
1

Analytical Framework for Assessing Effective
Regional Inertia

Bruno Pinheiro, Joe H. Chow, Life Fellow, IEEE, Federico Milano, Fellow, IEEE, Daniel Dotta, Member, IEEE

Abstract—This paper proposes a novel formulation of effective
regional inertia that explicitly accounts for both system topol-
ogy and the spatial distribution of inertia. Unlike traditional
approaches that model a region as an aggregated machine
with an equivalent inertia, the proposed metric provides a
topology-aware representation. The methodology builds on an
analytical framework that extends classical slow coherency theory
to address network partitioning and regional frequency stability.
Based on these partitions, we develop a systematic procedure
to evaluate the effective inertia of each region, enabling a more
accurate interpretation of local inertial contributions, including
those from virtual inertia provided by inverter-based resources
(IBRs). Case studies on the IEEE 39-bus and 68-bus systems
demonstrate that the integration of inertial devices does not
uniformly improve system frequency response, underscoring the
importance of the proposed metric for effective regional inertia
assessment.

Index Terms—Regional inertia, nodal inertia, frequency sta-
bility, regional stability, low-inertia.

I. INTRODUCTION

The assessment of frequency stability has traditionally
relied on conventional metrics such as the rate of change
of frequency (RoCoF) and the frequency nadir, evaluated
using the center-of-inertia (COI) frequency, or on aggregated
models like system frequency response (SFR) [1]. However,
the dynamic behavior of frequency in power systems exhibits
a spatiotemporal nature [2], a characteristic that becomes even
more pronounced with the increasing heterogeneity introduced
by IBRs. As consequence, conventional frequency stability
assessment methods, such as those relying on the COI fre-
quency fail to capture localized transient behaviors effectively
[3], [4]. In this context, defining regions where frequency
should be monitored and controlled, has become a critical
aspect [5]. To properly address the challenges associated with
evaluating regional frequency behavior, two key questions
must be considered: (i) how to define coherent regions for as-
sessing regional frequency stability, and (ii) how to accurately
quantify the effective regional inertia while accounting for
the spatial distribution of inertia within those regions. In this
work we propose an unified analytical framework to define the
regions and regional inertia assessment based on the concept
of distribution of inertia.
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System partitioning groups generation and load buses into
regions according to specific dynamic or operational objectives
and is essential for stability assessment, control design, and
resource planning in large-scale networks. The effectiveness
of a partition depends critically on the chosen criterion (e.g.,
voltage regulation, static stability, or frequency dynamics) [6].
For frequency studies, coherent-machine identification is clas-
sically addressed by slow-coherency theory [7], while exten-
sions to include load buses rely on sensitivity factors [7].
Measurement-based alternatives using measurements have also
been proposed [8], [9], but their dependence on event data and
wide-area monitoring limits applicability in planning studies.

In parallel, a number of studies have focused on regional in-
ertia estimation using measurement-based techniques. In [10],
generator internal frequencies are estimated and clustered, and
an iterative system identification method is used to deter-
mine regional inertia. Reference [11] formulates a nonlinear
parameter identification problem to estimate the equivalent
inertia of a coherent area, using a limited number of frequency
measurements and an inter-area frequency model. In [12],
transient frequency data is used to determine coherent regions
and estimate regional inertia via a regional COI formulation.
A similar effort in [13] uses the average frequency of a
predefined region and inter-area power exchange to estimate
regional inertia, accounting for both generator and load con-
tributions. Across these works, regional inertia is generally
defined as the sum of inertia constants of machines and
loads within a region, based on an equivalent swing equation
representation. However, these approaches do not examine
whether such equivalent metrics are physically meaningful for
characterizing the actual regional inertial frequency response.

Beyond measurement-based estimation, recent works have
emphasized the role of network connectivity and spatial inertia
distribution in shaping regional frequency dynamics. To this
end, screening approaches have been proposed that avoid
full time-domain simulations and instead rely on analytical
strength indices. In [14], regions are defined using synchro-
nizing coefficients and generator inertia, with regional RoCoF
metrics serving as stability indicators. In [15], inertia zones are
formed using a maximal entropy random walk combined with
a modified weighted k-means clustering. A frequency strength
index is introduced in [16] to quantify the stability of coherent
regions as a function of their inertial content. From a graph-
theoretic perspective, [17] reformulates generator frequency
dynamics through the spectral decomposition of the system
Laplacian matrix, showing that deviations are strongly tied to
network topology, particularly the slowest eigenmodes. Simi-
larly, [18] employs Laplacian eigenvectors to identify coherent
clusters and evaluates the regional COI frequency under dif-
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ferent disturbance scenarios. However, methods relying solely
on Laplacian properties inherently assume uniform inertia
distribution and therefore require complementary metrics to
capture spatial heterogeneity.

