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Abstract— This letter focuses on the dynamic modeling of synchronous

machines and proposes a general exact equation to compute the field

current of the rotor winding for transient stability analysis. The proposed

approach is based on the semi-implicit formulation of differential-

algebraic equations, which allows expressing the filed current in terms of

the times derivatives of machine state variables, rather than in terms of

the variables themselves. This leads to an expression which is compact,

linear and model-independent and, thus, easily implementable in power

system software tools. The letter illustrates the derivation of the equation

leading to the field current for different machine models and shows,

through a 21,177 bus model of the ENTSO-E transmission grid, how

the derived equation reduces the computational burden of power system

models.

Index Terms— Field current, synchronous machine, differential-

algebraic equations, semi-implicit formulation.

I. INTRODUCTION

S
TANDARD models of synchronous machines for transient sta-

bility analysis do not include explicitly the expressions of the

currents of rotor windings. These currents, in fact, can be expressed

as a function of fluxes, voltages and stator currents and, hence, are

eliminated from machine equations [1].

While most rotor currents are actually flowing in short-circuited d-

and q-axis damper windings and, thus, their magnitudes are actually

not needed, the field current (if ) is an important quantity that is

required in several controllers of the machine. Some examples are

the over-excitation limiter (OEL) and several models of automatic

voltage regulators (AVRs) – see, for example, models in [2].

The explicit expression of the field current is model dependent.

For each machine model, one has thus to include such an expression

and calculate if even if it is not expressly required by OEL and

AVRs connected to the machine. This letter proposes an implicit

expression of the field current which is simple and independent from

the machine model. Such an expression is compact, exact and linear

and appears to be particularly useful for the implementation in power

system software tools for transient stability analysis.

II. GENERAL FORMULA OF THE FIELD CURRENT

This section determines a model-independent expression of the

field current of a synchronous machine. To illustrate the procedure,

the specific model of the machine as described in [1] is considered

first. This machine has a salient-pole rotor with one field (excitation)

winding (subscript f ) and a three-phase system of stator windings.

The effect of induced currents in the rotor core is modeled as a

lumped winding (subscript 1d) in quadrature with the field winding.

Finally, damping effects are modeled as two fictitious lumped wind-

ings (subscripts 1q and 2q, respectively) in the rotor. In this context,

only the d-axis magnetic circuit dynamics are of interest:

T ′

d0ė
′

q = −e′q − (xd − x′d)(id + γd2T
′′

d0ψ̇1d) + vf (1)

T ′′

d0ψ̇1d = −ψ1d + e′q − (x′d − xℓ)id , (2)

where vf is the field voltage; e′q is the transient emf proportional to

the field magnetic flux:

e′q =
xd − xℓ
xf

ψf ;
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TABLE I

SYNCHRONOUS MACHINE PARAMETERS

Parameters Description

xℓ leakage reactance
xf reactance of the rotor field winding
xd d-axis synchronous reactance
x
′

d
d-axis transient reactance

x
′′

d
d-axis sub-transient reactance

T
′

d0
d-axis open circuit transient time constant

T
′′

d0
d-axis open circuit sub-transient time constant

ψ1d is the magnetic flux of the d-axis rotor damper winding; id is

the d-axis component of the stator current; machine parameters are

defined in Table I; and

γd2 =
1− γd1
x′d − xℓ

, and γd1 =
x′′d − xℓ
x′d − xℓ

.

In (1) and (2), rotor currents do not appear explicitly. d-axis

currents satisfy the following expressions:

0 = e′q + (xd − x′d)(id − i1d)− x̂dif (3)

0 = γd2[ψ1d + (x′d − xℓ)id − e′q]− i1d , (4)

where x̂d = xd − xℓ and i1d is the current in the d-axis damper

winding. Substituting (2) into (1), one obtains:

T ′

d0ė
′

q =− (xd − x′d)[id − γd2ψ1d − (1− γd1)id + γd2e
′

q] (5)

+ vf − e′q ,

then, substituting (4) into (5):

T ′

d0ė
′

q = −e′q − (xd − x′d)(id − i1d) + vf . (6)

And, substituting (3) in (6):

T ′

d0ė
′

q = vf − x̂dif (7)

Equation (7) is the sought expression for the field current if . It only

depends on the field voltage vf and the time derivative of e′q , which

are always available, regardless the order and the approximations of

the synchronous machine, except for, of course, the classical electro-

mechanical model.

