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Abstract

The paper discusses practical implementation and computational aspects of an

AGC scheme based on model predictive control (MPC) for a real-world power

system, namely the all-island Irish transmission system. This system is partic-

ularly interesting from the frequency regulation point of view due to the high

penetration of wind power generation. This leads to a significant reduction

in system inertia, which in turn impacts on the ability of the system opera-

tor to regulate the system frequency. The paper compares the performance of

the MPC-based AGC with a conventional AGC based on PI controllers and

draws relevant conclusions. The case study is a high-resolution simulation of

a 1,479-bus model of the Irish electrical grid with significant wind penetration,

stochastic loads, and controller delays.

Keywords: Automatic Generation Control, Model Predictive Control, PI

control, Wind Generation

1. Introduction

1.1. Motivation

Current implementations of primary and secondary frequency regulation of

power systems rely on the inertia of synchronous machines and control character-

istics of conventional power plants [1]. As renewable penetration levels increase5
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in grids, tight frequency regulation becomes increasingly difficult [2, 3]. While

primary control gains are typically designed to be fixed and local in nature,

secondary control algorithms are capable of using global system information

to determine the control inputs to send to generators. By improving control

coordination mechanisms it is possible to improve frequency regulation.10

Model predictive control (MPC) appears as a promising technique to improve

frequency control and has been considered in recent years in several studies [4,

9, 10, 11, 12, 15, 16, 17, 18]. However, computational and implementation

issues related to MPC have often been pointed to as the most serious constraint

facing its practical implementation. As a matter of fact, the current literature15

only considers small- and medium-size cases studies. This paper deals with

an efficient and realistic implementation of an MPC-based AGC and considers

a real-world power system, namely a 1,479-bus model of the all-island Irish

transmission grid, with a high penetration (up to 55%) of non-synchronous

generation.20

1.2. Literature Review

Model Predictive Control (MPC) is a MIMO optimization based control

technique that uses state-space predictions in order to formulate optimal inputs

to a system. MPC is a mature technology at this stage having originally been

developed in the 1980s. It is used in a widespread fashion in the process indus-25

try and is available in a number of commercial packages such as ABB’s 3dMPC,

AspenTech’s Dynamic Matrix Control (DMC), and Pavilion Technologies Inc.’s

Process Perfecter products [6]. In recent years many researchers have consid-

ered power systems control in an optimal control framework [7, 8]. MPC has

been applied previously for centralised [4, 9, 10, 11, 12, 13], hierarchical [14],30

and non-centralised [15, 16, 17, 19] control in power systems for AGC and other

applications. It has been shown to offer improved frequency regulation perfor-

mance and robustness to uncertainty when compared to standard PI control

[4, 20].

When states are not measurable for use in MPC, they can be estimated35

2



using an optimal state estimator called a Kalman filter. Kalman filtering is also

a mature technology at this stage having originally been developed by Kalman

and Bucy in the 1960s. It is used for a wide variety of applications in industry,

most famously being used by NASA as part of the Apollo project to aid the

navigation of manned spacecraft going to the moon and back [21]. A range of40

Kalman filters have been proposed for power system state estimation [22, 23, 24].

One of the main issues with most implementations of MPC for power systems

control is the scale and realism of the power system considered. Typically

relatively small scale power systems with less than 50 buses are considered, and

the power systems used for studies are usually not derived from real life grid45

configurations. There are a number of notable exceptions in the literature. MPC

has been used to control Voltage Source Converter based devices embedded in

models of the European and British grids in [11] and [25], respectively.

Advanced MPC control strategies were used for applying distributed voltage

control and centralized AGC to the Nordic 23-generator system model in [12]50

and [9]. In [26] advanced MPC is used to penalise deviations from dispatch

setpoints considering a range of constraints, and is applied to a large scale

model of the Californian system. It should be noted that while [9] considers

transient dynamics, only the long term thermal line dynamics are considered in

[26], with the remaining variables considered at a linearised power flow level.55

1.3. Open Challenges with MPC for AGC

1.3.1. AGC for low-inertia systems

As synchronous machines are replaced in power systems, and there is a con-

sequent decrease in system inertia and increase in generation uncertainty, tight

frequency regulation becomes more difficult. Thus, it is of interest to investigate60

the performance of MPC for AGC in large-scale realistic power systems with

large renewable penetrations, and low levels of system inertia. This, in turn,

would provide evidence as to whether MPC could aid in allowing larger penetra-

tions of renewable sources on grids, when compared to standard PI approaches.
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1.3.2. Practical implementation of MPC-based AGC65

While [9] illustrates the application of state-of-the-art control techniques for

AGC, the authors are skeptical as to how such state-of-the art techniques would

be accepted in industry. Given the conservativeness of practitioners in the power

systems industry, if MPC were to be used in industry, it is hard to imagine that

such complex versions of MPC would be initially embraced, given that simple PI70

or manual control is used in practice for AGC in most power systems today. It

is also desirable in lower inertia grids with small time constants that the control

would be computed efficiently. Simple, linear MPC using Kalman filtering for

state estimation can be computed in a highly efficient manner and so it is of

interest to see how well these algorithms perform in achieving control of the75

system.