These studies highlight that regional vulnerability to fre-
quency disturbances depends jointly on inertia distribution
and network structure. As a result, there has been increasing
interest in directly quantifying the spatial distribution of inertia
across power systems [19]–[22]. For example, [19] introduces
a time-domain-based inertia distribution metric, while [23]
proposes a variant based solely on PMU data. A simplified
nodal inertia formulation is proposed in [20] and later refined
in [24], yielding the analytical formulation adopted in this
work. Although these methods provide useful insights into
locational or regional frequency stability, a clear gap remains:
(i) there is still no unified framework that jointly integrates
local frequency response, network topology, and coherent area
definitions to analytically quantify regional inertial strength;
and (ii) there is limited understanding of how the allocation
of inertial devices, that is, devices that provide inertial re-
sponse such as synchronous generators (SGs), synchronous
condensers (SCs), synchronous motors (SMs), or IBRs with
virtual inertia, affects the regional inertial response.

The contributions of this paper are summarized as fol-
lows: 1) Building on the nodal inertia concept, we analyze
the allocation of inertial devices and demonstrate that their
placement and contribution can, in certain cases, degrade
the regional inertial response. We derive an analytical ex-
pression for the ideal inertia contribution as a function of
device location. To the best of our knowledge, this is the
first analytical formulation showing that adding inertia does
not necessarily improve the regional inertial response; 2)
We propose a novel analytical method for identifying co-
herency regions. The method combines nodal inertia with
the network Laplacian matrix, enabling the inclusion of load
buses in coherency assessments. Its main advantage lies in
providing a more intuitive and interpretable framework for
network partitioning, while maintaining direct comparability
with classical slow-coherency-based approaches; 3) Building
on the inertia distribution and identified coherent regions, we
propose a new metric to quantify the regional inertia, namely
effective regional inertia. This metric facilitates the evaluation
of how new inertial device affect the dynamics of the regional
frequency response.

The subsequent sections of this paper are structured as fol-
lows: Section II provides the theoretical background. Section
III presents the problem formulation. Section IV introduces the
proposed approach to determine the regions, and the proposed
effective regional inertia metric. Section V presents the study
cases. Lastly, Section VI presents our concluding remarks.

II. BACKGROUND

A. Fundamental Coherency in Power Systems

The classical slow-coherency model aims to capture the
swing dynamics and coupling among generators associated
with low-frequency oscillation modes. The identification of
coherent machines is based on a simplified representation of
the power system. In this framework, coherent groups are

determined independently of detailed machine models: SGs
are represented by the classical second-order swing equation,
and the effects of controllers are neglected [7]. After lineariza-
tion around the steady-state operating point and elimination of
algebraic variables, the basic electromechanical dynamics of
ng generators can be expressed as [7]:

∆ω̇ = M−1Ks∆δ − M−1D∆ω, (1)

where ∆ω̇ ∈ Rng is the vector of rotor acceleration devia-
tions, ∆δ ∈ Rng is the rotor angle deviation, M ∈ Rng×ng

is the diagonal inertia matrix, D ∈ Rng×ng is the diago-
nal damping/droop matrix, and Ks ∈ Rng×ng contains the
synchronizing power coefficients (SPCs), which reflect the
electrical coupling between machines. Assuming negligible
conductance and applying Kron reduction, the entries of Ks

are given by:

Ksı,ȷ =

{
EıEȷBı,ȷ cos(δı − δȷ), if ı ̸= ȷ

−
∑

k ̸=ı EıEkBı,k cos(δı − δk), if ı = ȷ
(2)

where Bı,ȷ is the equivalent susceptance between buses ı and
ȷ, and Eı, δı are the internal voltage and angle of generator ı.

In systems with IBRs providing frequency control, e.g.,
grid-following (GFL) inverters with frequency droop or grid-
forming (GFM) devices with power–frequency droop, the
damping term in (1) cannot be neglected. This is because
the effective damping is set by the droop gain mp, with
DIBR = 1/mp [25]. In this case, the system eigenvalues λ
are determined by the quadratic eigenvalue problem (QEP):
det(λ2I + M−1Dλ − M−1Ks) = 0, and coherency must
be assessed using the eigenvectors taking into account both
inertia and damping/droop contributions. Coherent groups of
generators are then identified by clustering based on the
eigenvectors associated with the lowest-frequency modes.

B. Spectral Analysis

A power system can be represented as an undirected
weighted graph G = (V, E), where nodes V correspond to
buses (generators and loads), and edges E represent transmis-
sion lines [26]. Edge weights vary with application, including
line admittance, SPCs [27], or power flow magnitudes [26].

In lossless networks with n = ng+nb buses, with nb being
the number of load buses, the active power injected at bus ı
is given by:

Pı =
∑
ȷ∈E

VıVȷBıȷ sin(θı − θȷ), (3)

where Vı and θı are the voltage magnitude and angle at bus ı,
and Bıȷ is the susceptance of the line connecting buses ı and
ȷ. Linearizing around an operating point yields the DC power
flow model: [

∆PG

∆PB

]
= L

[
∆θG
∆θB

]
(4)

where ∆θG ∈ Rng is the vector of generator buses angle,
∆θB ∈ Rnb is the vector of load buses angle, and L ∈ Rn×n

is the network Laplacian matrix, defined as:

Lıȷ =

{
−VıVȷBıȷ cos(θı − θȷ), ı ̸= ȷ∑

k ̸=ı VıVkBık cos(θı − θk), ı = ȷ
(5)
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The Laplacian matrix is symmetric and positive semi-
definite. Its smallest eigenvalue λ1 = 0 corresponds to a
uniform angle shift, while the second smallest eigenvalue λ2

is the algebraic connectivity. The k largest eigenvectors of L
form V ∈ Rn×k, with each row representing a node in Rk.
This mapping is called spectral embedding [28].