Equation (7) is written in a semi-implicit form. This formulation,

which is thoroughly discussed in [3], consists in writing differential-

algebraic equations utilizing both state variables and their first time

derivatives. The general expression of semi-implicit DAEs is:
[

T 0

R 0

] [

ẋ

0

]

=

[

f(x,y)
g(x,y)

]

(8)

where x, (x ∈ R
n) are the state variables; y, (y ∈ R

m) are the

algebraic variables; f , (f : R
n+m

7→ R
n) are the differential

equations; g, (g : Rn+m
7→ R

m) are the algebraic variables; and T

and R are, respectively, n × n and m × n matrices. According to

the notation of (8), the general expression of the field current given

in (7) is an element of Rẋ and g vectors.

Noteworthy, expressing if as a function of T ′

d0ė
′

q , i.e., Rẋ,

allows eliminating the model-dependency from (7), as illustrated

in the remainder of this section. Note also that model-independent

expressions similar to (7) can be obtained for all other rotor currents

of the synchronous machine.
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A. Non-linear Magnetic Circuit

Equation (7) is also valid if magnetic circuit saturation are taken

into account. Let us consider the non-linear magnetic circuit of the

synchronous machine defined in [1]:

T ′

d0ė
′

q = −e′q − (xd − x′d)(id + γd2T
′′

d0ė
′′

d)− Sf (u) + vf (9)

T ′′

d0ψ̇1d = −ψ1d + e′q − (x′d − xℓ)id − S1d(u) (10)

0 = e′q + (xd − x′d)(id − i1d) + Sf (u)− x̂dif (11)

0 = γd2(ψ1d + (x′d − xℓ)id − e′q + S1d(u))− i1d , (12)

where Sf (u) and S1d(u) are non-linear function modeling the

magnetic-current saturation of the field and d-axis windings, respec-

tively, and

u = [id, e
′

d, ψ1d, iq, e
′

q, ψ2q, io]
T ,

where e′d is the transient emf proportional to the magnetic flux on

1st q-axis damper winding; ψ2q is the sub-transient magnetic flux on

2nd q-axis damper winding; and iq and io are, respectively, the q-axis

and homopolar components of the stator current. Substituting (10)

into (9), (12) into (11), and merging the resulting expressions lead

again to (7), which, hence, does not depend on Sf (u) and S1d(u).

B. Alternative Models

A variety of different 6th-order models of the synchronous ma-

chine have been proposed. A common one is given in [4]. According

to this model, the field current is given by:

0 = −e′q − (xd − x′d)id + x̂dif (13)

While the first derivative of e′q is:

T ′

d0ė
′

q = −e′q − (xd − x′d)id + vf (14)

It is straightforward to observe that substituting (13) into (14) leads

to (7).

Another 6th order model that can be found in the literature is

given in [5]. In this case the filed current and the dynamic of e′q are

expressed by:

0 = −e′q − (xd − x′d − γd)id − γAvf + x̂dif (15)

T ′

d0ė
′

q = −e′q − (xd − x′d − γd)id + (1− γA)vf (16)

where γA = TAA

T ′

d0

, γd =
T ′′

d0x
′′

d

T ′

d0
x′

d

(xd − x′d), and TAA (TAA ≪ T ′

d0)

is a rotor leakage time constant that accounts for the fact that the

field voltage is weakly coupled with the d-axis damper winding.

Substituting (15) into (16) leads again to (7).

