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Abstract—This paper proposes a novel control framework
designed for Inverter-Based Resources (IBRs), denoted as Gener-
alized Swing Control (GSC). The proposed GSC framework gen-
eralizes the definition of Grid-Forming (GFM) control schemes
and exploits the coupling between active and reactive power
dynamics. To validate the proposed scheme, we conduct exten-
sive time-domain simulations and small-signal analysis using a
modified version of the WSCC 9-bus system and a 1479-bus
dynamic model of the all-island Irish transmission system. The
case studies focus on evaluating the dynamic performance of the
proposed framework under different configurations, including
Virtual Synchronous Machine (VSM), coupled-VSM and dual-
VSM schemes. To address the nonlinear nature of power system
dynamics, sensitivity analysis based on Monte Carlo methods are
employed to improve parameter tuning and assess the stability
of GSC configurations in the studied systems.

Index Terms—Low-inertia power systems, converter-interfaced
generation, frequency control, swing equation, voltage control.

I. INTRODUCTION

A. Motivation

A fundamental difference between Inverter-Based Re-
sources (IBRs) and conventional Synchronous Machines
(SMs) is that the dynamic response of SMs is determined
by their electromechanical dynamics, whereas that of IBRs
is governed by their control schemes. This feature makes
IBRs highly flexible and enables the design of a wide range
of control schemes with diverse objectives [1]. Motivated by
the dynamics of SMs and with the aim of defining a flexible
general control of IBRs, this paper explores the extension of
the SM swing equation into the complex power domain.

B. Literature Review

In grids characterized by high R/X ratios or with high
penetration of IBRs, the conventional paradigm of decoupled
active power/frequency and reactive power/voltage is not al-
ways true. Reference [2] shows that voltage/frequency stability
is impacted by both self- and coupled-dynamics. Moreover,
voltage and frequency oscillate at the same frequency if the
voltage-frequency coupled instability occurs. Recent analytical
work has quantified this coupling and its implications for the
fast frequency response of Battery Energy Storage Systemss
(BESSs) in high-renewable grids [3], while new control strate-
gies explicitly address such coupling effects [4], [5], [6], [7].

The limitations in flexibility of SMs and the challenges of
weak grids have increased the adoption of GFM inverters.
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These devices allow control-based energy conversion without
relying on physical inertia. Several GFM control strategies
have been proposed, including droop-based methods [8], [9],
voltage oscillator control [10], and VSM among other schemes
[11]. For the case of Grid-Following (GFL), [12] shows that
there is a limit for this type of converters before the system
becomes unstable, and this limit is strongly influenced by the
type of grid support the converters provide and their proper
tuning. Moreover, it has been demonstrated in [13], [14] that
despite these challenges, GFL inverters can support even 100%
inverter-based power systems.

Stability assessment tools of such modern systems are
presented in [15], which include Lyapunov direct methods, the
equal-area criterion, small-signal analysis, data-driven meth-
ods, and time-domain simulations, with the latter being the
most widely used for highly nonlinear dynamics and the
one used within this work. Even in a simple single-machine
infinite-bus model, the transient behavior is more complicated
than commonly thought [16]. Thus, advanced nonlinear con-
trol approaches have been proposed such as Lyapunov-based
nonlinear control algorithm [17] and data-driven methods [18].
Moreover, to provide damping and inertia from IBRs, new
system-level frameworks [19] and converter-level controls [20]
have been developed.

In [21], a generalized swing equation for PLL-based IBRs
is proposed, integrating angle and frequency dynamics into
a unified control framework. In this vein, our work extends
the swing equation into the complex domain, enabling si-
multaneous control of voltage and frequency dynamics. This
formulation leverages the nonlinear power flexibility of IBRs
and introduces an explicit coupling between active and reac-
tive power with voltage magnitude and phase, offering new
dynamic features and modeling flexibility.

C. Contributions
This paper proposes a novel control framework designed

for IBRs, denoted as Generalized Swing Control (GSC).
Leveraging IBR inherent flexibility, GSC extends SM energy
conversion principles through a complex formulation. Further-
more, the GSC framework uses the concept of coupled inertia,
damping and stiffness, which describe the direct coupling
between active and reactive power dynamics. Additionally, we
propose a performance index µts that captures the dynamic
performance of relevant variables in transient conditions.