III. PROBLEM STATEMENT

This section formalizes the problem addressed in this work,
namely the regional inertia quantification. We begin with the
formulation of the nodal inertia, followed by analyzing the
trade-offs introduced by the integration of new inertial devices
at the nodal level and then extend the discussion to the regional
scale.
A. Nodal Inertia Formulation

In this work, we consider the nodal inertia as the local
frequency resistance following a power mismatch. The RoCoF
at a particular bus ȷ after a local disturbance ∆Pȷ is thus
defined as follows:

RoCoFȷ(t = 0+) =
∆Pȷ

hȷ
, (6)

where hȷ represents the nodal inertia at bus ȷ. This underlying
formulation highlights the role of nodal inertia in shaping local
frequency variations, resulting in the following definition.

Definition 1. Nodal Inertia: The nodal inertia of a bus ȷ, which
may represent either a generation or load bus, is defined as the
total inertial response observed in its local frequency deviation
following a local power perturbation. Mathematically, nodal
inertia is a weighted sum of the inertial contributions from all
devices in the system that are dynamically linked to bus ȷ.

The quantification of nodal inertia begins with the formula-
tion of bus frequencies. The frequency divider (FD) expression
provides an analytical estimate of the frequency deviations at
each bus and is given by [2]:

∆ωb(t) = Ddiv∆ω(t), (7)

where ∆ωb(t) denotes the bus frequency deviations, and DD ∈
Rn×ng is the frequency divider matrix, defined as:

Ddiv = B+
BG[BB + BG], (8)

where BB ∈ Rn×n is the conventional susceptance matrix
of the system; BBG ∈ Rng×n and BG ∈ Rng×ng are the
susceptance matrices associated with the generator internal
nodes.

Following a power disturbance ∆Pȷ at bus j, all syn-
chronized generators instantaneously contribute active power
via the energy stored in their magnetic fields. This power
redistribution can be analytically described using the SPCs.
The power contribution of generator i is given by ∆Pi =
∆Si,j∆Pȷ, where ∆Si,j denotes the linearized SPC of gener-
ator i for a disturbance at bus j, expressed as:

∆Sı,ȷ =
B̃ı,ȷEı0Vȷ0 cos(δı0 − θȷ0)

ng∑
ı=1

B̃ı,ȷEı0Vȷ0 cos(δı0 − θı0)

. (9)

Here, Eı0 and δı0 denote the internal voltage and rotor angle
of generator ı at the pre-disturbance operating point, while Vȷ0

and θȷ0 correspond to the voltage magnitude and angle at bus
ȷ.

The equivalent susceptance B̃i,j is obtained from an ex-
tended susceptance matrix that includes all generator buses and
the selected bus ȷ. By applying Kron reduction to eliminate the
remaining load buses (denoted by the subscript r), a reduced
matrix is obtained, which preserves the coupling between the
generators and bus ȷ. The generator–bus susceptance coupling
vector can be calculated as

B̃Gj = BGj −BGrB
−1
rr Brj , (10)

where BGr and Brj represent the generator–to–remaining-bus
and remaining-bus–to–bus-ȷ couplings, respectively, and Brr

is the susceptance matrix of the eliminated buses. Repeating
this procedure for each bus yields the complete matrix of
equivalent susceptances,

B̃ =
[
B̃G1, B̃G2, . . . , B̃Gn

]
∈ Rng×nb . (11)

Next, by taking the time derivative of (7), substituting
the swing equation (1), the SPC definition in (9), and the
underlying nodal inertia expression (6), one obtains the nodal
inertia at bus ȷ [24]:

hȷ =
1∑ng

k=1
1

2Hk
Ddivȷ,k∆Sk,ȷ

. (12)

It should be noted that the damping/droop terms of the
devices do not affect the nodal inertia. To generalize (12) for
all buses, the following matrices are defined:

K = Eg1
⊤
n ◦

(
B̃ ◦ cos(∆)

)
, (13)

Kh = 1⊤
ng

K, (14)

where ◦ denotes element-wise multiplication; K ∈ Rng×n; Eg

is the vector of generator internal voltages; ∆ ∈ Rng×n is the
matrix of angle differences between δ and θ; and 1ng

is a unit
vector of dimension ng .

The combined effect of the FD matrix and generator in-
ertia is then captured by the frequency sensitivity matrix
F ∈ Rn×ng , defined as:

F =
(
Ddiv ◦ K⊤)M−1, (15)

where M is the diagonal matrix with generators inertia.
Defining:

Fh = F1ng
, (16)

and finally, combining (14) and (16), the nodal inertia vector
h ∈ Rn×1 is obtained as:

h = K⊤
h ⊘ Fh . (17)

where ⊘ denotes element-wise division. Equation (17) pro-
vides the closed-form analytical expression for nodal inertia
at each bus.

In summary, the nodal inertia distribution is governed by the
generator parameters, the system topology, and the operating
point. The inertial contribution of IBRs or loads with inertial
response1 can be direct included in the formulation (17). The
impact of virtual inertia from GFM devices are presented later
in Section V-A.