1.3.3. Fast prototyping of MPC-based control schemes

Another barrier to practitioners as regards evaluating the performance of

MPC for power systems control is that, to the best of the authors’ knowledge,

there is no power systems simulation package currently available that provides80

an integrated MPC toolbox. Given the recent popularity of MPC for use in

power systems, and that the setup of MPC controllers involves significantly

more effort than that associated with PI controllers, it is desirable that inte-

grated MPC functionality would be incorporated into power systems simulation

packages. In turn this could significantly improve the efficiency with which MPC85

can be set up for evaluating the application of MPC for power systems control.

1.4. Contributions

The paper deals with the three challenges discussed above. The main con-

tributions of the paper are as follows.

• A discussion on an efficient implementation of MPC for real-world grids90

with low levels of inertia and a large stochastic renewables penetration.

With this aim, a 1,479-bus model of the Irish transmission system is

utilised in the case study.
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• A discussion on practical implementation aspects of the MPC-based AGC

scheme, including an efficient Kalman filtering approach for state esti-95

mation. The Kalman filter is based on measurements of the individual

generator frequency and rotor position. Using modern PMUs and com-

munication systems, it is increasingly possible for TSOs to attain such

measurements. A comparison of the performance of MPC-based and con-

ventional PI-based AGC schemes is also provided.100

• An MPC software implementation based exclusively on state-of-art math-

ematical libraries, such as Gurobi and SuiteSparse. The MPC toolbox is

then integrated in the Dome simulation package [27]. The authors believe

that the developed software tool can greatly help with the fast prototyping

of MPC-based control techniques for power systems applications and are105

happy to share the code with the interested readers.

1.5. Organization

The rest of the paper is constructed as follows: Section 2 outlines the power

system modelling, focusing in particular on the synchronous generators that are

used for AGC. In Section 3, the MPC and Kalman filtering approaches used in110

this paper are explained. Then, in Section 4, the way in which MPC is applied

for AGC is given. The results of the simulations comparing the PI and MPC

approaches when used for AGC on the Irish grid are given in Section 5. Finally,

in Section 6 conclusions are drawn based on the results of the paper.

2. Power system modelling for simulation115

Various load, synchronous generator, turbine, wind turbine models, etc., are

used in this paper. Full details of the dynamics of all these models can be found

in [28]. Due to space constraints in depth details of all of these models are not

documented here.

Wind turbines provide the source of stochastic power production in this pa-120

per. Wind speeds are modelled using a Weibull distribution, where a Rayleigh
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distribution is used to model time variations in wind speed. The test case

considered in this paper is the Irish grid. The Weibull distribution is used

here based on the accuracy with which Irish wind speeds were described previ-

ously using this distribution [29]. However, care should be taken to ensure that125

suitable wind distributions are applied to different grids. For example, wind

power variability was found to have a Laplacian distribution in some North

American power systems in [30]. Two types of wind turbines models are used:

Constant Speed and Doubly Fed Induction Generator Wind Turbines (CSWT

and DFIG, respectively). The CSWT is described by a 5th-order squirrel-cage130

induction generator model, a turbine model without pitch control, a single-

mass shaft model with tower-shadow effect, and a static capacitor bank. The

DFIG is a variable-speed wind turbine described by a 5th-order doubly-fed in-

duction generator model, a double-mass elastic shaft model with tower-shadow

effect, a turbine model with continuous pitch control, a cubic maximum power135

point tracking approximation, a first-order Automatic Voltage Regulator (AVR)

model, and a converter active power controller. When loads are deterministic,

constant PQ models are used in simulations. For the cases involving stochastic

PQ loads, Ornstein-Uhlenbeck processes are then used to model the loads [31].

The synchronous generator model is documented in detail in the following,

as the controllers in this paper are used to control synchronous generators and

so it is directly relevant to the design of the control system. A 6th order dynamic

model is used to capture the relevant dynamics of the synchronous generator

for simulation purposes as follows:

δ̇ = Ωb(ω − ωs), (1)

2Hω̇ = (τm − τe −D(ω − ωs)), (2)

T ′
d0ė

′
q − T̃ ′′

d0ψ̇
′′
d = −e′q − (xd − x′d)id + vf , (3)

T ′
q0ė

′
d − T̃ ′′

q0ψ̇
′′
q = −e′d + (xq − x′q)iq, (4)

T ′′
d0ψ̇

′′
d = −ψ′′

d + e′q − (x′d − xℓ)id, (5)

T ′′
q0ψ̇

′′
q = −ψ′′

q − e′d − (x′q − xℓ)iq, (6)
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Figure 1: Turbine Governor control diagram [28].

coupled with the following algebraic equations:

τe = ψdiq − ψqid, (7)

0 = raid + ψq + vd, (8)

0 = raiq + ψd + vq, (9)

0 = ψd + x′′did − γd1e
′
q − (1− γd1)ψ

′′
d , (10)

0 = ψq + x′′qiq − γq1e
′
d − (1− γq1)ψ

′′
q . (11)

The authors refer to [28] for definitions of the various system parameters.140

The mechanical power is generated using a turbine governor [28], as given

in Fig. 1. This consists of a primary frequency controller, designed to control

frequency variations instantaneously based on local frequency measurements,

and an additional set point porder which allows the elimination of longer term

frequency offsets. Voltage regulation is conducted using the AVR and PSS145

modules as documented in [32, 28].

