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Abstract— The paper proposes a method to estimate, in
transient conditions, the equivalent inertia constant and fast
frequency control droop gain of Virtual Power Plants (VPPs).
The estimations are obtained based on the frequency and active
power variations at the point of connection of the VPP with the
power grid. The accuracy of the estimator is enhanced by a novel
technique employed to approximate the VPP’s equivalent internal
reactance, based on the voltage and reactive power variations at
the point of connection. The performance of the proposed method
is illustrated through a case study based on a modified version
of the WSCC 9-bus system.

Index Terms— Dynamic state estimation, Virtual Power Plant
(VPP), equivalent inertia, Fast Frequency Response (FFR).

I. INTRODUCTION

A. Motivation

A Virtual Power Plant (VPP) aggregates the capacities of
several devices, e.g. Distributed Energy Resources (DERs),
Energy Storage Systems (ESSs) and dispatchable loads, which
are controlled to operate like one grid-connected generator
[1]. The devices that compose a VPP are typically connected
to the grid through power converters and thus, in contrast to
Synchronous Machines (SMs), they do not provide mechanical
inertia to the system. However, these devices can be designed
to emulate the inertial response of SMs, as well as to regulate
the frequency, thus enhancing the system’s overall stability
and performance. How to estimate on-line and accurately the
equivalent inertia and the equivalent Fast Frequency Response
(FFR) of a VPP is the topic discussed in this paper.

B. Literature Review

The rotational inertia of SMs plays a crucial role in main-
taining the frequency during the first instants that follow the
occurrence of a contingency or of a large power imbalance in
the network. However, this inertia is reducing as a result of
the gradual substitution of SMs by non-synchronous devices.
In general, systems with lower inertia show larger frequency
and Rate of Change of Frequency (RoCoF) variations and
hence are more prone to instability and blackouts [2]. Hence,
during the last decade there has been a growing interest
on the stability and control of low-inertia systems as well
as on establishing methods to estimate the system’s inertia
in a precise and fast way [3]–[5]. If properly controlled,
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non-synchronous devices can provide inertial response and
frequency regulation services that are similar to the ones
provided by SMs. Recent studies propose control schemes
that tackle this problem, with some of them focusing on the
coordination of devices that comprise VPPs, see [1], [6]–[9].

The inertial response of non-synchronous devices is a result
of a control and is not generally based on an actual rotational
inertia. It is thus relevant to evaluate how this control compares
with rotational inertia. In this vein, [10] presents a formula to
estimate, in transient conditions, the equivalent inertia of both
synchronous and non-synchronous devices. Based on [10], the
authors in [11] propose an inertia estimator with improved
numerical stability and provide, as a byproduct, a formula to
track the FFR droop gain of non-synchronous devices.

The estimators presented in [10] and [11] track the inertia
of a single device connected to a bus of the network and under
the assumption that the device’s internal reactance is known.
However, a VPP typically consists of many resources that are
dispersed in multiple buses of the network and thus, defining
the total equivalent reactance of a VPP is not straightforward.
In this vein, a technique to estimate the equivalent internal
reactance and then the inertia of a VPP is proposed in [12].
The method in [12] imposes for the estimation a simplified SM
model without damping which does not allow an estimation
of the equivalent FFR droop gain of the VPP.

C. Contributions
The paper presents a method to track in real-time the

equivalent inertia of a VPP. The estimator relies on a novel
approach to determine the VPP’s internal equivalent reactance.
The SM model imposed to the VPP for the estimation takes
into account the machine’s damping, which first, leads to
improved accuracy of the estimation and second, allows es-
timating the VPP’s equivalent FFR droop gain. The accuracy
of the proposed approach is first validated for synchronous,
and then applied to non-synchronous devices, as well as to a
VPP comprising multiple DERs, loads, and an ESS.