1This contribution is restricted to synchronous devices that provide an
effective instantaneous inertial response, such as SMs.
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1) Distribution of Damping: As a byproduct of the pro-
posed framework, the distribution of damping can also be
determined. For t > 0+ and prior to the activation of
SGs frequency controls, the damping distribution is obtained
analogously to (15), and is defined as

Rd = (DdivD)M−1 ∈ Rn×ng , (18)

leading to
R = diag(Rd1ng ) ∈ Rn×n. (19)

A detailed examination of damping distribution lies beyond
the scope of this work. Instead, the analysis here focuses
on regional inertia assessment, with the formulation in (19)
applied specifically to coherency studies in the presence of
IBRs operating under droop-based frequency control.

B. Inertia Allocation Trade-Offs

The integration of an inertial device directly modifies the
local and system-wide inertia response. To illustrate this, we
consider the WSCC 9-bus system, where an inertial device
with inertia constant Hdevice is connected at bus 8, as shown
in Fig. 1.

Inertial 
Device

Fig. 1. WSCC 9-bus system with a new inertial device connected at bus 8.

The nodal inertia at bus 8 is computed using (17). Fig. 2a
depicts the equivalent representation seen from bus 8, while
Fig. 2b shows the nodal inertia trajectory as Hdevice varies
from 0.1 s to 10 s. The dashed red line corresponds to the base
case without the additional device. Results show that the post-
connection nodal inertia can be either lower or higher than
the base case, depending on Hdevice. Improvement is observed
when Hdevice > 4 s, as indicated by the red dot.

Inertial 
Device

(a) (b)

without the device

'

'

'

Fig. 2. (a) Equivalent system seen from bus 9, and (b) the nodal inertia at
bus 8 as a function of the device inertia constant Hdevice.

The observed behavior arises because the new device con-
nection redistributes the inertial contributions of the existing

SG. Due to the strong electrical proximity of the new device,
i.e., B′

device ≪ B′
1,8, B

′
2,8, B

′
3,8 and D′

8,4 ≫ D′
8,1, D

′
8,2, D

′
8,3,

the effective contribution of the SGs to bus 8 decreases, and
the new device dominates the local inertia response.

The impact of this redistribution is not restricted to the
connection bus. Fig. 3 shows the system-wide nodal inertia
profile as Hdevice varies. In this reduced system, certain
Hdevice values lead to a reduction of nodal inertia across
several buses, highlighting the system-wide implications of
local device placement and its inertial capacity.

Additionally, Fig. 3 shows the impact of the variation of the
device’s inertia on the distribution of inertia across the system.
We can note that for some Hdevice values, the distribution
of inertia across all the system is reduced. This is specially
critical for this reduced system, where the connection of the
inertial device impact the hole system.

Fig. 3. Nodal inertia distribution across all buses as a function of Hdevice.

Based on this discussion, the following remark is relevant:

Remark 1: The connection of an inertial device does not
guarantee an enhancement of the system inertial response. Its
impact depends both on the inertia constant of the device and
on the pre-existing inertia distribution of the network.

1) Illustrative Example: As an illustrative case, let us
consider the inertial device as a SC. Three cases of inertia
constant HSC are analyzed: 1 s, 5 s, and 10 s. To evaluate the
inertial response, we apply a 1 p.u load step at bus 4 for
each case. The local frequency at bus 8 is measured using a
conventional synchronous reference frame Phase Locked Loop
(PLL). The frequency response for each scenario is shown in
Fig. 4. Among the scenarios, the case with HSC = 1 s exhibits
the highest local RoCoF, that is, its inertial response is worse
than the base case without this new device, corroborating
Remark 1.

The reduction in nodal inertia can be attributed to the
introduction of a new local oscillation mode when the device
operates with low inertia. This mode excites fast dynamics
in the system. Although the analytical formulation of nodal
inertia is not modal-based, the impact of the local mode
is inherently reflected in the lower inertia values in the
connection bus. The local inertial response is determined not
only by the inertia constants of individual devices but also by
their dynamic coupling within the grid
C. Regional Inertia Quantification

While the nodal perspective is useful for understanding local
allocation, inertia must also be assessed at a regional level in
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1.0 1.2 1.4 1.6 1.8 2.0
Time [s]

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

1.002

ω
[p

u
(H

z)
]

Base case

HSC = 1 s

HSC = 5 s

HSC = 10 s

Fig. 4. Frequency response at bus 8 under a 1 p.u. load step for different
inertia scenarios connected at the same bus.

IBR

IBR

M

M

Fig. 5. Power system region with the location of a new device highlighted.

large-scale systems. Consider a generic region R, as shown in
Fig. 5. A conventional approach to quantify its inertia is given
by

HR
conv =

∑
ȷ∈Rsm

Hȷ +
∑

ı∈Ribr

Hı +
∑

d∈Rdev

Hd, (20)

where Rsm denotes the set of synchronous machines, Ribr the
set of IBRs providing virtual inertia, and Rdev the set of other
inertia-contributing devices within region R (e.g., synchronous
motors or other dynamic loads).