C. Reduced Order Models

This subsection considers the machine reduced-order models dis-

cussed in [4]–[6]. These models are obtained by imposing conditions

on machine time constants and parameters. Reduced-order models

with two d-axis dynamic equations are the same as those discussed

above, and have thus same expression of the field current. Models

with one d-axis dynamic equation show same expressions for if and

e′d as in (13) and (14). These include the one d- and one q-axis model

(4th order) as well as the one d-axis model (3rd order), which are

commonly utilized in transient stability analysis.

III. CASE STUDY

This section discusses the advantages offered by the proposed

semi-implicit expression of the field current with respect to the

computational burden of power system models. With this aim, the

ENTSO-E transmission system is considered. The model includes

21,177 buses, 30,968 transmission lines and transformers, 1,144 zero

impedance branches, 15,756 loads, and 4,828 generators.1 2,592

generators are modeled as 6th-order synchronous machine as in [1].

1The data of the system has been licensed to the author by ENTSO-E.
Data can be requested through an on-line application at www.entsoe.eu.

TABLE II

STATISTICS FOR THE ENTSO-E SYSTEM

Standard Expression (17) Approx. Expression (18) Proposed Expression (7)

Matrix NNZ NNZ% NNZ NNZ% NNZ NNZ%

gy 400, 830 0.00406 405, 406 0.00411 400, 846 0.00406

gx 39, 952 0.00077 34, 768 0.00067 34, 768 0.00067

R 844 0.00002 844 0.00002 3, 436 0.00007

R + gx 39, 952 0.00077 34, 768 0.00067 37, 360 0.00072

CPU Time 29.86 s 30.03 s +0.57% 23.74 s −20.50%

These machines include AVR models that requires the field current

as input signal, namely, IEEE Type ST1A, Type 3 and Type AC1

excitation systems; as well as a simple over-excitation limiter. All

results shown in this section are obtained using Dome [7].

The computational burden of three expressions of the field current

are compared, as follows: (i) the proposed general formula (7); (ii)

the expression obtained derived from (1)-(4), namely:

0 = e′q + (xd − x′d)[γd1id − γd2(ψ1d − e′d)]− x̂dif ; (17)

and (iii) the following approximated, nonlinear expression [6]:

0 =
√

(v + κq)2 + p2 +

(

xd
xq

+ 1

)

κq(v + κq) + κ2
p

√

(v + κq)2 + p2
− if (18)

where κp = xqp/v, κq = xqq/v; v is the voltage magnitude at the

generator terminal bus; p and q are the active and the reactive power

of the generator, respectively; and xd and xq are the machine d- and

q-axis synchronous reactances, respectively.

The full DAE system includes n = 51, 988 state variables and

m = 99, 360 algebraic variables. The total number of variables of

the system is the same independently from the expression used for

if . The sparsity of the Jacobian matrices of the system, however,

changes depending on the expression utilized to compute if . In

the case of (18) the computational burden also increases due to the

nonlinearity of the expression and the fact that its Jacobian elements

are non-constant.

Table II shows the effect of using (17), (18), and (7) on system

Jacobian matrices gy , gx and R. Equation (7) increases the number

of non-zero (NNZ) elements in R, but decreases those of gy and

gx and R + gx with respect to (17) and (18). Note that only gy
and R+ gx are actually used during factorization [3].

A time domain simulation for the ENTSO-E system considering

a shortcircuit at the bus with code 129218, occurring at t = 1 s and

cleared after 200 ms is carried out to compare the computational

burden of the three expressions (7), (17) and (18). The simulation is

solved using a standard Very DisHonest Newton (VDHN) method [6]

coupled with an implicit trapezoidal scheme with fixed step of 0.2 s,

and Linux OS (Fedora 23) running on an Intel Xeon 3.50 GHz with

12 GB of RAM. The total simulation time is 5 s. Results are shown

in the last row of Table II. It is interesting to note that even though

the increase in the sparsity of the system Jacobian matrices is small,

the proposed formulation based on (7) consistently helps reducing

the overall computational burden of the system. This unexpected

speed up has to be ascribed to the highly nonlinear process involving

numerical factorization of sparse matrices.
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