D. Organization
The remainder of the paper is organized as follows. Section

II briefly provides the theoretical background behind our
approach to inertia estimation in this paper. Section III reviews
the inertia estimation method developed in [11] and extends it
to formulate the proposed equivalent inertia and FFR droop
gain estimation for VPPs. Section IV presents a case study
based on the WSCC 9-bus system. Finally, conclusions and
future work directions are discussed in Section V.
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II. BACKGROUND

We provide a theoretical background starting from the well-
known power flow equations. The concepts described in this
section are utilized in Section III-B for the estimation of the
VPP equivalent inertia and FFR droop gain. Let us consider
first the complex power injections at a network with n buses,
namely s̄ ∈ Cn×1, as follows:

s̄(t) = p(t) + jq(t) = v̄(t) ◦
(
Ȳ v̄(t)

)∗
, (1)

where p, q ∈ Cn×1 are the bus active and reactive power
injections, respectively; v̄ ∈ Cn×1 is the vector of the bus
voltages; Ȳ ∈ Cn×n is the admittance matrix of the network;
◦ denotes the element-wise multiplication; and ∗ represents
the conjugate of a complex quantity.

Let us rewrite (1) using an element-wise notation:

ph =

n∑
k=1

vhvk
(
Gh,k cos θh,k +Bh,k sin θh,k

)
,

qh =

n∑
k=1

vhvk
(
Gh,k sin θh,k −Bh,k cos θh,k

)
,

(2)

where the dependency on time has been dropped for sim-
plicity; ph, qh are the h-th elements of p, q ; Gh,k, Bh,k

are the real and imaginary parts of the (h, k) element of Ȳ,
i.e. Ȳh,k = Gh,k + jBh,k; vk is the voltage magnitude at bus
k; and θh,k = θh− θk, where θh and θk are the voltage phase
angles at buses h and k, respectively. We differentiate (2) and
rewrite the deviation of the active and reactive power injections
at bus h as the sum of two components [13]:

dph =

n∑
k=1

∂ph
∂θh,k

dθh,k +

n∑
k=1

∂ph
∂vk

dvk ≡ dp′h + dp′′h , (3)

dqh =

n∑
k=1

∂qh
∂θh,k

dθh,k +

n∑
k=1

∂qh
∂vk

dvk ≡ dq′h + dq′′h , (4)

where dp′h, dq′h are the quotas of the active and reactive power
that depend on the bus voltage phase angle variations, and
dp′′h, dq′′h are the corresponding quotas that depend on the bus
voltage magnitude variations.

Based on the complex frequency concept presented in [13],
and using a matrix form, the quotas dp′h, dq′′h (denoted in
matrix form as ṗ′, q̇′′) can be approximately expressed as:

ṗ′ ≈ B′ω , (5)
q̇′′ ≈ B′′ϱ , (6)

where B′
h,k = −Bh,k, B′

h,h =
∑n

h ̸=k Bh,k are the elements
of B′ and B′′

h,k = −Bh,k, B′′
h,h = −2Bh,h are the elements

of B′′; ω is the vector of bus frequencies; and the vector
ϱ ≡ v̇/v represents the transient rate of change of the bus
voltages normalized with respect to their magnitude.

Equations (5) and (6) exploit the fact that dp′h is the
component of the active power that can effectively modify
the frequency in the grid, whereas the impact of dp′′h on the
frequency is negligible. Similarly, dq′′h is the component of
the reactive power that varies the most when the voltage at
bus h is regulated, whereas the contribution of dq′h to the
voltage regulation is negligible. Equations (5) and (6) are duly

utilized in the next section for the inertia and FFR droop gain
estimation of VPPs.

III. INERTIA AND FFR GAIN ESTIMATION

In this section, we first recall the method developed in [11]
for the inertia estimation of a single device connected to a bus
of a power network, and then describe the proposed equivalent
inertia and FFR droop gain estimator for VPPs.

A. Inertia Estimation of Synchronous Machines

The effect of the inertia constant MG of a SM on its
dynamics is described through the swing equation:

MGω̇G = pm − pG −DG(ωG − ωo) , (7)

where ωo is the SM’s rated rotor speed; ωG is the SM’s rotor
speed and ω̇G its time derivative; pm is the mechanical power
provided by the turbine; pG is the electrical power that the SM
injects to the grid; and DG is the damping coefficient.