D. Paper Organization
The remainder of the paper is organized as follows. The

proposed GSC is described in Section II. Case studies are
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presented in Section III, where the features of a set of
possible GSC configurations are studied. Finally, conclusions
and future work are discussed in Section IV.

E. Notation

All variables are assumed to be time dependent unless
explicitly stated. The symbol ′ is used to refer to the time
derivative. Complex vectors are denoted with ū, vectors with
u, and matrices with U.

II. PROPOSED CONTROL

Let x ∈ R2 denote the generalized positions of a second
order system defined by the following dynamics:

Mx′′ +D(x′ − x′
o) +K(x− xo) = f , (1)

where M is known as the inertia matrix, D the damping
matrix, K is the stiffness matrix, and f accounts for inputs
[22]. By rewriting the system as a system of first order
differential equations, and introducing 2 new state variables,
we obtain the following structure:

ζ′ =

[
02×2 I2×2

−M−1K −M−1D

]
ζ −

[
02×1

f

]
(2)

where ζ =
[
x− xo x′ − x′

o

]⊤
. Let A be the matrix

that multiplies ζ. Then, the eigenvalues λ̄ of A satisfy the
generalized eigenvalue problem:

det(λ̄2M+ λ̄D+K) = det(Q(λ̄)) = 0. (3)

The determinant can be turned into an ordinary polynomial,
and its stability can be assessed accordingly, as follows:

det(Q(λ̄)) = a4λ̄
4 + a3λ̄

3 + a2λ̄
2 + a1λ̄+ a0, (4)

where the coefficients are:

a0 = det(K) ,

a1 = tr(adj (DK)) ,

a2 = det(D) + tr(adj (MK)) ,

a3 = tr(adj (MD)) ,

a4 = det(M) .

The formulation of (3) is in the form of Quadratic Eigenvalue
Problem (QEP). We refer the interested reader to [22] for a
discussion on this class of systems and a discussion of the
properties of matrices M, D and K related to system stability.

In the context of the proposed IBR control scheme, the
generalized position is the vector uv = [ln v, θv]

⊤, where v
and θv are the magnitude and phase angle, respectively, of the
terminal bus voltage of the converter. Recalling the definition
of complex frequency (see the Appendix), we observe that
ηv = u′

v = [ρv, ωv]
⊤ and, substituting into (1), we obtain the

second order system:

Mη′
v +D (ηv − ηo) +K (uv − uo) = s− so . (5)

where s = [p, q]⊤ represents the input power vector for the
IBR, and uo, ηo and so are set-point operating conditions.

Equation (5) describes the power balance of each converter
with the grid. Then, the total energy of the IBR, which is
provided by the energy sources and storage that are exchanged
with the grid, is as follows:

∆E = ℜ
{∫ t

0

(s− so) dt

}
(6)

= ℜ
{∫ t

0

(Mη′
v +D (ηv − ηo) +K (uv − uo)) dt

}
,

where ∆E refers to the variation in the exchanged energy,

ℜ
{∫

Mη′
v dt

}
=

∫
(M11ρ

′
v +M12ω

′
v) dt

= M11ρv +M12ωv + cM

denotes the part of the exchanged energy that is provided by
a virtual storage in variables ρv and ωv ,

ℜ
{∫

D (ηv − ηo) dt

}
=

∫
(D11(ρv − ρo) +D12(ωv − ωo)) dt

= D11

(∫
dv

v
−
∫

dvo
vo

)
+D12

∫
d(θ − θo)

= D11 (ln v − ln vo) +D12 (θ − θo) + cD .

the part of the exchanged energy that is provided by a virtual
damping in ln v and the phase angle, and

ℜ
{∫

K (uv − uo) dt

}
=

∫
(K11(ln v − ln vo) +K12(θ − θo)) dt ,

the part of the exchanged energy that is provided by the change
in the potential energy. We note that the system is rheonomous,
that is, the integral is explicitly time dependent, and it cannot
be calculated without knowing the trajectory of the voltage
magnitude and its phase.

Although in this work we define the control matrices as
symmetric positive definite to satisfy theoretical properties,
the practical implementation presents some challenges. The
aggregation of multiple GSCs, combined with the inherent
nonlinearities of power system networks, makes it difficult
to track the full matrices of the full system QEP. As a con-
sequence, extensive time-domain simulation analysis through
Monte Carlo method are employed to improve the parameter
tuning and assessment of the stability of GSC implementations
in the studied systems.