Traditionally PI controllers have been used to perform AGC. While primary

control acts on the local generator frequency signal to regulate the power gen-

erated over short ms to s time scales, AGC acts on the s to tens of s scale using

global system information to eliminate long term offsets, which result from local

primary control using only proportional gains. Using PI for AGC, the Centre of

Inertia (COI) frequency signal is sent to a proportional and integral controller

to generate pcoiorder(t) as follows [32]:

pcoiorder(t) = kI

∫ t=∞

t=0

ωCOI(t)− ωs dt (12)
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where kI is the integral gain and the centre of inertia frequency ωCOI is given

by:

ωCOI(t) =
1

HT

n∑

i=1

Hiωi(t) (13)

where there are n synchronous generators in the system and HT =

n∑

i=1

Hi. Each

generator is then assigned it’s local set point porderi = βip
coi
order, where βi is the

participation factor for generator i and
∑n

i=1 βi = 1. In order to implement

AGC, it is necessary for the TSO to measure ωCOI(t), calculate the power to150

inject into the system, and then communicate the various set points to each of

the generators. Thus communication delays occur between the measurement of

the frequency and the point at which generators receive the updated set point

changes.

3. Model Predictive Control and Kalman filtering155

3.1. Model Predictive Control

Model Predictive Control is an optimization based control technique that

uses state-space based predictions in order to form optimal inputs to a system

over a prediction horizon. While inputs are calculated over the full prediction

horizon, only the input for the first sample step of the prediction horizon is160

applied to the system, and this process is repeated every sample step.

A discrete-time, linear, time-invariant state-space model for a system is given

by

x(k + 1) = Ax(k) +Bu(k) +Dd(k) +w(k) (14)

y(k) = Cx(k), (15)

where x(k), u(k), d(k), and y(k) are the states, inputs, disturbances, and

outputs of the system at sample step k, respectively. Matrices A, B, D, and C

are the relevant state-space matrices. Vector w(k) is the process noise vector

which is assumed to be drawn from a zero mean multivariate normal distribution165

with variance σw, i.e., w(k) ∼ N (0,σw).
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An augmented state-space model allows these equations to be framed in

terms of ∆u(k), which ensures integral action in the MPC controller. This is

given as follows:

χ(k + 1) =

Â
︷ ︸︸ ︷







A 0 D

A I D

0 0 I







χ(k) +

B̂
︷ ︸︸ ︷







B

B

0







∆u(k),

(16)

y(k + 1) =

Ĉ
︷ ︸︸ ︷
[

0 C 0

]

χ(k + 1).
(17)

The augmented state is given by χ(k)=[∆xT(k), xT(k), ∆dT(k) ]T (for a gen-

eral variable b(k), ∆b(k)=b(k)−b(k−1), i.e., the ∆ operator denotes the change

in a variable between sample steps k−1 and k). Augmented state predictions can

then be formed through iterative state substitution. This leads to the following

matrices for state prediction:

















χ(k + 1)

χ(k + 2)

.

.

.

χ(k + N)

















=

















Â

Â
2

.

.

.

Â
N

















χ(k) +

















B̂

ÂB̂ B̂

.

.

.

.

.

.

.
.
.

Â
N−1

B̂ . . . . . . B̂

































∆u(k)

∆u(k + 1)

.

.

.

∆u(k+N−1)

















(18)

The predicted state x̃(k+1) and incremental predicted state ∆x̃(k+1) can be

found from these equations, where for a general vector p, its prediction vector

is p̃(k) = [pT(k), . . . ,pT(k+H − 1)]T, where H is called the prediction horizon

for the system.170

It should be noted that once these predictions have been formed it is straight-

forward to consider the case where there is control communication delays. If

there is a delay of ς samples, then ∆u(k), . . . ,∆u(k+ ς−1) are considered con-

stant at the values that they were calculated at in sample steps k− ς, . . . , k− 1,

and inputs variables ∆u(k+ ς), . . . ,∆u(k+H − 1) are optimised for. Thus the175

input prediction matrices in (18) can be separated into those that correspond

to the constant part of the input vector and the part that corresponds to the

subset of the predicted inputs that are to be optimised for.
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MPC problems are constructed to fulfill control objectives for a system based

on knowledge of χ(k). A cost function, J(χ(k),∆ũ(k)) (which will henceforth

be denoted by J(k)), is designed so as to embody the system’s objectives. One

of the major advantages of MPC is its ability to explicitly impose constraints

in the formulation of the control problem. In some cases constraints associated

with the MPC may be violated such that the MPC problem will be non-feasible.