Although restricted to a region, this formulation effec-
tively reduces the entire subsystem to a lumped equivalent,
ignoring both internal topology and the spatial distribution
of inertia sources. Consequently, it assumes that any new
device connected within the region contributes uniformly to
the regional inertia. As highlighted in the previous subsection,
this assumption is often misleading, since the location and the
inertial capacity of the device within the network critically
shapes the regional frequency behavior.

To address these limitations, the problem considered in this
work is formulated in two stages: (i) Partition the system
into coherent regions based on frequency dynamics and nodal
inertia distribution, ensuring that both generator and load
buses are meaningfully represented; (ii) Define a new effective
regional inertia metric that accounts not only for the total
inertial content of the devices in the region but also for its
spatial allocation and interaction with network topology.

The first stage leverages principles from classical slow
coherency theory but extends them to include load buses,
which are traditionally neglected in coherency analysis. The
second stage develops a representative inertia measure for each
region that reflects both aggregate inertia and its distribution.

This two-stage framework provides the foundation for a more
accurate assessment of inertia adequacy in a regional level.

IV. PROPOSED FRAMEWORK

This section introduces the proposed framework for effec-
tive regional inertia assessment. First, the network partitioning
approach is described. Then, the procedure for quantifying
regional inertia is presented, followed by a discussion on de-
termining the minimum inertia required from a newly allocated
device to enhance the effective regional inertia.
A. Network Partitioning

The classical slow coherency model presented in Sec-
tion II-A relies on a reduced network representation in which
only generator internal nodes are retained. In this framework,
the system is modeled as a weighted graph G = (V, E ,W),
where V denotes the set of generator nodes, E represents
the electrical couplings among them, and W encodes nodal
weights associated with generator inertia and damping/droop
coefficients.

For regional frequency assessment, however, it is essential
to preserve the full network structure so that coherent regions
of buses can be identified, i.e., through network partitioning.
To overcome this limitation, we extend the reduced generator
graph to a full-bus graph, denoted by G = (B,L,N ), where
B is the set of buses, L captures the electrical couplings, and
N defines nodal weights that reflect the distribution of both
inertia and damping/droop across the network. This extended
representation enables the direct application of spectral meth-
ods for system partitioning at the load bus level.

For a given operating point, the electrical coupling of system
buses is represented by the Laplacian matrix L, as defined
in (5). The nodal inertia vector h is obtained from (17),
and the corresponding diagonal inertia matrix is defined as
N = diag(h). Likewise, the damping contributions from
synchronous generators and the power–frequency (P–f) droop
control of IBRs are aggregated into the diagonal matrix R, as
defined in (19).

The spectral analysis of the extended model leads to the
QEP: (

λ̄2N + λ̄R + L
)
ϕ̄ = 0, (21)

where λ̄ ∈ C denotes an eigenvalue and ϕ̄ ∈ Cnb the
corresponding eigenvector. Since N ≻ 0 (positive definite),
the QEP is well-posed and admits 2nb eigenvalues.

Once the eigenvalues and eigenvectors of (21) are obtained,
a spectral clustering procedure is applied to determine the
network partitioning. Specifically, the eigenvalues are orga-
nized in ascending order, i.e., |λ̄1| < |λ̄2| · · · < |λ̄nb

|, and the
spectral embedding is formed by stacking the first k associated
eigenvectors into a matrix Vs ∈ Cnb×k, which maps each bus
from the nb-dimensional network space to a k-dimensional
spectral space. The underlying regions of the system are then
revealed by applying a clustering algorithm to the rows of Vs.

The number of eigenvectors k to be used in the spectral
embedding is determined using the eigengap heuristic, which
identifies the largest relative gap between consecutive eigen-
values [26]:

γi =
|λ̄i+1| − |λ̄i|

|λ̄i|
. (22)
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The index k corresponding to the maximum γi indicates
the optimal number of significant eigenvectors to represent the
coherent structure. This heuristic is based on the principle that
well-separated clusters are associated with small eigenvalues,
while larger eigenvalues correspond to weaker, less coherent
modes. It thus identifies the eigenvectors that capture the
dominant coherent dynamics, discarding those associated with
minor variations.

Finally, the k-means clustering algorithm is applied in Vs

to identify the coherent regions. The choice of k-means is
motivated by its simplicity and effectiveness when the data
exhibits clearly separable clusters due to the incorporation
of both electrical distances and the nodal inertia distribution.
The number of clusters r must be specified a priori and can
be determined using well-defined metrics, e.g., the silhouette
score, which evaluates the compactness and separation of the
resulting clusters.

When damping is neglected (R = 0), (21) reduces to
(λ̄2N + L)ϕ̄ = 0. Introducing µ = λ̄2, this is equivalent to
the generalized eigenvalue problem Lϕ̄ = −µNϕ̄, where the
spectrum {µi} is real and nonnegative. Hence, the eigenvalues
of the QEP appear in conjugate purely imaginary pairs,
λ̄ = ±j

√
µi, with 0 = µ1 < µ2 ≤ · · · ≤ µnb

. In this case, the
spectral properties are fully characterized by the matrix pencil
(L,N).

The extended spectral formulation presented in this section
preserves the interpretation of slow coherency while enabling
clustering of all buses, thereby supporting regional frequency
assessment in networks with heterogeneous inertia and damp-
ing distributions, including systems with high IBR penetration.

