propagation in
power systems. The theoretical appraisal and simulation results
show that the proposed approach has several relevant features.
First, it identifies the source of potential oscillations in the
system and is able to capture the modal propagation through
the grid, thus providing an indication on the areas that are
more affected by such oscillations. Simulation results based on
the Irish transmission system also indicate that low-frequency
modes can propagate across a large part of the network while
damped, faster modes are generally contained in a small part
of the network. Then, the PFs of the real and imaginary
part of the CF provide information on the oscillation type,
i.e. whether it affects more the voltage or the frequency. This
gives a better understanding of the problem and facilitates the
selection of appropriate corrective measures. For example, in
the case of IBRs, it provides information on dynamic coupling
among converter controllers and facilitates the tuning of the
converter control parameters. The control-design capabilities
of the proposed technique will be the focus of future work.

ACKNOWLEDGEMENTS

This work is partly supported by the Juan de la Cierva
Incorporación program (IJC2019-042342-I) from the Spanish
Government by funding J. Roldán-Pérez and by the Sustain-
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