It is possible to ‘soften’ these constraints using an additional slack variable, ǫ,

such that feasibility is guaranteed. In this case the MPC problem is given as

follows [34]:

min
∆ũ(k),ǫ

J(k) + ρǫ

such that Γ∆ũ(k) ≤ bI + 1ǫ,

(19)

where Γ and bI are the inequality constraint matrix and vector, respectively, 1

is a vector of 1’s with the same dimensionality as bI, and ρ is a weight which180

determines the degree to which the inequality constraint is satisfied in relation

to J(k).

Once ∆ũ(k) has been calculated, then the value ∆u(k) is applied to the

system such that u(k) = u(k − 1) + ∆u(k). The MPC process is then carried

out each sample step, using the updated state and looking one step further in185

the so-called “rolling horizon” fashion.

3.2. State estimation using Kalman filtering

When states and disturbances for MPC are unmeasurable a Kalman filter

must be used to estimate them. Kalman filters allow a maximum likelihood

estimate of states to be formed provided the noise associated with both the states190

and the output measurements are normally distributed about the mean [35]. It

effectively combines the current output measurement with the predicted state

measurement to provide an updated estimation of the current state estimate.

We will henceforth assume that Kalman filtering is used with MPC for the rest

of the paper to estimate unmeasured and unknown states and disturbances.195

As the state and disturbance are estimated in this paper the following state-
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space matrix is used for Kalman filter state and disturbance estimates:

χǫ(k+1)
︷ ︸︸ ︷



xǫ(k + 1)

dǫ(k + 1)



 =

Aǫ
︷ ︸︸ ︷



A D

0 I



χǫ(k) +

Bǫ
︷ ︸︸ ︷



B

0



u(k),
(20)

where xǫ and dǫ are state and disturbance estimates, respectively, χǫ(k) is the

current Kalman filter state and disturbance estimation vector, and Aǫ and Bǫ

are the associated state estimation matrices. Consider the following output

measurement,

z(k) = y(k) + v(k) = Cǫχ(k) + v(k), (21)

where v(k) ∼ N (0,σv), where σv is the covariance at sample step k of the

output measurement, and Cǫ is the Kalman state output matrix. A Kalman

filter effectively merges the predicted state measurement from (20) with the new

output measurement given by (21), to give an update of the new state estimate

and the associated state covariance matrix P (k) as follows [36]:

P ∗(k) = AǫP (k)AT
ǫ + σw, (22)

K(k + 1) = P ∗(k)CT
ǫ (CǫP

∗(k)CT
ǫ + σv), (23)

χǫ(k + 1) = (I −K(k + 1)Cǫ)(Aǫχ(k) +Bǫu(k))

+K(k + 1)z(k),
(24)

P (k + 1) = (I −K(k + 1)Cǫ)P
∗(k), (25)

where P ∗(k+1) is the covariance as predicted by (20). The Kalman gain matrix

K is chosen on the basis of the error covariance and noise statistics at sample

step k − 1, so as to minimise the variance of the next estimate. When the

Kalman filter is used with MPC x(k) = xǫ(k), and d(k) = dǫ(k).

4. The application of MPC for AGC, and details of the Dome toolbox200

implementation

4.1. Deriving the state-space MPC model from the semi-implicit DAE.

The first step involved in designing the MPC is to derive a suitable state-

space model that considers the dynamics of the system at the time-scales of
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interest. The authors have developed custom functionality for the ‘Dome’ power205

systems simulation package [27] that automates the process whereby the state-

space matrix used for control is constructed. This process will now be described.

The dynamic behaviour of electrical power systems can be described using

a nonlinear semi-implicit differential algebraic equation (SIDAE) [37]:



T nl 0

Rnl 0








ẋnl

0



 =




f(xnl,ynl)

g(xnl,ynl)



 (26)

where xnl denotes the dynamic states of the nonlinear power system, y are the

algebraic states, and in general T nl and Rnl are time-variant, non-diagonal and

non-full rank. The matrix 0 denotes a matrix of zeros. Equations fnl are the

explicit part of the nonlinear differential equations and gnl are the explicit part

of the nonlinear algebraic equations. The first step to deriving the state-space

matrices used by MPC is to linearise (26) giving:



T̂ 0

R̂ 0








ẋnl

0



 =




fx fy

gx gy








xl

y



 , (27)

where T̂ , R̂, fx, fy, gx, and gy are the linearisations of T nl, Rnl, f(xnl,y),

and g(xnl,y) with respect to the xnl and y0 at linearisation point (xnl0,y0).