We decompose pm into the following three terms:

pm = pPFC + pSFC + pUC , (8)

where pPFC is the active power regulated by the Primary
Frequency Control (PFC); pSFC is the active power regulated
by the Secondary Frequency Control (SFC); and pUC is the
power set point determined by solving the Unit Commitment
(UC) problem. The PFC and SFC for a SM are typically
achieved through the Turbine Governor (TG) and Automatic
Generation Control (AGC), respectively.

Merging (7) and (8) and differentiating with respect to time:

MGω̈G = ṗPFC + ṗSFC + ṗUC − ṗG −DGω̇G . (9)

Considering the time scale of inertial response of the SM,
in the very first instants after a contingency, one can assume
that ṗUC ≈ 0, ṗSFC ≈ 0, and |ṗPFC| ≪ |ṗG|. Then, one has:

MG ≈ − ṗG +DGω̇G

ω̈G

. (10)

Note that when ω̈G crosses zero following a contingency,
a singularity occurs in (10). This singularity can be avoided
if, instead of (10), the following equation is used to compute
MG:

TMṀG = γ
(
ω̈G

)(
ṗG +MGω̈G +DGω̇G

)
, (11)

while the following equation allows estimating DG [11]:

TDḊG = γ
(
∆ωG

)(
∆pG +MGω̇G +DG∆ωG

)
, (12)

where
∆ωG =

∫
ω̇Gdt , ∆pG =

∫
ṗGdt , (13)

and γ(y) is defined as:

γ(y) =


−1 , y ≥ ϵy ,

0 , −ϵy < y < ϵy ,

1 , y ≤ −ϵy ,

(14)

where ϵy is a small positive threshold that helps reduce the
impact of noise and improve the accuracy of γ(y). A good
choice for ϵy is in the range [10−7, 10−5].
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The term ṗG + MGω̈G + DGω̇G is zero at the equilibrium
and non-zero during transients. Consider an example for which
ṗG + MGω̈G + DGω̇G > 0. The sign of ω̈G decides the sign
of γ(ω̈G). If ω̈G > 0, MG has to decrease, to also reduce
ṗG +MGω̈G +DGω̇G and converge to the equilibrium. In this
case, ṀG < 0 and thus γ(ω̈G) = −1. Vice versa, if ω̈G < 0,
MG has to increase and thus γ(ω̈G) = 1. The rate of change
of MG is defined by the time constant TM . A small TM tracks
MG faster, although it might generate numerical oscillations.
Hence, we consider TM , TD in the time scale of the inertial
response, i.e. TM , TD ∈ [10−3, 10−2] s. The rationale behind
(12) can be described in a similar way.

B. Proposed VPP Inertia Estimation

The expressions (11) and (12) can be extended to any non-
synchronous device that is controlled to provide a similar
dynamic response with a SM in the inertial response time
scale. For a non-synchronous device, one has [11]:

TMṀD,h = γ
(
ω̈D,h

)(
ṗ′h +MD,hω̈D,h +DD,hω̇D,h

)
,

TDḊD,h = γ
(
∆ωD,h

)(
∆p′h +MD,hω̇D,h +DD,h∆ωD,h

)
,

(15)
where the index D,h represents the device connected to bus h;
and ṗ′h is the derivative of the quota of the active power
that varies the frequency at bus h (see also Section II). The
presence of DD,h in (15) can enhance the accuracy of the
estimator while being meaningful, since it can be understood
as the equivalent droop gain of the FFR that the device
provides [11]. The internal frequency of the device ωD,h is
obtained based on (5):

ωD,h = ∆ωh − xD,hṗ
′
h , (16)

where ∆ωh is the frequency deviation at bus h; and xD,h is
the equivalent internal reactance of the device.