B. Effective Regional Inertia

In the following, we propose a novel definition to quantify
the regional inertia related to a coherent-regions determined
by the extended slow coherency. The effective regional inertia
metric can be calculated reflecting the distribution of inertia
within the region and the system topology, as follows:

Definition 2. Effective Regional Inertia: Let R denote a region
identified through the extended slow coherency framework.
The effective regional inertia is defined as the average nodal
inertia within that region:

HR
eff =

∑
i∈R hi

nR
, (23)

where hi is the nodal inertia at bus i, and nR is the total
number of buses in region R.

C. Minimum Inertia of a Device

Building upon the previous discussion, we now derive a
criterion to determine the minimum inertia required from a
new inertial device such that its connection does not degrade
the local inertial response at its point of connection.

Let us consider the nodal inertia at a generic bus ȷ before
the installation of the new device, expressed as:

1

hold
ȷ

=

ng∑
k=1

1

2Hk
Dj,k∆Sk,j . (24)

After connecting a new device with (virtual) inertia Hj
device

directly at bus ȷ, the updated nodal inertia becomes:

1

hnew
ȷ

=
1

2Hj
device

Dj,device∆Sdevice,j +

ng∑
k=1

1

2Hk
D′

j,k∆S′
k,j

(25)
where D′

j,k and ∆S′
k,j denote the updated FD matrix and

SPC terms after the addition of the new inertial device. It
is important to note that the FD matrix is row-normalized;
therefore, the inclusion of a new, electrically close device
reduces the relative weightings of distant generators in the
updated sum.

To ensure that the local inertial response is preserved or
improved, the following condition must hold:

hnew
ȷ ≥ hold

ȷ ⇔ 1

hnew
ȷ

≤ 1

hold
ȷ

(26)

Define the shorthand terms: Fk,ȷ = Dȷ,k∆Sk,ȷ, F ′
k,ȷ =

D′
ȷ,k∆S′

k,ȷ, and Fȷ,device = Dȷ,device∆Sdevice,ȷ. Substituting
(24) and (25) into (26), the minimum (virtual) inertia required
from the device at bus ȷ is given by:

Hȷ
device ≥

Fȷ,device
ng∑
k=1

(Fk,ȷ−F ′
k,ȷ

Hk

) (27)

Equation (27) provides a analytical and straightforward
constraint for designing virtual or physical inertia such that the
local inertial response at the point of connection is preserved or
enhanced. It highlights that the added inertia must compensate
for the redistribution of FD weight and SPC contributions,
which naturally occurs when new devices are introduced into
the system topology.

Based on the minimum inertia formulation in (27) and the
discussion of this previous section, the following remark is
relevant:
Remark 2: The contribution of inertia from a newly allocated
device within a well-defined region depends on the pre-
existing inertia level of that region. For a device connected
at bus j, assuming Fȷ,device ≈ 1 and F ′

k,ȷ ≈ 0, the condition
Hdevice ≥ hold

j holds, i.e., the device inertia must be greater
than the inertia of the connection bus prior to allocation.
This condition corresponds to an edge case and should be
interpreted as a conservative bound for analysis.

The formulation in (27) applies when a new device is added
without disconnecting existing machines. Cases where nodal
inertia at the connection bus increases due to other factors are
analyzed in Section V.

V. CASE STUDY

This section discusses the proposed quantification of effec-
tive regional inertia in different scenarios using IEEE 39-bus
and 68-bus benchmark systems. The time domain simulations
results are obtained using the power system analysis software
tool Dome [29].

A. IEEE 39-bus Benchmark

The first case study considers the standard IEEE 39-bus
benchmark system, which consists of ten synchronous ma-
chines. In the simulations, all machines are modeled using a
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fourth-order representation. Detailed parameters for the gener-
ators and their associated controllers, as well as the system’s
initial operating point, are provided in [30]. The nodal inertia
values discussed here are referenced to the system base of
100 MW.

1) Distribution of Nodal Inertia and Regions: The first step
is the calculation of the distribution of inertia, which is shown
in Fig. 6. The buses with the highest nodal inertia are buses
1, 9, and 39, with bus 9 exhibiting the highest nodal inertia –
corresponding to an inertial response of approximately 700 s.
In contrast, the generator buses with the lowest nodal inertia
are buses 33, 36, and 38, with bus 36 presenting an inertial
response of approximately 80 s.

Fig. 6. Nodal inertia distribution in the IEEE 39-bus system for the base
case.

The regions are determined by the network partitioning
approach described in Sec. IV-A. Fig. 7 shows that the rel-
ative eigengap metric indicates that four eigenvectors should
be used to form the spectral embedding. Accordingly, the
four eigenvectors associated with the four smallest non-zero
eigenvalues are used to determine the clusters. The Silhouette
Coefficient is also show in Fig. 7, indicating that the opti-
mal number of coherent regions is six. Finally, the k-means
algorithm is applied to define the six coherent regions. The
resulting regions are depicted in Fig. 8. The obtained regions
align with those reported in previous studies such as [18], [31].

To better visualize how the obtained eigenvectors from the
pencil reflect the clustering structure, the spectral embedding
using three of these eigenvectors is shown in Fig. 8, where
node colors correspond to their assigned regions. It is worth
to note how the combination of system topology information
and the nodal inertia allows the clear separation between the
regions.

