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Abstract 

The increase in the use of Converter-Interfaced Generation (CIG) in the power 

system will require these generators to not only feed the power but also establish 

the voltage and maintain the grid stability. Virtual Synchronous Generator (VSG) 

control of the CIG is proposed to fulfill this requirement since it mimics the 

dynamics of synchronous generation. This paper takes the all-Island Irish 

transmission system as an example to investigate the frequency stability of the 

system as it migrates towards 100% CIG under VSG control and quantifies the 

minimum conditions for frequency support to sustain the system under 100% 

CIG. Simulations are carried out considering the worst contingency in the Irish 

grid which is the loss of largest infeed, namely, the disconnection of the HVDC 

interconnector to the UK. The results are compared and discussed considering 

other scenarios that include primary frequency control of conventional power 

plants.  

Keywords—Virtual Synchronous Generator (VSG), Frequency Control, 

Converter-Interfaced Generation (CIG), All-Island Irish Transmission System 

(AIITS), 100% Penetration. 
 

1 Introduction 
1.1 Motivation 

Operating an entire national system with 100% converter-interfaced generation 

(CIG) and, hence, zero inertia, has not yet been implemented in practice but is an 
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expected scenario for the near future [1-4]. As discussed in [5] this requires CIG 

controls to implement grid forming capabilities.  However, there is a lack of studies 

on the dynamic performance of a realistic power system as conventional Synchronous 

Generators (SG) are replaced by a specific CIG, i.e. Virtual Synchronous Generator 

(VSG), leading to a fully non-synchronous system. This paper aims at filling this gap. 

1.2 Literature review 

Conventionally, CIG has been controlled to be grid-following, where the converter 

is controlled as a current source, using a Voltage Source Converter (VSC) 

synchronized and following the grid frequency through a Phase-Locked Loop (PLL). 

Voltage and frequency support can be added to these grid following controls. 

Frequency support can be provided in the form of a droop control (proportional to 

frequency deviation) or a virtual inertia control (proportional to Rate of Change of 

Frequency). Frequency droop support alone cannot ensure the system stability when 

the system migrates to higher level of the CIG penetration, as the possibility of large 

RoCoF may cause relay trips after a contingency [6]. To avoid such instability, the 

provision of the virtual or emulated inertia from the CIG is required [7]. In the case of 

grid-following converters, several methods have been proposed. Deloaded operation 

of the CIG is a method used to reserve a certain amount of the available power by 

purposely shifting the CIG operating point from its optimum [8, 9]. Obviously, this 

shifting leads to the renewable energy waste and consequently results in economic 

losses for generator unless adequate compensation for such operation is provided. 

Alternatively, the inertia can be extracted from the rotating mass of the turbine by 

linking the speed of the turbine to the grid frequency in the machine side converter 

[10]. However, the kinetic energy released from the turbine reduces the rotor speed 

consequently resulting in generation reduction with a consequent energy recovery 

period and long-term operation will again lead to wind energy waste. To avoid such 

inevitable energy waste, the converter-interfaced electrical storage system [11] is 

widely recommended to be used as a “power sink” to store the energy in the over-

generation case and release the energy in the under-generation case. The frequency 
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response of the storage connected grid-following converter can be achieved via a 

power compensation proportional to the Rate of Change of Frequency (RoCoF) 

measured by the PLL [12-15].  

Nevertheless, even with the capability of grid following CIG to provide various 

forms of frequency support, as the penetration of CIG increases, in order to co-

operatively establish the grid voltage in the absence of synchronous generation [5], 

converters have to move from the grid-following current-source mode to the grid-

forming voltage-source mode. Some recent studies, e.g. from the MIGRATE project 

[16], suggest that at least 30% of the sources must be the grid-forming for the sake of 

the grid stability. The VSG control has been proposed to make the CIG behave like a 

voltage source while also providing primary frequency support and inertia into the 

system. Different VSG implementations have been proposed, e.g. the synchronverter 

[17, 18], virtual synchronous machine [19-21] and DC link capacitor-based VSG [22-

24]. These VSG types mimic the behavior of the SG as their synchronization relies on 

the swing equation as opposed to a PLL. Studies have also looked at VSG controls 

applied to wind generation [25-27], PV generation [28, 29] and other distributed 

energy resources [30, 31]. These device-level studies of the VSG, including the 

topology and implementation have been well researched from the perspective of the 

power electronics. However, system level studies are still lacking, especially for the 

high level of the CIG penetration.  