A. Performance Metric

To evaluate the dynamic performance of the proposed
control, the index µts,k is used to quantify variations in
voltage magnitude and phase at bus k taking into consideration
transient and steady state. The index is defined as a weighted
sum of quadratic errors in comparison to initial and final
steady-state operation points as follows:

µts,k = µt,k + µs,k, (7)
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where

µt,k = κt,ω

∫
(ωk − ωf)

2dt+ κt,ρ

∫
(ρk − ρf)

2dt , (8)

µs,k = κs,ω(ωo − ωf)
2 + κs,v(vo,k − vf,k)

2 , (9)

where the sub-indexes t and s stand for transient and steady-
state behavior, and o and f refer to the initial and final
conditions. Thus, the parameters κs,ω , κs,v , κt,ω , κt,ρ represent
weights to assess the dynamic trajectory of the voltage phase
and magnitude. These parameters can be adjusted according
to the requirements of each system and the control objectives.

The proposed metric quantifies the quadratic error of each
Complex Frequency (CF) component with respect to its final
steady state, while including a weighted measure of the
difference in voltage magnitude and frequency between initial
and final conditions.

To assess the overall dynamic impact of all devices on the
system, we define the index µts as:

µts = µt + µs =
∑
i∈G

(µt,i + µs,i) , (10)

where G represents the set of all buses in the grid in which a
generator is connected. This index provides a scalar measure
of the total voltage variation across the devices of the system.
As µts is a cumulative metric, a smaller value indicates a more
effective controller.

A similar performance index µk was defined in [5] based
on the concept of the total variations of the voltage at a node.
Nevertheless, the index in [5] is unable to capture steady-state
performance.

III. CASE STUDIES

This section presents simulation results based on modified
versions of the WSCC 9-bus system [23] and the all-island
Irish transmission system described in [24]. In the first case,
SMs are replaced by IBRs modeled using the proposed GSC
framework, according to the details provided in Section II. For
simplicity, all configuration settings are identical for all IBRs
but are weighted by the generator base power. For the Irish
system, the behaviors of the different GSC configurations are
compared with the performance of an SM-based system.

For cases where power unbalance is applied, load variation
is assumed to be a sustained power perturbation, namely, a
step change of the grid power exchange that remains constant
in the time scale of storage and control dynamics of the IBR.

To evaluate dynamic performance of the control, the index
µts defined in Section II-A is used to quantify variations in
the voltage magnitude and phase at the generator buses within
the transient and in steady state.

We explore the impact on stability of the proposed GSC
through a time-domain sensitivity analysis over the parameters
of the GSC. This analysis is based on the Monte Carlo method,
with a total of 20,000 realizations for each scenario. Each
realization consists on eigenvalue calculations of the linearized
system and time-domain simulations, varying the studied pa-
rameters within an explicit range. The sensitivity analysis for
each parameter is used to calculate the performance metric
µts and the unstable simulation rate. The latter is defined as

the ratio between the number of unstable simulations and the
total number of simulations conducted for a specific parameter
range. In particular, we assume that a simulation is stable if
the following criteria are satisfied:

1) The real and imaginary parts of the complex frequency
of the internal voltage of each IBRs converge to a steady-
state value within a specified tolerance; that is, η̄k =
ρf + ȷ ωf + ϵ̄, where ϵ̄ is a given tolerance.

2) The linearized system is asymptotically stable; that is,
the real parts of the eigenvalues of the system are all
negative: max(ℜ{λ̄}) < 0.

3) All modes of the linearized system are slower than a
threshold given by the minimum acceptable time con-
stant Tmin. This is enforced by the following constraints:

• The decay rate of each mode must be slower than
the threshold Tmin; particularly, the real parts must
satisfy −ℜ{λ̄} < T−1

min.
• The oscillation frequency of each mode must be

slower than the threshold Tmin; specifically, the
imaginary parts must satisfy |ℑ{λ̄}| < 2π T−1

min

In this work, we adopt a tolerance ϵ̄ = 10−10(1 + ȷ) and
a minimum acceptable time constant Tmin = 0.01 s. As
a conservative assumption, modes faster than those defined
through Tmin are considered unstable, as they can lead to
instabilities due to possible couplings with very fast dynamics
that are not considered in the model.

For all IBRs, the parameters of the LC filters are as follows:
Lf = 0.2 mH , Rf = 0 Ω and Cf = 0.265 µF. Additionally,
all weights for the index µts are considered with unitary
magnitude. All simulation results presented in this section
were obtained using the simulation software tool Dome [25].