Fig. 7. Relative eigengap (left) and silhouette coefficient (right) for the IEEE
39-bus system.

Fig. 8. Network partitioning and spectral embedding of the IEEE 39-bus
system using the three dominant eigenvectors of the pencil (L,N).

2) Effective Regional Inertia: Based on the obtained re-
gional partitions and the distribution of nodal inertia, the
effective regional inertia is computed using (23), as illustrated
in Fig. 9. For comparison purposes, the conventional regional
inertia is also calculated using (20). Among all regions, Region
4 exhibits the highest effective regional inertia, while Region
6 presents the lowest. In contrast, the conventional regional
inertia values are relatively uniform across most regions,
except for Region 4, which stands out with a significantly
higher value.

To validate these results, a positive load step corresponding
to approximately 15% of the system’s total demand is applied
individually to each region. The disturbance is introduced at
the bus with the lowest nodal inertia within each region (buses
10, 23, 25, 4, 1, 5, 19, 6, and 29). The corresponding frequency
responses at all system buses are presented in Fig. 10.

The resulting frequency responses demonstrate clear internal
coherency within each of the identified regions, thereby vali-
dating the effectiveness of the regional partitioning approach.
Furthermore, the disturbance applied to Region 6 results in
the largest frequency deviations and RoCoF values within that
region, consistent with its low effective inertia. Conversely,
Region 4 exhibits the smallest frequency deviations following
the disturbance. These findings support the interpretation of
effective regional inertia as a reliable indicator of locational
frequency strength. Additionally, noticeable differences are
observed in the frequency behavior among Regions 1, 2, and
3. In particular, Region 2 experiences the highest frequency
deviations and initial RoCoF, whereas Region 1 ans 3 exhibits
more moderate responses. However, these differences are not
captured by the conventional regional inertia metric.

Fig. 9. Effective and conventional regional inertia in the IEEE 39-bus system.

3) Impact of inter-regional contributions: The results in
Fig. 9 show that the effective regional inertia is significantly
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Fig. 10. Frequency dynamics of each region in the IEEE 39-bus system
following a local load disturbance applied within that same region.

higher than the conventional regional inertia metric. This
indicates that, for this system, the conventional metric system-
atically underestimates the inertial response. The main reason
for this discrepancy is the inter-regional contributions. For
example, in Region 5, Fig. 11 illustrates how the effective
regional inertia varies as the reactance of the interconnection
line 16–19 is scaled by the factor α16−19. As the line reactance
increases, the proposed regional inertia gradually converges
toward the conventional value, emphasizing the role of neigh-
boring inertial responses. In meshed and well-interconnected
systems, regions effectively share inertial support, thereby
enhancing their effective inertial behavior. This is particularly
relevant since some practical methods may misinterpret such
enhanced inertia as arising from hidden local resources within
the analyzed region.

34

33

20 19

16

Region 5

H =26 s 

H =28.6 s 

Fig. 11. Comparison between the proposed and the conventional regional
inertia for Region 5 under variations of the interconnection line reactance.

4) Impact of Virtual Inertia Allocation: To evaluate the
impact of virtual inertia allocation on the regional inertial
response, a GFM device with virtual inertia capability is con-
nected at bus 4, located in Region 1 (see Fig. 8). We consider
the REGFM_A1 model described in [32]. The P–f droop
control scheme is adopted for the GFM device. Under this con-
figuration, the virtual inertia is defined as HGFM = Tω/mp,
where Tω is the time constant of the low-pass filter, and mp

is the P–f droop gain [25]. The internal voltage EGFM of the
GFM is regulated via a Q–V droop control. Consequently, to
incorporate the GFM into the nodal inertia formulation, the
parameters HGFM , EGFM , and XL (coupling reactance) are
considered known and can be directly included in equation

(17).
This device can be interpreted as a representative DER

equipped with virtual inertia functionality. The GFM unit
injects 100 MW of active power into the system. Region 1
is chosen for this study as it contains the highest number
of buses and features a well-defined inertial and topological
structure that remains unchanged with the addition of the new
device. Based on the minimum virtual inertia requirement
obtained from equation (27), which yields Hmin

GFM = 30 s, we
define the following three scenarios: (i) HGFM = 10 s, (ii)
HGFM = 30 s, (iii) and HGFM = 50 s. The damping added
by each case is kept constant (D = 1/mp = 10).

The resulting effective regional inertia and the nodal inertia
distributions within Region 1 for the three scenarios are shown
in Fig. 12. As expected, scenario (i) leads to a reduction in both
the nodal and effective regional inertia, indicating a degraded
inertial response. Scenario (ii), which meets the minimum
requirement, maintains the overall regional inertia close to
its original value. Scenario (iii), with a higher inertia setting,
increases both nodal and effective regional inertia, thereby
improving the region’s inertial support.

(a)

(b)

Fig. 12. (a) Effective regional inertia across all regions in the system for
three virtual inertia scenarios at bus 4, and (b) Detailed distribution of nodal
inertia in Region 01 for the same scenarios.