The linearised state variables are given by xl = xnl − xnl0 and the linearised210

algebraic variables are given by y = ynl − y0. At this stage (27) represents a

linearisation of the entire simulated system. The following paragraphs show how

the state-space used for control is extracted from this linearised semi-implicit

model of the system.

The MPC typically has access to the models and inputs of a subset of de-

vices for the purposes of control, and so these first must be separated from the

remaining elements in the system. The dynamic states, the equations relevant

to the MPC, and the inputs are expressed separately from the remaining system

states, algebraic variables, and dynamic equations as follows:







T T xg 0 0

T rxd T rxg 0 0

R Rxg 0 0

Rrxd Rrxg 0 0















ẋd

ẋg

0

0







=








fxd fxg fy fu

f rxd f rxg f ry f ru

gx gxg gy gu

grxd grxg gry gru















xd

xg

yr

u








(28)
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Here xd denotes the dynamic states which the MPC has access to for use in215

its model. The remaining states which are not used by MPC are denoted by

xg. The control inputs, u, used for AGC are considered as algebraic variables.

Thus, these are separated from the remaining algebraic variables yr. The first

and third rows of (28) (the rows corresponding to T and R) denote the rows of

dynamic and algebraic equations which the MPC has access to. The second and220

fourth rows of equations are used in the simulation but are not known by the

MPC. As it is assumed that xg is unknown to the MPC, then the MPC model

ignores the effects of matrices fxg and gxg.

This leaves the following two equations which can be used to form the state-

space representation:




T 0

R 0








ẋd

0



 =




fx fu fy

gx gu gy












xd

u

yr








(29)

By rearranging the second row of (29) to give yr in terms of xd, u, and ẋd, and

substituting this value of yr into the first row of (29), the state-space represen-225

tation ẋd = Adxd + Bdu can be found where Ad = (T − fyg
−1
y Rx)

−1(fx −

fyg
−1
y gx) and Bd = (T − fyg

−1
y gx)

−1(fu − fyg
−1
y gu).

Often the dynamics of certain states of the MPC state-space model will

occur on time-scales which are relatively fast in comparison to the dynamics of

the other states. By considering these variables as algebraic in the MPC state-

space model, it allows larger sample times to be used for the discretisation of

the model. As a result the MPC can predict the system response further into

the future for the same prediction horizon. This is conducted as follows. The

dynamic states are divided into those states whose dynamics are maintained,

x, and those whose time constants are to be set to zero x0. Setting the time

constants associated with x0 to zero gives the following:




ẋ

0



 =

Ad
︷ ︸︸ ︷



A11 A12

A21 A22








x

x0



+

Bd
︷ ︸︸ ︷



B1

B2



u (30)
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Then by expressing x0 in terms of x and u using the second row of the (30) the

state-space representation to be used for the control of the system is given by:

ẋ(t) = Ax(t) +Bu(t), (31)

where A = A11 − A12A
−1
22 A21 and B = B1 − A12A

−1
22 B2. Having discussed

how the MPC state-space is formed from the nonlinear SIDAE, the constitution

of the state-space model and the construction of the MPC cost function and230

constraints are now outlined.

4.2. Implementation of MPC for AGC

In this section it is outlined how the MPC is used to perform AGC. In this

paper the MPC has access to the dynamic state equations of the synchronous

generators responsible for providing AGC, as given by (1)-(6). As (3)-(6) typi-235

cally have time constants significantly faster than those in (1) and (2), the time

constants in (3)-(6) are set to 0 such that these equations are considered alge-

braic, for the purposes of the state-space modelling for control. Similarly, the

time constants of states associated with the AVR and PSS dynamics are set to

zero. Then the algebraic values of these variables are incorporated into (1) and240

(2) using straightforward matrix manipulation. These assumptions have been

made previously for MPC in [9], and for Kalman filtering in [22]. In turn by

zeroing these faster dynamics in the state-space representation for the control,

it allows larger sample times to be used for the discretisation of the state-space

for control and estimation. TSOs can then use PMU measurements of the fre-245

quency and rotor position to infer the other unknown states using the Kalman

filter.

The A and B matrices are derived by applying a Zero Order Hold discreti-

sation to their equivalent continuous-time matrices. The state vector, x(k) =

[xT
1 , . . . ,x

T
ng
]T, where ng denotes the number of synchronous generators in the250

system. The synchronous generator state xi = [δi, ωi, xg1i, xg2i, xg3i]
T, is consid-

ered by the MPC, with xg1i, xg2i and xg3i denoting the turbine states for gener-

ator i. Here, the measurement vector z(k) = [zT
1 , . . . , z

T
ng
]T, with zi = [δi, ωi]

T.
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The input vector is given by u = [porder,W{1}(k), . . . , porder,W{ngu}(k)]
T, for

i ∈ W. Here, W denotes the ordered set of synchronous generators that con-255

tribute to AGC, with cardinality ngu. The disturbances are given by d(k) =

[d1, . . . , dng
]T, and represent the observed difference between ωi(k), and its pre-

dicted value at sample step k − 1, for i ∈ 1, . . . , ng. Thus the D matrix is

given by a matrix of zeros, with ones placed such that the elements of d(k) are

added to the relevant ω(k)’s. It is necessary for the control agent to receive the260

measurement vector z(k) from the generators, then perform state estimation,

calculate the control inputs, and then send the setpoints to each of the genera-

tors. Thus, this will incur communication delays which can be factored into the

MPC calculations as described in Section 3.

