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Abstract—The paper studies the dynamic response of a Wide-
Area Power System Stabilizer (WAPSS) for damping inter-area
oscillations. The WAPSS utilizes remote bus frequency mea-
surements obtained with frequency estimations. The geometric
approach is adopted for the selection of the most effective signal
and input placement. Then, the suitability of Padé approximants
to capture the impact of communication delays on signals observ-
ability is tackled. The results of the small-signal stability analysis
are discussed through non-linear time domain simulations with
inclusion of time-varying stochastic delays.

Index Terms—Inter-area oscillations, wide-area signals, fre-
quency estimation, observability/controllability, time delays, tran-
sient stability analysis.

I. INTRODUCTION

A. Motivation

Feedback signal and input location selection are critical

decisions during a control design and often not straightforward

to be made, especially when communication networks mediate

between measurements and control. A relevant example of

this kind are Power System Stabilizers (PSSs) coupled with

Wide-Area Measurement Systems (WAMS). The utilization

of available signals from the transmission system as well as

the study of communication delays impact on control signal

selection have motivated this work.

B. Literature Review

Low frequency oscillations are inherent in interconnected

power systems and are caused by poorly damped modes.

Power systems show both local modes with a single or a group

of generators oscillating within an area (typically 1-2 Hz) and

inter-area modes with a group of generators oscillating with

respect to a group of a different area (typically 0.1-1 Hz) [1].

The standard solution for suppressing the local oscillation

modes is the installation of PSSs with local signals [1]. On

the other hand, effective damping of inter-area modes usually

requires the inclusion of remote signals [2]. This is because

inter-area modes are often observable from a local signal

but effectively controllable only from another location [3].

With the development of WAMS and the broad deployment

of Phasor Measurement Units (PMUs), remote signals can be
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obtained and transmitted to a Wide-Area Damping Controller

(WADC) through a communication network [4].

The evaluation of wide-area signals plays an important

role in the design of a WADC. The comparison of two

common modal observability/controllability methods, namely

the residues and the geometric approach, has deduced that the

signals recommended by the geometric approach can always

obtain the best robustness and performance [5]. Thus, the

geometric approach is adopted in the present work. Concerning

frequency-based WADCs, the results in [2], [6], [7] show

that inter-area oscillations are better observable through the

differential rotor speed of two machines from different areas.

However, PMUs are installed on system buses and, typically,

only bus frequency measurements are available to a WADC.

In this paper, we consider both ideal and Phase-Locked Loop

(PLL) estimated bus frequency measurements.

The involvement of the communication network in remote

signal transmission introduces time delays with inclusion of

noise, data disordering and dropout [8], [9]. Despite the fact

that eigen-based methods have been succesfully applied to

approximate the spectrum of power systems modeled with

Delay Differential Algebraic Equations (DDAE) [10], [11],

global modal analysis of delayed power systems is still an

open research topic. An approximation of the effect of delays

on the observability of wide-area signals can be provided using

Padé polynomials [12]. We evaluate the accuracy of such an

approach with a detailed delay model that is able to emulate

the physical behavior of WAMS [13].

C. Contributions

The contributions of the paper are twofold.

• A comparison of the dynamic behavior of WAPSSs

using either ideal bus frequency signals or PLL-based

estimations. Ideal signals are obtained with the frequency

divider proposed in [14]. Estimations are obtained with

the commonly used Synchronous Reference Frame PLL

(SRF-PLL) [15].

• A discussion on the suitability of Padé approximants to

capture the effect of delays on wide-area signals observ-

ability. Conclusions are drawn based on non-linear time

domain simulations with inclusion of realistic WAMS

delays [13].



D. Organization

The remainder of the paper is organized as follows. Section

II recalls the state space model of power systems and presents

the applied control scheme. Section III outlines the delay

models utilized in this work. Section IV discusses the case

study by carrying modal and transient stability analyses on

the two-area test system. Conclusions are drawn in Section V.