A. WSCC-9 bus system

For this case study, we explore several configurations of
the GSC. We begin by analyzing the VSM and then extend
it to a configuration with coupled power control by setting
parameters such as K12 and M21 to non-zero values. We also
study the dual case of the VSM, denoted as Dual Virtual
Synchronous Machine (dVSM), originally proposed in [26],
where active and reactive power are still decoupled. In this
case, however, active power is linked to the real part of the
CF of the voltage ρv , and the reactive power is linked to its
imaginary part, ωv . While other configurations are possible, we
focus on this set of examples to highlight the main features
of the proposed controller.

1) VSM configuration: The GSC framework allows to
choose a specific combination of parameters that makes the
controller behave similarly to a VSM. This is achieved by
setting parameters M22, D22, D11, and K11 non-null. M22 and
D22 represent the virtual inertia and damping of the frequency,
respectively; and D11 and K11 act as a first order voltage
droop controller. With the rest of the parameters of the GSC
set as null, active and reactive power balance is mostly coupled
with frequency and voltage variations, respectively.

Monte Carlo time-domain simulations are conducted rang-
ing parameters M22, D22, D11, and K11 from 0.01 to 100. A
uniform logarithmic distribution is utilized for all parameters.
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Fig. 1: WSCC 9-bus system - Sensitivity analysis based on the Monte Carlo
method for VSM case - Unstable simulation rate as a function of parameter
values in logarithm scale under a load variation at bus 5 applied at second 1
of the simulations.

The contingency is a power unbalance given by a load vari-
ation of ±0.5 pu in active and reactive power, where 0.5 pu
corresponds to 15% of the total active power load and 40%
of the reactive power load. The sign of the load variation is
randomized, while the magnitude is kept invariant.

Figure 1 shows the unstable simulation rate in percentage
for the WSCC 9-bus system and VSM configuration. The rate
for each parameter ranges from 0.01 to 100 in logarithmic
scale, and each point accounts for approximately 1000 simu-
lations. The unstable simulation rate in Fig. 1 shows how each
parameter impacts on the stability of the system. K11 stands
for the stiffness in the variable uv = ln v, which has a similar
effect on the stiffness in the voltage, and even more alike for
voltages closer to the initial condition (uo). It is interesting to
note that for values smaller than 1, all simulations are unstable.
The same behavior is observed for D22, which refers to the
frequency damping controller. On the other hand, parameters
such as M22 and D11 are not allowed to be too small, as they
are directly related with the time constants, and neither too
big, as they do not allow to reach a steady state within the
specific time simulation period (tf = 20 s).

Figure 2 shows the metric µts as a function of the param-
eters M22 (panel a), D11 (panel b), D22 (panel c), and K11

(panel d) on a logarithmic scale. The top five configurations
with the lowest metric values are highlighted in each panel.
A direct relation between D22 and dynamic performance is
observed, which is less evident for the other parameters.

This can be explained by the construction of the µts metric,
as it measures both the difference between the initial and
final steady-state frequencies (which is clearly reduced by
increasing D22) and the deviation of the frequency trajectory
from its final steady-state value. The latter is minimized
by a specific combination of parameters. For instance, an
overdamped system may take too long to reach steady state,
increasing the transient metric, while a small M22 can cause
overshoot or oscillations, which also affects the metric.

2) Extended & Decoupled VSM configuration: In this sub-
section the role of the parameters M11 and K22 is assessed.
Figure 3 illustrates the unstable simulation rate as a function
of these parameters in logarithm scale under a load variation
at bus 5 applied at second 1 of the simulations. Additionally,
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Fig. 2: WSCC 9-bus system - Sensitivity analysis based on the Monte Carlo
method for VSM case - Performance metric µts as a function of parameter
values in logarithm scale, M22 in panel (a), D11, in panel (b), D22 in panel
(c) and K11 in panel (d). Top 5 configurations are highlighted in each panel
indicating the lowest metric values.

Fig. 4 displays the metric µts as a function of the parameters
M11 (panel a) and K22 (panel b) on a logarithmic scale.

Figures 2 and 4 indicate that high values of K22 tend
to marginally reduce the metric and increase the unstable
simulation rate. Setting K22 to a non-null and positive value
introduces integral control for the frequency. This can lead to
several issues if not properly tuned, including unstable, unfair,
or uneconomical active power distribution; windup problems;
and poorly damped or even amplified oscillations.