The cost function was chosen so as to represent the desire to minimise fre-

quency deviations from ωs, the Rate Of Change Of Frequency (ROCOF), and

the financial costs associated with the control. An additional stabilising cost was

added to minimise the rate of change of input ∆u(k). The final cost function

is given by:

Jagc(k) = ẽTω (k+1)Qeωẽω(k+1) + ∆ũT(k)Qu∆ũ(k)

+∆w̃T(k+1)Qω∆w̃(k+1) + ∆p̃(k + 1)TQp∆p̃(k + 1),
(32)

where eω(k) = Cωχ(k)− 1 = [ω1(k)−1, . . . , ωng
(k)−1]T, ∆w(k) = C∆ωχ(k)265

=[∆ω1(k), . . . ,∆ωng
(k)]T, and ∆p(k) = C∆pχ(k) = [∆pmW{1}(k), . . . ,

∆pmW{ngu}(k)]
T, where pmi(k) is the output power injected into the system by

the ith turbine generator at sample step k. The vector 1 ∈ ℜ1×ng is a vector of

ones, and the matrices Cω, C∆ω, and C∆p are matrices of zeros with entries

of 1 such that the equalities in the previous sentence hold. The financial costs270

are minimised by making the diagonal entries of Qp proportional to the costs

associated with the generator power. Thus the controller will be less inclined

to use generators with larger costs. It should be noted that it is possible to

regulate tie line interconnectors using MPC such that they are maintained at

their scheduled values, as in [18], but this is not considered in this paper.275

It is desired to maintain the constraints associated with the input to the
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turbine governor as shown in Fig. 1. As ωi is affected by disturbances that

could result in feasibility issues for the MPC, this constraint is ‘softened’ in the

MPC formulation using a slack constraint variable ǫ, as follows [34]:

∆ũ∗(k) = min
∆ũ(k),ǫ

J(k) + ρǫ,

s.t.




p̃ini(k + 1)

−p̃ini(k + 1)



 ≤




pini,max

−pini,min



+ 1ǫ, ∀i ∈ W,

ǫ ≥ 0,

(33)

where pini(k) = R−1(ωs − ωi(k)) + ui(k), pini,max = [pini,max, . . . , pini,max]
T,

pini,min = [pini,min, . . . , pini,min]
T, where pini,max and pini,min are the maximum

and minimum constraints on pini, respectively, and 1 is a column of 1’s. The

inclusion of this constraint improves the ability of the MPC to predict how

the system will evolve over time, and so improves the overall frequency tracking280

performance. Once the state matrices and cost function have been defined, then

the Kalman filter and MPC operate each time step, as outlined in Section 3.

The authors have developed integrated MPC and Kalman filtering function-

ality for the Dome simulation package. This automates the process of building

the MPC and Kalman filter once the desired system states and inputs for use285

in system control have been identified. Once these have been chosen Dome

extracts the state-space model accordingly. For the purposes of the quadratic

optimisation routine, a custom built C interface to the Gurobi [33] optimisation

package was developed to maximise the efficiency with which the optimisation

routine could be called.290

A dedicated wrapper function MPCAGC acts as an interface to the MPC

and Kalman filtering functionality to implement AGC in the Dome simulation

package. As arguments this function takes the various tunable parameters such

as the cost function weights and prediction horizon as input. This significantly

simplifies the process of applying MPC to large power systems, and can reduce295

considerably the typical effort involved in prototyping an MPC control system

for an arbitrary power system.

It is assumed in the above that TSOs have accurate models of generator
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responses. Typically, it will be necessary for generators to provide TSOs with

suitably accurate models of the plants such that TSOs can accurately simulate300

the power system. Even if these are provided as black boxes TSOs could po-

tentially use system identification techniques in order to determine generator

models for use in the state-space. In the remainder of the paper it is assumed

that the simulation and control models of generators are equivalent.

5. Case Study305

In this section, a modified version of the Irish transmission system grid is

used in order to evaluate the performance of the MPC based control system

against the PI controller. The Irish Transmission system grid, which has been

made available by Eirgrid, the Irish TSO, to researchers in the authors’ research

group, consists of 1,479 buses, 1,851 transmission lines and transformers, 245310

loads, 22 conventional synchronous power plants modelled with 6th order syn-

chronous machine models with AVRs and turbine governors, 6 PSSs, and 176

wind power plants, of which 142 are DFIGs and 34 CSWTs. This original un-

modified model provides a dynamic representation of the Irish electrical grid

which is topologically accurate and closely approximates the dynamics of the315

actual Irish grid.