II. POWER SYSTEM MODEL AND CONTROL SCHEME

A. State Space Representation

Power systems are conventionally described through a set

of Differential Algebraic Equations (DAEs):

ẋ = f(x,y,u)

0 = g(x,y,u) ,
(1)

where f (f : Rn+m+p → Rn), g (g : Rn+m+p → Rm) are

the differential and algebraic equations; x, x ∈ R
n, and y,

y ∈ R
m, are the state and algebraic variables, respectively;

and u, u ∈ R
p, are the controlled inputs.

Differentiating (1) around an equilibrium point (x0,y0,u0)
yields:

∆ẋ = fx∆x+ fy∆y + fu∆u

0 = gx∆x+ gy∆y + gu∆u ,
(2)

where fx, fy , fu, gx, gy and gu are the system Jacobian

matrices; ∆x = x − x0, ∆y = y − y0 and ∆u = u −
u0. The Multiple-Input Multiple-Output (MIMO) state space

representation of the system is:

∆ẋ = A∆x+B∆u

∆w = C∆x+D∆u ,
(3)

where A = fx − fygy
−1gx, B = fu − fygy

−1gu and w

are output measurements.

B. Modal Analysis

The modes of the open-loop power system ∆ẋ = A∆x
can be obtained by solving the characteristic equation det(A−
λI) = 0. The corresponding right and left eigenvectors associ-

ated with a mode λk are determined by solving Aφk = λkφk

and ψkA = λkψk, respectively. That said, the geometric

observability/controlability are defined as follows [16].

The geometric observability gmoµ(k) of the mode λk from

output wµ is:

gmoµ(k) = cos(θ1(c
T
µ ,φk)) =

|cµφk|

||φk|| ||cµ||
, (4)

where cµ is the µth row of the output matrix C; θ1 is the

acute angle between cµ and the right eigenvector φk; | · | and

|| · || are the modulus and Euclidian norm, respectively.

The geometric controllability gmcν(k) of the mode λk from

input uν is:

gmcν(k) = cos(θ2(ψk, bν)) =
|bνψk|

||ψk|| ||bν ||
, (5)

where bν is the νth column of the input matrix B; θ2 is the

acute angle between bν and the left eigenvector ψk.

Based on these measures, a comparison among different

outputs and inputs can be carried out, so that the ones that pro-

vide the maximum joint geometric observability/controllability

measure are selected. The joint observability/controllability

measure is defined by:

gmcok(µ, ν) = gmcν(k) gmoµ(k) . (6)

C. Wide-Area Power System Stabilizer (WAPSS) Model

The WAPSS in this study is a decentralized controller

installed at the jth synchronous machine. The wide-area

stabilizing signal vsi is a differential frequency of the form:

vsi = ωBi − ωGj , (7)

where ωGj is the local rotor speed of the jth synchronous

machine; ωBi is the frequency at bus i.
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Fig. 1: WAPSS block diagram.

The structure of the WAPSS (see Fig. 1) can be described

by the following set of DAEs:

v̇1 = −(Kwvsi + v1)/Tw

v̇2 = ((1−
T1

T2
)(Kwvsi + v1)− v2)/T2

v̇3 = ((1−
T3

T4
)(v2 +

T1

T2
(Kwvsi + v1))− v3)/T4

0 = v3 +
T3

T4
(v2 +

T1

T2
(Kwvsi + v1))− vso ,

(8)

where Kw is the WAPSS gain, Tw is the washout time

constant, T1, T2, T3, T4 are the 4 stabilizing blocks time

constants, v1, v2, v3 are the WAPSS state variables and vso
the output signal. The output signal vso is an additional

input to the local Automatic Voltage Regulator (AVR) initial

reference (vref0 ), so that the controller damps electromechanical

oscillations through excitation control. The resulting voltage

reference (vref ) is:

vref = vref0 + vso . (9)

D. Bus Frequency Estimation

In order to obtain the wide-area signal in (7), an estimation

of the frequency ωBi is required. To this aim, we utilize the

commonly used SRF-PLL (see Fig. 2) model. In Fig. 2, the

constant delay implies that the bus phase angle (θBi) measure-

ment is not instantaneous. The error between the measured

and estimated phase angle is fed to a Proportional-Integral

(PI) controller, which outputs the estimated bus frequency

deviation (∆ω̃Bi). The frequency at bus i is obtained as:

ω̃Bi = ω0 +∆ω̃Bi , (10)
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Fig. 2: SRF-PLL block diagram.

where ω0 is the fundamental frequency of the system.