The left panels of Fig. 5 illustrate the effect of K22 in the
frequency and voltage at the terminals of the IBRs for three
parameter values: 0, 0.01, and 0.1. The upper left panel shows
how K22 mitigates frequency error and that higher gain values
imply faster controller response, but at the cost of increased
oscillatory behavior.

Parameter M11 acts as an inertia for the variable uv , directly
affecting the Rate of Change of Voltages (RoCoV). Although
it does not have much influence in the metric for the studied
range of the parameter as observed in Figure 4 (panel a), it has
a significant effect on stability when increasing its value, as
slower oscillatory responses do not reach a steady state in the
simulation period. Finally, it is worth noting that voltage and
frequency dynamics shown in Fig. 5 are not affected by K22

and M11, respectively, which indicates that these variables are
dynamically decoupled.

3) Coupled VSM configuration: In this subsection, a sensi-
tivity analysis of the coupled terms in the active and reactive
power balance is conducted. To achieve this, we start from
the VSM and range terms such as D12 and D21 to couple
the dynamic of the voltage magnitude with active power, and
the dynamic of the voltage frequency to variations in reactive
power. These parameters are varied equally (D12 = D21).
Thus, damping matrix D is still symmetric. Symmetric damp-
ing matrices are often related to viscous damping, mutual
impedance and proportional models, all of them of dissipative
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Fig. 3: WSCC 9-bus system - Sensitivity analysis based on the Monte Carlo
method analysis for the extended VSM case - Unstable simulation rate as a
function of parameter values in logarithm scale under a load variation at bus
5 applied at second 1 of the simulations.
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Fig. 4: WSCC 9-bus system - Sensitivity analysis based on the Monte Carlo
method for the extended VSM case - Performance metric µts as a function
of parameter values in logarithm scale, M11 in panel (a) and K22 in panel
(b). Top 5 configurations are highlighted in each panel indicating the lowest
metric values.
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Fig. 5: WSCC 9-bus system - Extended & decoupled VSM analysis - Effect
on frequency and magnitude of the voltage behavior at bus 1, for a variation
in parameters K22 and M11.

non-conservative nature. On the other hand, skew-symmetric
damping matrices are often associated with gyroscopic terms
and Coriolis effects, being both conservative phenomena.

Figure 6 shows the unstable simulation rate (panel a),
and the value of the performance metric µts (panel b) as a
function of parameter D12 ranging from 0.01 to 100. Top 5
configurations are highlighted.
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Fig. 6: WSCC 9-bus system – Coupled VSM analysis. Panel (a): Performance
metric µts as a function of parameter D12 in logarithm scale. Panel (b):
Unstable simulation rate as a function of D12 values in logarithm scale
under a load variation at bus 5 applied at second 1 of the simulations. Top 5
configurations are highlighted.

In transmission systems the R/X ratio is relatively small,
thus the inherent coupling between frequency and voltage with
active and reactive power provided by the system becomes
marginal. This effect can be observed in the performance
metric presented in Figure 6-(b), where the change of value for
parameters D12 and D21 don’t have a significant effect on µts.
Nevertheless, increasing the value of the coupling parameter
D12 increases the unstable simulation rate, as it introduces
non wanted interactions of local voltage variations into the
frequency dynamics, and vice-versa.

The effect of coupling parameters in the inertia and the
stiffness matrix as well as the sensitivity in the R/X ratio is
not studied in this paper and will be assessed in future work.

4) dVSM configuration: This subsection analyzes the
dVSM configuration. In this setup, the elements of the power
vector s = [p, q]⊤ on the right-hand side of (5) are inter-
changed, resulting in s̃ = [q, p]⊤. The same transformation is
applied to so.

For the dVSM configuration we set parameters M22, D22

D11 and K11 non-zero. Thus, the dVSM voltage dynamics is
linked with active power and frequency dynamics with reactive
power. To address the main features of the dVSM, a sensitivity
analysis based on the Monte Carlo method is conducted for
these parameters, ranging them between 0.01 to 100.

Figure 7 illustrates the unstable simulation rate of the
studied parameters. It is interesting to note that in general
the rate is higher, suggesting a narrower number of stable
combinations. Nevertheless, the shape of the rate as a function
of the parameters is similar to the one displayed in Fig. 1 for
the VSM configuration.