The aim of this paper is to compare the performance of MPC and PI based

AGC on this grid, when there is a large renewables penetration. Thus, the

authors have replaced 10 of the synchronous generators with wind turbines of

either DFIG or CSWT variety, on a like for like locational basis, using the same320

PQ injections from the original load flow to give a renewables penetration of

55% (1.2 GW wind generation of 2.2 GW total active power generation). Of

the 13 remaining synchronous generators, 11 are used for AGC.

To evaluate the performance differences between the MPC and PI controllers,

two different simulation scenarios are considered. The first case, the nominal325

case, is based on the loss of the largest infeed. This scenario is used to tune con-

trollers. Thus, firstly the AGC for both the MPC and PI controllers are tuned
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so as to provide a fast and damped response when only this disturbance is con-

sidered, and when there is deterministic PQ loads. This tuning was performed

using trial and error, but this reflects the reality of how control algorithms are330

typically tuned in an industrial context. Effectively, the PI and MPC frequency

regulation gains were raised until such time that the frequency, upon returning

towards the 1 pu Hz setpoint would not overshoot the setpoint again. This first

tuning case represents a case where there are some disturbances on the system

in the form of the loss of the largest infeed, some noise from wind generation,335

and the system nonlinearities.

The second scenario considers the effect of additional disturbances and model

uncertainty on controller performance. The loss of the largest infeed scenario

is considered again, except there are extra disturbances applied to the system

simultaneously. Typically, in the Irish grid when there is a large ROCOF in the340

system it causes the tripping of a number of wind farms, so the tripping of 5

wind turbines on the grid is simulated as occuring immediately after the loss

of the largest infeed. Additionally, a transmission line is tripped, and the PQ

loads are simulated in a stochastic fashion using Ornstein-Uhlenbeck processes

[31]. Finally, before the loss of the largest infeed, communication loss occurs345

between one of the generators that contribute to AGC and the TSO responsible

for coordinating AGC. In both PI and MPC cases the controllers do not sense

the communication loss and so they must be resilient to the model uncertainty.

We simply refer to this as the noise case henceforth.

A sample time of 0.2 s is used for the MPC and the MPC is recalculated350

every 0.2 s. For the nominal and noise simulation scenarios, two different con-

trol delays are considered. In the first a minimum realistic delay of 0.2 s for

the MPC (one sample step) is considered and compared to a PI control which

experiences the same delay. Then in the second scenario, in order to evaluate

the performance of the controllers with a significant delay time, both controllers355

are compared when a 5 s communication delay is imposed. For the 0.2 s delay

case the prediction horizon H = 15, and for the 5 s delay case H = 39. The

MPC has a representation of all 13 synchronous generators for performing pre-
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dictions as to how the system response will evolve and 11 of these generators

participate in AGC. Thus the MPC models used 5× 13 = 65 states for predic-360

tion, and optimises to calculate 11 inputs for the generators involved in AGC.

State estimation and control are conducted as described in Section 4.

The following costs were allocated to the 11 generators, [c1, . . . , c11] =

[26.7, 26.7, 10, 26.7, . . . , 5, 2.5]. The participation factors for use with the PI

controller were found by finding the inverse of each of these costs and then nor-365

malising the participation factors such that the total equalled 1. The rationale

here is that the cheapest power sources would have the largest participation

factors and so the PI-based AGC would use more of these cheaper sources for

frequency control.

All simulations are conducted using Dome. The Dome version utilized in370

this case study is based on Python 3.4.1; ATLAS 3.10.1 for dense vector and

matrix operations; CVXOPT 1.1.8 for sparse matrix operations; and KLU 1.3.2

for sparse matrix factorization. Gurobi [33] was used to perform the constrained

optimisations for MPC. All simulations were executed on a ten core Intel Xeon

processor with a speed of 2.2GHz, and running a 64-bit Linux OS.375

5.1. Results

Firstly, the results for the 0.2 s communication delay are examined. Tun-

ing based on this scenario results in a PI controller with an integral gain of

KI = 10. The MPC tuning results in gains of Qeω = diag(1, . . . , 1), Qω =

diag(α, . . . , α), where α is repeated across the diagonal elements of Qω, Qu =380

diag(0.01, . . . , 0.01), and ρ = 0.01. The costs associated with generators deviat-

ing from their setpoints, c1, . . . , c11, are incorporated into the cost function using

the generator power weighting matrix, such that Qp = 0.02× diag(c1, . . . , c11).