PLL-based frequencies are accurate but include a compro-

mise between noise and speed of response. They are also prone

to problems during the numerical integration [15].

In this work, we compare the results obtained with the

SRF-PLL with the ones produced when ideal bus frequency

estimations are used. Ideal bus frequencies are estimated using

the frequency divider formula (FDF) proposed in [14]. FDF

is a general expression which allows the estimation of the

frequency at the buses of a transmission system. In per units,

the FDF is formulated as:

ωB = 1− (BBB +BB0)
−1BBG(ωG − 1) , (11)

where ωB are the estimated bus frequencies; ωG are the

synchronous machines rotor speeds; BBB, BB0, BBG are

system susceptance matrices. The accuracy, the numerical

robustness and the computational efficiency of the FDF have

been discussed in [14], [17] and [18].

III. TIME DELAY MODELS

A. DDAEs and WAMS delays

Introducing time delays in (1) changes the set of DAEs into

a set of DDAEs. For the purpose of this paper, the index-

1 Hessenberg is an adequate formulation to model power

systems with delays [19]:

˙̂x = f̂(x̂, ŷ, x̂d, ŷd)

0 = ĝ(x̂, ŷ, x̂d) ,
(12)

where x̂d and ŷd are the delayed state and algebraic variables,

respectively.

In this study, the delays are included in the remote bus

frequency measurements. The results in [12] show that time-

synchronizing speed-based local and remote feedback signals

has a destabilizing impact, regardless of the control method.

Hence, we also consider non-time-synchronized signals. The

delayed bus frequency signal ωBid is:

ωBid = ωBi(t− τ(t)) , (13)

where τ(t) is the WAMS delay, which is of the form [13]:

τ(t) = τ0 + τp(t) + τs(t) , (14)

where

• τ0 is a constant component that expresses the processing

time of the measurement unit plus the unavoidable latency

imposed by the communication medium;

• τp(t) is a periodic component which implies that data

packets are delivered in discrete time instants. It is

τp(t) = t − tk, where tk is the time when the last

successfull data packet delivery occured; the delivery

period of a packet without dropout is T ;

• τs(t) is a stochastic component which accounts for un-

certainties and noise. It is τs(t) = Gamma(α,β,t)
1−p

, which

assumes a Gamma distribution with scale factor α, shape

factor β [20]; p is the probability of a dropout.

The mean value of τ(t) is [13]:

τ̄ = τ0 +
T

2(1− p)
+

α

1− p
β (15)

The profile of WAMS delay model is illustrated in Fig. 3.
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Fig. 3: WAMS delay (τ0 = 0.05 s, T = 0.04 s, p = 0.2, α = 0.02,
β = 2).

Modal observability/controllability analysis of DDAEs is

not an easy task, since differentation of (12) leads to a

transcendental characteristic equation, with infinitely many

eigenvalues and associated eigenvectors [19]. Different tech-

niques, e.g., Chebyshev discretization, Padé approximants

[10], have been employed to overcome this problem. In this

paper, we make use of the Padé approximants in order to

approximate the effect of communication delays on wide-area

signal observability.

B. Padé Approximants

Padé approximants are based on the well-known Taylor

series expansion of e−τs in the frequency domain:

e−τs = 1−
τs

1!
+

(τs)2

2!
−

(τs)3

3!
+ ...

≈
b0 + b1τs+ ...+ bq(τs)

q

a0 + a1τs+ ...+ ap(τs)p
,

(16)

where a0, a1, ..., ap and b0, b1, ..., bq are defined so that the

first p + q coefficients are the same as those of the Taylor

expansion. The advantage of this approach is that it allows

to represent a constant delay as a set of linear differential

equations. Therefore, tracking the changes of the observabil-

ities with respect to delays is relatively simple to implement

through modal analysis. On the other hand, this technique

is known to be of limited accuracy. Furthermore, it cannot



approximate properly crucial information of a WAMS delay,

i.e., stochasticity and periodicity.