The performance metric assessment presented in Fig. 8 re-
veals a dual behavior among the studied parameters compared
to the VSM case. This reflects that for the studied case, the
active power balance has a major impact on the proposed
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Fig. 7: WSCC 9-bus system - Sensitivity analysis based on the Monte Carlo
method for dVSM case - Unstable simulation rate as a function of parameter
values in logarithm scale.
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Fig. 8: WSCC 9-bus system - Sensitivity analysis based on the Monte Carlo
method for dVSM case - Performance metric µts as a function of parameter
values in logarithm scale, M11 in panel (a), M22 in panel (b), D11 in
panel (c), D22 in panel (d), K11 in panel (e) and K22 in panel (f). Top
10 configurations are highlighted in each panel indicating the lowest metric
values.

metric, while reactive power control acts as a supporting tool
for stability. Furthermore, similar to the VSM configuration,
the results prioritize faster controllers, provided they do not
couple with other time scales.

B. Irish System

The grid comprises 21 synchronous generators, 169 wind
plants, and 2 HVDC interconnectors. Additionally, there are
245 loads, 1479 buses, 796 lines, and 1055 transformers mod-
eled within the system. Synchronous generators are modeled
using Sauer and Pai’s 6th order machine, simplified AVR IEEE
type DC-1 with PSS2 and type 1 Turbine Governor, while
wind turbines are modeled as Doubly-Fed Induction Gener-
ator (DFIG) (variable-speed 5th-order generator, double-mass
elastic shaft with tower-shadow effect, turbine with continuous
pitch control, cubic MPPT approximation, 1st-order AVR and
turbine governor) and Constant Speed Induction Generator

(CSIG) (5th-order squirrel-cage induction generator model,
turbine model without pitch control, single-mass shaft model
with tower-shadow effect, and static capacitor bank) models.
While simulations are based on realistic data, they do not
represent any specific operational condition of the system.

Figure 9 shows the frequency of the center of inertia for
the Irish grid, whereas Fig. 10 shows the voltage for various
representative substations of the Irish grid located in the
north, west, east and south of the system. The contingency
consists in the loss of the East to West interconnector, which
is importing its nominal active power of 500 MW. This is
one of the most severe contingencies that can occur in the
Irish transmission system in terms of power unbalance. In
this scenario, we assume that the SMs and IBR have enough
reserve to effectively provide the required active and reactive
power lost during the event.

For the frequency of the Center of Inertia (CoI) calculation,
we use the definition of virtual inertia adopted in [27] for
systems with a significant share of IBRs, thus the frequency
of the CoI is expressed as the following weighted sum:

ωCoI =

∑
k∈KSM

HkSb,kωk +
∑

k∈KIBR
HkSb,kωk∑

k∈KSM
HkSb,k +

∑
k∈KIBR

HkSb,k
, (11)

where Hk are the physical or virtual inertia time constants and
Sb,k are the capacities of the generators.

For the case when GSC is considered, all parameters for
all devices are set equally. Thus, the inertia constants are
simplified, and the frequency of the CoI becomes a weighted
sum with respect to the base power of each device.

We compare the dynamic performance across four scenar-
ios. The first is the base scenario without SM replacement. In
the three remaining scenarios, SMs are replaced by IBRs with
a GSC scheme configured as VSM; a VSM with coupling
parameters D12 = D21 (denoted as VSC-c); and finally, a
dVSM scheme. Parameters of M, D and K are adjusted so
that the initial Rate of Change of Frequency (RoCoF) and
the steady-state value of the frequency and magnitude of the
voltage are comparable. For the particular case of the dVSM
we utilized the top values found in the Monte Carlo analysis
within Section III-A4.
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Fig. 9: Irish system - Frequency of the CoI after the loss of the East to West
Interconnector 500 MW for different control setups of the GSC.

Although all scenarios satisfy the Irish grid technical re-
quirements for frequency and voltage during transient system
disturbances ([48, 52] Hz and [200, 245] kV for 220 kV rated
busbars [28]), an overall improvement in the time to reach the
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Fig. 10: Irish system - Voltage at representative buses after the loss of the
East to West Interconnector 500 MW for different control setups of the GSC.