The resultant plot from the tuning scenario is given in Fig. 2. Here plots are

given for MPC with α = 50 and α = 0, and finally the PI plot is given.385

First of all it can be seen in Fig. 2 that the MPC with the desired tuning,

with α = 50, gives a highly damped response and outperforms the PI in terms

of tightly regulating the frequency. Secondly, the MPC plots demonstrate the
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effect of tuning α on MPC performance. By using a larger value of α it is possible

to reduce the ROCOF and further reduce the initial frequency deviation. The390

MPC can be seen to offer significant improvements in terms of minimising the

financial cost associated with control. In Fig. 3, it can be seen that the MPC

uses more of the cheaper power source with cost c10 = 5, and less of the more

expensive source with cost c1 = 26.7, in comparison to the PI controller. This

is because the MPC explicitly gives preference to the use of the least expensive395

generators. Finally, Fig. 4 illustrates the ability of the MPC to satisfy the

slack constraint pin11 ≤ 1.02 (note that Fig. 4 shows the input to the rate

constraint before the rate constraint is applied). After the initial transient pin11

significantly exceeds the constraint. However, as discussed previously the use

of the slack constraint maintains feasibility. The value of pin11 is then reduced400

such that it never significantly exceeds the constraint. The 0.2 s delay scenario

is then run again for the noise case, as can be seen in Fig. 5. It can be seen here

that the MPC provides significant robustness against uncertainty and provides

tighter long term frequency regulation than the PI based controller when faced

with the additional stochastic and model uncertainty. It has previously been405

noted in the literature that MPC results in improved robustness to disturbances

when used for AGC [4, 20]. The MPC, however, does experience a slightly larger

initial frequency nadir than the PI. It is assumed here that the initial increased

frequency nadir for MPC is as a result of the particular model uncertainty faced

by the MPC for the noise case, as the frequency nadirs were similar for both410

the PI and MPC with α = 50 for the nominal case, as in Fig. 2.

The 5 s control communication delay scenario was then investigated in the

same manner as the PI case. The same tuning used for the 0.2 s delay case is

used again for the 5 s delay case, except Qu = diag(0.03, . . . , 0.03) and α = 200.

It was necessary to detune these parameters, to achieve a damped response, as415

the parameters used in the 0.2 s delay case resulted in more oscillatory behaviour

when used with the 5 s delay. The results of the tuning scenario can be seen

in Fig. 6 and the noise scenario in Fig. 7. In both of these scenarios it is

observed that, for the 5 s delay case, the MPC provides a negligible frequency
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regulation improvement in comparison to the PI controller. The initial transient420

has the largest impact on the frequency offset and, as MPC can predict how

this transient evolves, it is possible for it to take advantage of this response to

improve control performance. However, with a very long control delay the MPC

cannot take advantage of this transient and so the long delay time negates any

significant advantages posed by the MPC over the PI. However, the authors note425

that the MPC is still capable of optimising the financial cost of providing control,

as can be seen in Fig. 8, where the MPC uses less of the expensive c1 = 26.7

source, and more of the cheaper c10 = 5 source to provide the control. Thus, for

the case of the Irish grid presented here, from the perspective of providing tight

frequency regulation, it may not be worth installing MPC controllers instead430

of PI controllers for frequency regulation unless suitably fast communication

links are in place first, so as to allow for tighter frequency control, as in the 0.2

s control delay scenarios. However, the MPC is still capable of providing the

control at a reduced financial cost for longer delays.

Finally, the time taken to calculate the MPC at each sample for the 5 s435

delay, noise scenario case is given in Fig. 9. It is noted that the optimisation

time increases after 10 s as the inequality constraints in (33) become active. It

can seen that the MPC is consistently calculated within the allocated sample

time of 0.2 s. Naturally the time taken using MPC will vary based on parameters

such as the sample time used, the prediction horizon, etc.440

6. Conclusions and Future Work

The goal of this paper was to provide a means whereby the inefficiencies

inherent in the application of optimal control and estimation methods to large

scale electrical power system simulations could be overcome. As a demonstra-

tion, this paper evaluates the application of PI and Model Predictive Control445

(MPC) when used for Automatic Generation Control (AGC) on a large-scale

Irish electrical grid model with a significant wind penetration and low inertia.

It was found that MPC could be used to provide tighter frequency regulation
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than the PI controller for short control delays but did not provide a significant

improvement in frequency regulation for longer time delays. Thus it was noted450

in the paper, that in order to gain full advantage from using MPC instead of

PI for AGC for frequency regulation for the case of the Irish grid, or other low

inertia grids, a fast communication network should first be installed. However,

in all delay cases the MPC was capable of reducing the costs associated with the

frequency regulation by explicity considering the cost of the generation sources.455

Potential future work on the themes in this paper could look at the application

of distributed optimal control methodologies across large scale realistic systems

such as the European grid and investigate further control issues such as non-

uniform control communication delays.
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Figure 2: Frequency responses for nominal case with 0.2 s delay.
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Figure 3: Generator power responses for nominal case with 0.2 s delay.
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Figure 4: Satisfying pin constraints at generator 11 for nominal case.
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Figure 5: Frequency response under noise case with 0.2 s delay.
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Figure 7: Frequency responses for noise case with 5 s delay.
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