A poor choice of xD,h in (16) can significantly affect
the accuracy of (15). Most importantly, how to define the
equivalent reactance of a VPP is not straightforward, since
VPPs aggregate several resources that span multiple buses and
thus they may have significant complexity and granularity.
In the remainder of this section, we describe a technique
to estimate xD,h based on the voltage and reactive power
variations at the point of connection with the rest of the grid
[12]. Applying (6) to bus h, we have:

q̇′′h ≈ B′′
hϱh +

n∑
k=1

B′′
h,kϱk , (17)

where ϱh, is the h-th element of ϱ. In this paper, a low-pass
filter is applied to ϱh to reduce the reactive power fluctuations
and noise. B′′

h can be obtained from:

B′′
h = B′′

D,h +B′′
h,h +

n∑
k=1

B′′
h,k , (18)

where B′′
D,h is the equivalent internal susceptance of the device

at bus h. From (17), (18), one has:

B′′
D,h =

q̇′′h −
∑n

k=1 B
′′
h,kϱk

ϱh
−

n∑
k=1

B′′
h,k −B′′

h,h . (19)

The equivalent reactance xD,h can be obtained from the
reciprocal of BD,h, as follows:

xD,h =
ϱh
α

, (20)

where

α = q̇′′h −
n∑

k=1

B′′
h,kϱk −

(
n∑

k=1

B′′
h,k +B′′

h,h

)
ϱh . (21)

Equation (20) suffers from the same numerical issue as
(10). To overcome the problem, we determine xD,h using the
following differential equation:

TxẋD,h = γ
(
α
)(
xD,hα− ϱh

)
, (22)

where γ(α) is defined by (14), and Tx ∈ [10−2, 10−1] s.
The equivalent inertia MD,h, FFR droop gain DD,h and the

equivalent reactance xD,h, of the VPP, can finally be estimated
through the set of equations (14)-(16) and (21)-(22).

IV. CASE STUDY

In this section, we evaluate the performance of the proposed
real-time inertia and FFR droop gain estimation technique,
through simulations conducted on the well-known WSCC 9-
bus system [14]. The accuracy of the estimator is first checked
for SMs, and then applied to a DER and a VPP.

For all scenarios, SMs are modeled with a 4-th order (two-
axis) model and are equipped with primary frequency and
voltage regulation. A Static Var Compensator (SVC) is also
installed at bus 8 of the system. Each load is represented by a
Voltage-Dependent Load (VDL) model, where the active and
reactive power consumption at the load bus h, say pL,h, qL,h,
are expressed as follows [15]:

pL,h = pL,h,o (vh/vo)
αp ,

qL,h = qL,h,o (vh/vo)
αq ,

(23)

where pL,h,o, qL,h,o are the rated active and reactive power
consumption at bus h; vh, vo are the measured and rated
voltage at the load bus, respectively; αp, αq are the voltage
exponents of the active and reactive power, respectively.

All results are obtained with the power system analysis
software tool Dome [16] using the following parameters: αp =
αq = 1.5, TM = 0.004 s, TD = 0.001 s, and Tx = 0.01 s.

A. Synchronous Machines

We validate the performance of the proposed estimator
for the devices that provide mechanical inertia, i.e. SMs. In
particular, we focus on the SM connected to bus 2 of the
system (denoted as G2). The actual mechanical starting time
and damping of G2 are MG2 = 12.8 s and DG2 = 2.0,
respectively. We assume a 20% increase of the load connected
to bus 6 at t = 1 s. Figure 1a shows how the proposed
estimator compares to the estimator presented in [12]. We note
that [12] adopts a simplified expression of (15), as follows:

TMṀD,h = γ
(
ω̈D,h

)(
ṗ′h +MD,hω̈D,h

)
. (24)

The result indicates that including the damping in the SM
model imposed for the estimation leads to more accurate



4

results. Note that the estimator is initialized to zero, and
thus it requires 1-2 s of training period to approach the
actual inertia and damping values. Moreover, the damping
estimation requires more training time than the inertia, since
∆ωG varies more slowly than ω̈G in the first instants after the
contingency (see (11), (12)). In the plots, the training period of
the estimator is shaded. The values of the estimated quantities
in the shaded regions have no physical meaning and should
be discarded.

Figure 1b shows that, if the SMs of the system are assumed
not to have TGs, the estimator closely tracks the damping
coefficient of G2. If TGs are included, the estimator captures
the combined effect of the SM’s damping plus the droop gain
of the PFC. Note that lower TG droop constants RTG lead to
higher slopes in the estimated value.
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Fig. 1: 20% increase of load connected to bus 6 at t = 1 s.