IV. CASE STUDY

The system considered in this study is shown in Fig. 4. It

consists of two identical areas connected through a relatively

weak tie; eleven buses B1,B2, ...,B11 and four synchronous

machines G1,G2,G3,G4 connected at the medium voltage

level of 20 kV; the nominal value of the high voltage trans-

mission lines is 230 kV. Each machine is equipped with an

AVR of type IEEE DC-1 and a turbine governor.

All results discussed in this section are obtained with Dome,

a Python-based software tool for power system analysis [21].
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Fig. 4: Two-area four-machine test system.

A. Wide-Area Signals and Input Location Selection

Table I shows the critical modes of the two-area system. The

most poorly damped mode is λ1,2 = −0.095±j3.5809, which

is an inter-area mode with the machines of Area 1 oscillating

with respect to the ones of Area 2. The controllability of λ1,2

from the four AVRs is presented in Table II.

TABLE I: Two-area system critical modes

Eigenvalue Frequency (Hz) Damping ratio (%)

λ1,2 = −0.0958± j3.5809 0.57 2.67

λ3,4 = −0.5144± j6.8434 1.09 7.50

λ5,6 = −0.5993± j6.6042 1.06 9.04

TABLE II: Controllability of λ1,2 from j-th AVR

j 1 2 3 4

gmc 2.12 · 10−5 2.04 · 10−5 3.10 · 10−5 3.01 · 10−5

The geometric measures of λ1,2 for local rotor speed signals

are shown in Table III. If only local measurements are con-

sidered, the inter-area mode is better observable/controllable

from G3.

TABLE III: Observability of λ1,2 from ωGj and joint measure

Signal gmo AVR gmc gmco

ωG3 2.22 · 10−3 G3 3.10 · 10−5 6.88 · 10−8

ωG4 1.86 · 10−3 G4 3.01 · 10−5 5.61 · 10−8

ωG1 2.01 · 10−3 G1 2.12 · 10−5 4.27 · 10−8

ωG2 1.71 · 10−3 G2 1.71 · 10−5 3.48 · 10−8

We consider wide-area signals as described in Section II.

Two scenarios are examined: ideal bus frequencies (ωBi)

estimated using the FDF; and bus frequencies obtained using

SRF-PLL (ω̃Bi). Tables IV and V summarize the best signals

and their geometric measures. The SRF-PLL has a negative

impact on the observability of the mode by the wide-area

signals.

The results for both scenarios suggest that differential

frequencies B5 − G3 and B1 − G3 are the most suitable for

damping the inter-area oscillation. Hence, in the remainder of

the paper we assumed that the WAPSS is installed at G3. As

expected, wide-area signals are more effective than local rotor

speeds (Table III). Since B1 is the medium voltage side of the

step-up transformer, it typically belongs to the generation side,

and thus, a measurement at this point may not be available.

For this reason, we proceed with the frequency B5−G3.

TABLE IV: Candidates with best gmco (ideal ωBi).

Signal gmo AVR gmc gmco

ωB5 − ωG3 0.00321 G3 3.10 · 10−5 9.93 · 10−8

ωB1 − ωG3 0.00317 G3 3.10 · 10−5 9.83 · 10−8

ωB6 − ωG3 0.00308 G3 3.10 · 10−5 9.55 · 10−8

ωB2 − ωG3 0.00301 G3 3.10 · 10−5 9.34 · 10−8

ωB7 − ωG3 0.00299 G3 3.10 · 10−5 9.27 · 10−8

ωB5 − ωG4 0.00255 G4 3.01 · 10−5 8.87 · 10−8

TABLE V: Candidates with best gmco (ω̃Bi from SRF-PLL)

Signal gmo AVR gmc gmco

ω̃B1 − ωG3 0.00274 G3 3.10 · 10−5 8.48 · 10−8

ω̃B5 − ωG3 0.00263 G3 3.10 · 10−5 8.16 · 10−8

ω̃B2 − ωG3 0.00257 G3 3.10 · 10−5 7.95 · 10−8

ω̃B6 − ωG3 0.00246 G3 3.10 · 10−5 7.63 · 10−8

ω̃B1 − ωG4 0.00249 G4 3.01 · 10−5 7.49 · 10−8

ω̃B7 − ωG3 0.00232 G3 3.10 · 10−5 7.20 · 10−8
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Fig. 5: Rotor speed of G3 for local and wide-area control signals.