TABLE I: Irish system - Performance metric µts after the loss of the East to
West Interconnector 500 MW for different control setups of the GSC

Metric VSM VSM Coupled dVSM

µt,ρ 2.458× 10−5 4.006× 10−5 1.454× 10−4

µt,ω 5.385× 10−4 5.365× 10−4 1.206× 10−7

µt 5.631× 10−4 5.765× 10−4 1.455× 10−4

µs,ω 1.350× 10−2 1.350× 10−2 1.206× 10−7

µs,v 6.841× 10−3 6.372× 10−3 3.216× 10−3

µs 2.034× 10−2 1.987× 10−2 3.216× 10−3

µts 2.090× 10−2 2.045× 10−2 3.362× 10−3

steady state of the voltage across the buses of the system and
the frequency of the CoI is observed. The interaction among
PSS and AVR of the SMs is clearly observed in the voltage
transient through all the buses of the system. This transient is
mitigated due to the more homogeneous voltage and frequency
control participation inherently provided by the GSC.

Table I presents the values of the metric described in Section
II-A. This analysis evaluates the performance of three control
strategies based on the GSC (VSM, VSM-c, and dVSM)
following the loss of the 500 MW East-to-West Interconnector.
The VSM-c configuration shows a slight improvement over
the VSM by exploiting the inherent trade-off and coupling
between frequency and voltage dynamics.

The dVSM demonstrates a significant improvement in over-
all dynamic performance. However, this performance gain is
due to a fundamentally different power balancing mechanism
compared to conventional strategies. Due to the inductive
nature of the transmission grid, the dVSM has a local effect
on the active power, which can sometimes be undesirable
in systems with buses that have high voltage sensitivity and
generators that lack significant power reserve.

Figure 11 shows the total active and reactive power provided
by all generators with different GSC configurations in the
upper panels, and the active and reactive power provided
by the generators located at buses WHITEGAT and PBEGG4
in the lower panels. The total active power remains almost
the same, but its distribution for the dVSM configuration is
different from that of the VSM and the VSM-c. A similar
effect occurs in the distribution of reactive power. However,
the total reactive power is significantly different across the
three schemes.
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Fig. 11: Irish system - Total active and reactive power (in pu, upper panels)
provided by all GSC-based generators, along with the active and reactive
power provided by the generators located at buses WHITEGAT and PBEGG4
(lower panels), following the loss of the 500 MW East-to-West Interconnector
for different GSC control setups.

IV. CONCLUSIONS

This paper proposes a novel control framework, namely
Generalized Swing Control (GSC), which leverages the in-
herent flexibility of IBRs by extending the energy conversion
principles of the swing equation to the complex domain. The
mathematical properties of the GSC are analyzed within the
QEP framework, with a focus on physical terms, namely
inertia (M), damping (D), and stiffness (K).

Monte Carlo simulations are employed to enhance parame-
ter tuning and assess the stability of GSC implementations.
Several GSC configurations—including the VSM, extended
VSM, coupled VSM, and dVSM—are evaluated using per-
formance metrics such as the unstable simulation rate and
the µts index (proposed to weight transient and steady-state
variations). Tests are carried out based on the WSCC 9-
bus system and a realistic-size model of the all-island Irish
transmission system. Results demonstrate the framework’s
flexibility and its capability to enhance on power system
stability. The GSC provides a unified approach to design GFM
schemes, effectively enhancing system damping and inertial
response.
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The proposed framework, currently designed for a two-
dimensional vector space, can be extended to higher-
dimensional spaces. Therefore, future work will focus on uti-
lizing the framework proposed in [29] to control the geometric
frequency — a generalization of the CF and, consequently,
of the conventional frequency. Additionally, sophisticated im-
plementations of the different configurations of GSC, such as
including current limiting, right-through modes, and parameter
tuning, will be explored.

APPENDIX

The CF is a physical quantity that can also act as a derivative
operator of any complex number with non-null magnitude
[30]. For example, considering a complex time-dependent
quantity, say ū, this can be written as:

ū = u exp(ȷ α) = exp(lnu+ ȷ α) , (12)

where u ̸= 0 and α are the magnitude and phase angle of
ū, respectively. Assuming lnu and α are smooth functions of
time, the time derivative of ū gives:

ū′ = ((lnu)′ + ȷ α′) exp(lnu+ ȷ α)

= (u′/u+ ȷ α′) ū = (ρu + ȷ ωu) ū

= η̄u ū .

(13)

The quantity η̄u is the CF of ū, and ρu and ωu are its real
and imaginary parts, respectively.
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