We study the performance of the proposed estimator when
employed for multiple SMs. With this scope, we substitute
G2 with a subnetwork (denoted as D, 2) that consists of two
SMs and a VDL. The two SMs have in total MD,2 = 18.82 s,
DD,2 = 4.0, while the rated power consumption of the VDL is
pL,2,o = 0.3, qL,2,o = 0.1 pu. We assume a 20% increase of the
load at bus 8 at t = 1 s. The estimated inertia and damping of
the subnetwork are shown in Fig. 2. As expected, the estimator
can accurately track both the inertia and damping of the SMs.
Moreover, as expected, inclusion of the PFC impacts more on
the damping than on the inertia estimation.
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Fig. 2: 20% increase of load connected to bus 8 at t = 1 s.

B. Non-Synchronous Devices and VPP

We evaluate the accuracy of the proposed estimator when
applied to non-synchronous devices. To this aim, we connect
to bus 6 of the WSCC 9-bus system a 45 MW DER (denoted

as D, 6), which has the ability to provide frequency control.
The DER frequency control is implemented as the parallel of a
droop and a RoCoF control channel. We consider at t = 1 s a
20% increase of the load at bus 8. Figure 3 shows the estimated
trajectories of the equivalent inertia and FFR gain of the DER,
as obtained with and without the frequency control (denoted as
FCDER). When FCDER is off, we obtain that MD,6 ≈ 0 s and
DD,6 ≈ 0, which is as expected. When the DER frequency
control is active, we see that both the estimated equivalent
inertia and FFR droop gain are time-varying.

A relevant remark is that, in practice, the precision of the
estimation is impacted by how much the frequency and active
power vary in the time scale of interest. That is, faster and
oscillatory variations of ṗ′h and ωh lead to higher accuracy,
whereas slower and smoother variations lead to lower accuracy
in the estimation.
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Fig. 3: 20% increase of load connected to bus 8 at t = 1 s.

We finally discuss the suitability of the proposed estimator
for evaluating the equivalent inertia and the FFR provided by
a VPP. With this scope, the load at bus 6 is substituted by a
VPP. The VPP consists of DERs and an ESS, which generate
in total 45 MW, and of VDLs with a total power consumption
of 57.8 MW. The modified test system is depicted in Fig. 4.
The parameters of the VPP are detailed in [17].
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Fig. 4: WSCC 9-bus system modified to include the VPP.

We decrease by 20% the load at bus 5 at t = 1 s. Four
scenarios within the VPP are evaluated, (i) without ESS nor
frequency control provided by the DERs; (ii) without ESS
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but with DER frequency control (FCDER); (iii) with ESS but
without FCDER; and (iv) with both ESS and FCDER.

The estimated VPP equivalent inertia, FFR gain, as well as
the frequency at bus 6 following the disturbance, are depicted
in Fig. 5. Results indicate that the VPP provides a time-varying
inertia and FFR to the system. The VPP without the ESS
nor FCVPP does not provide any inertia and FFR support to
the system, which is consistent with the discussion of Fig. 3
provided above. Moreover, the VPP with ESS and FCDER

can significantly enhance the frequency response of the VPP
(see Fig. 5c). Note that in the scenario that the VPP only
utilizes the ESS for frequency regulation, it provides only a
small equivalent inertia to the system (see Fig. 5a). This is
because the ESS reaches quickly its maximum power output
and, thereon, it loses its capability to regulate the frequency.
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Fig. 5: 20% decrease of load connected to bus 5 at t = 1 s.

V. CONCLUSIONS

This paper proposes a method to estimate the equivalent
inertia and FFR droop gain of a VPP. The method includes
two steps. First, an estimation of the VPP’s internal equiv-
alent reactance is obtained, based on the voltage and power
variations at the point of connection of the VPP with the grid.
Then, the VPP’s equivalent inertia is estimated, by considering
for the estimation a classical synchronous machine model
with inclusion of damping. The presence of damping in the
estimator allows enhancing the accuracy of the estimation,
while it provides, as a byproduct, an estimation of the VPP’s
equivalent FFR droop gain. Simulation results support the
proposed estimator by validating its accuracy and suitability
for VPP applications.

Future work will focus on exploring applications of the
proposed method, including the use of the estimated inertia
to improve the dynamic response and efficiency of VPPs.
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