It is interesting to note that Region 1 contains two syn-
chronous machines located at Buses 31 and 32, with iner-
tia constants of 30.3 s and 35.8 s, respectively—values that
are close to the minimum requirement obtained from equa-
tion (27). This observation reinforces the insight presented in
Remark 2: the virtual inertia of a new device should ideally
be aligned with the inertia characteristics of existing devices
within the region. Such alignment helps ensure a balanced and
coherent inertial response at the regional level.

To assess the dynamic frequency response, the same dis-
turbance used in the last section is applied at bus 10. The
frequency at each bus in the region is estimated using a PLL,
and the average regional frequency ω̄ is computed for all three
scenarios. The results are presented in Fig. 13. As anticipated,
the use of HGFM = 10 s leads to an increase in the regional
RoCoF, indicating a reduction in the effective regional inertia.
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However, this effect can not be observed if we consider the
conventional regional inertia assessment by equation (20).
Furthermore, case (ii) has the same initial frequency response
as the base case, showing that the inertial response of the
region was not affected by the addition of the new device
with HGFM = Hmin

GFM = 30 s.

Fig. 13. Average regional frequency of Region 1 following a disturbance at
bus 10.

B. IEEE 68-Bus System

The proposed method for quantifying regional inertia is now
applied to the IEEE 68-bus system and two modified versions
including IBR devices. Generators are modeled using a sixth-
order representation with parameters and controls described
in [30]. Three scenarios are considered: (i) base case with
16 synchronous machines; (ii) a GFL inverter without inertial
response replacing the synchronous machine at bus 11; and
(iii) four GFM inverters, each with 10 s of virtual inertia,
connected at buses 33, 43, 46, and 51.

The network partitioning algorithm identifies three regions.
The resulting partitions and inertia distributions are shown in
Fig. 14. Since no topological or significant dispatch changes
occur across scenarios, the regional boundaries remain the
same.

In the base case, Region 2 exhibits the highest effective re-
gional inertia. Table I compares the proposed effective regional
inertia with the conventional approach for this region. The
largest increase in effective regional inertia occurs in scenario
(ii), where the synchronous machine at bus 11 is replaced
by a GFL inverter without inertial response. Interestingly, the
conventional method leads to the opposite conclusion, un-
derestimating the replacement’s effect. Moreover, in scenario
(iii), the conventional metric overestimates inertia by assigning
the highest Hconv, whereas the proposed Heff indicates a
reduction.

This result is initially counterintuitive. The synchronous
machine at bus 11 has relatively low inertia compared to
other generators in its region, introducing a local oscillatory
mode that effectively reduces frequency strength. As shown in
Fig.14(a), the nodal inertia at bus 11 is notably small when
compared with its region. When replaced by a GFL device, the
inertia at the connection bus and neighboring buses becomes
dominated by the remaining machines in the region, leading to
a significant increase in effective regional inertia (Fig.14(b)).
In scenario (iii), however, the GFM devices are placed at buses
that already exhibit high nodal inertia in the base case. In this
configuration, maintaining the same inertia level would require

substantially higher virtual inertia than the 10 s assigned (see
Remark 2), which is insufficient and results in a decline in the
regional inertia distribution.

TABLE I
REGIONAL INERTIA OF AREA 2 FOR DIFFERENT SCENARIOS: EFFECTIVE

AND CONVENTIONAL METHODS – IEEE 68-BUS.

Scenario Heff (s) ∆Heff (s) Hconv (s) ∆Hconv (s)
(from base) (from base)

(i) 601.7 – 399.5 –
(ii) 793.9 +192.2 371.3 -28.2
(iii) 413.8 -187.9 439,5 +40

Dynamic validation is performed by applying a 5 pu load
step at bus 30. The average frequency of Region 2 is shown in
Fig.15. Scenario (ii) exhibits the lowest frequency variability
after the disturbance, consistent with the increase in effective
regional inertia. In contrast, scenarios (i) and (iii) present local
oscillatory modes that degrade both RoCoF and frequency
variability, while these oscillations are absent in scenario (ii).

These findings emphasize that regional inertia cannot be
reliably assessed using conventional aggregation metrics. In
particular, a low-inertia synchronous machine may introduce
unfavorable local oscillatory behavior that reduces the effective
regional inertia, even though the conventional method suggests
otherwise. The analysis further shows that GFL inverters,
especially when combined with fast frequency response (FFR),
are preferable in two situations: (i) when replacing low-inertia
machines in regions with relatively high effective regional
inertia; and (ii) when connected to buses with relatively high
nodal inertia levels.

VI. CONCLUSION

This work establishes a novel framework for assessing
effective regional inertia in power systems. Leveraging the spa-
tial distribution of inertia and system connectivity, a network
partitioning methodology was developed to define coherent
areas. Within each region, an effective regional inertia metric
was introduced based on the average nodal inertia. Unlike
traditional methods that aggregate regions into equivalent gen-
erators, the proposed formulation preserves local dynamics and
provides a more accurate representation of regional frequency
behavior. Simulation results on the IEEE 39-bus and IEEE
68-bus systems demonstrate that the integration of inertial
devices may not necessarily enhance the regional inertia.
The allocation of new inertial devices should therefore con-
sider both the regional inertia characteristics and the system
topology, which together determine the extent to which the
added inertia contributes to improve the regional frequency
dynamics. Future research will focus other applications using
the effective regional inertia quantification, e.g., equivalents of
large power systems.
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