A time domain simulation is carried out with the WAPSS

installed at G3 and imposing the outage of the load connected

at B7 at t = 1.0 s. The implicit trapezoidal formula is used

for the numerical integration of the system. The solution at



each time step is obtained by employing the Newton-Raphson

iterative method.

Figure 5 shows the angular frequency of G3 for the local

rotor speed ωG3 and the wide-area signals ωB5 − ωG3 and

ω̃B5 − ωG3. The wide-area signal confirms to be the most

effective to damp electromechanical oscillations. The obser-

vation that using the SRF-PLL to measure the bus frequency

degrades the damping effect is also confirmed.

B. Effect of Time Delays

In this subsection, the impact of time delays on the damping

effect of wide-area signals is examined. First, we attempt

to approximate this effect using Padé polynomials. The joint

observability/controllability of wide-area signals with respect

to the time delay is shown in Fig. 6 and 7 for ideal and SRF-

PLL estimated bus frequencies. The time delays degrade the

observability of wide-area signals in both cases. In the region

that is typical for network-induced delays, i.e., 50 − 150 ms,

the wide-area signals are still the best option to damping inter-

area oscillations. For larger delays, however, i.e., τ > 400
ms, results indicate that using the local rotor speed is more

effective.
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Fig. 6: Effect of approximated constant delays on the observability
of wide-area signals (ideal ωBi).
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Since Padé polynomials provide an approximation of the

delay effect, the results obtained in Figs. 6 and 7 are further

evaluated by carrying time domain simulation with inclusion

of WAMS delays. Two delays, τ1(t) and τ2(t), with different

expected (mean) values are examined. The parameters of the

examined delays are given in Table VI. Both delays include

a constant component of 50 ms, a periodic component with

40 ms delivery period and a 20% probability dropout rate.

The two delays have different shape and scale factors of the

Gamma distribution. Finally, the expected values are τ̄1 = 125
ms and τ̄2 = 450 ms, respectively.

TABLE VI: WAMS delays parameters

Delay τi(t) τ0 [s] T [s] p α β τ̄i [s]

τ1(t) 0.05 0.04 0.2 0.02 2.00 0.125

τ2(t) 0.05 0.04 0.2 0.10 3.00 0.450

Figures 8 and 9 show the angular frequency of G3 for

ideal and SRF-PLL-based bus frequencies. The delays degrade

the WAPSS damping ability. For the small delay (τ1(t)), the

damping ability of the wide-area signal is better than using

the local rotor speed. This is in agreement with the results

obtained with Padé approximants. However, Figs. 8 and 9

suggest that the wide-area signal is clearly preferable even

for large delays (τ2(t)), independently whether the ideal or

SRF-PLL estimated bus frequency is used. This contradicts

Padé approximant results.

Overall, we conclude that the study of a system using Padé

approximants is reliable only if small delays are considered.

Nevertheless, in order to assess whether the approximation for

a considered delay is acceptable or not, i.e., whether a delay

is small enough to trust Padé approximants, it is necessary to

evaluate the results through detailed time domain simulations.
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Fig. 8: Rotor speed of G3 (ideal ωBi).

V. CONCLUSIONS

The paper discusses a decentralized WAPSS with remote

bus frequency measurements. Ideal bus frequency signals are

compared with realistic measurement signals from PLLs that

include measurement noise and delay. Modal and transient

stability results based on the Kundur’s two-area system show

that wide-area signals are more effective that local signals to

damp inter-area oscillations. Results also indicate that the PLL

have a non-negligible and negative impact on the observability
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Fig. 9: Rotor speed of G3 (ω̃Bi estimated with a SRF-PLL).

of the inter-area mode and, hence, on the overall damping

ability of the WAPSS.

The impact of time delays on the observability of wide-

area signals using Padé approximants is also investigated.

Results show that this approach provides correct results only

for “small” constant delays but it is not reliable for modal

analysis of power systems with inclusion of WAMS delays.

Further research will focus on exploiting eigen-based methods,

such as [10], which allow carrying a global modal analysis of

DDAEs.
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