There have been several recent studies on low inertia systems, which have been 

studied either by purposely reducing the inertia constant of the SG present in the 

system or replacing the SG by CIG. However, reference [32], suggests that the study 

of the future CIG dominated system should use the latter method to accurately 

represent the effect of increased CIG penetration. Reference [33] compared several 

different forms of grid forming controls and their interactions with SGs, using 

detailed electromagnetic transient (EMT) system modeling in the IEEE 9-bus system. 

From this study the authors concluded that due to their faster response, grid forming 
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CIG can improve frequency stability metrics compared to the all SG system, especially 

if steps are taken to ensure they remain working in voltage source mode without 

current limitation. On the other hand, it has also been recognized that this fast 

response can give rise to higher frequency oscillations in the system through the 

interaction with line dynamics [34]. However, these higher frequency modes can be 

damped with for example the addition of a virtual resistance [35] and damping [36] 

in the grid-forming CIG. Voltage stability is also a concern in the migration to 100% 

CIG systems [37]. Reference [12], has indicated that smaller capacity distributed CIG 

may have benefits compared to larger capacity centralized CIG power plants, due to 

their ability to locally compensate reactive power. It should also be noted that it is 

possible to implement grid-forming controls which do not emulate inertia, such as 

droop controls [38] or power synchronization control [39]. The fast response 

achievable from CIG using such controls can achieve a stable frequency in the grid 

and the concept of inertia may be not needed. However, in the mid-term, since 

existing systems expect a slow frequency change, the concept of maintaining a virtual 

inertia may have operational advantages [5]. Note that this does not necessarily mean 

that the fast-acting capability of the CIG is not being utilized because, as shown in 

this work, the droop response can still be fast-acting thus giving advantages in terms 

of frequency stability.  

Most of the system-level researches for the VSG have been applied in microgrids 

or test systems. For example, references [40,41] compare the VSG and droop control 

in terms of frequency dynamics and reference [42] uses bifurcation theory to analyze 

the stability in VSG-dominated microgrids. Reference [43] improves the VSG 

robustness and [44] enhances the VSG power sharing accuracy in the microgrid. 

Some works [45-48] have discussed the VSG performance based on the 

implementation in the IEEE standard test system models. For example, reference 

[45] analyzed the VSG small signal stability and [46,47] illustrate the VSG basic 

functions in the IEEE 39-bus system and [48] presents the VSG primary support 
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behavior in the IEEE 12-bus system.  

 Finally, some comment is perhaps necessary on the justification for the use of 

VSG control, which essentially mimics SG characteristics in an all CIG system where 

there is clearly no inherent physical link between supply-demand imbalance and 

frequency. In theory the frequency in such a system could be fixed at 50 Hz or 60 Hz 

(or indeed 0 Hz ) by the converter controls. However, the question remains as to how 

to achieve load sharing between generators to satisfy the demand. It could be 

envisaged that this could be achieved by means of an extensive communication 

system, which of course raises further issues around security, reliability, etc. 

Therefore, even in the 100% CIG scenario, maintaining frequency as the means of 

communication for supply-demand imbalance would seem reasonable and even 

desirable. Hence the use of VSG control which links the CIG frequency to its loading 

so as to mimic the actions of an SG is an attractive solution, especially in the medium 

term where the system must work with a mix of CIG and conventional SGs.  

1.3 Contributions 

As discussed in the literature review above, the dynamic performance of single 

VSG devices has been tested only considering single-machine infinite-bus systems or 

stand-alone microgrids. No previous works focuses on a real-world power system 

with 100% VSG-controlled CIG. This raises several interesting issues, such as the 

frequency dynamics of such a system and the role of energy storage devices to provide 

the inertial response.  

This paper investigates these issues by means of a case study on the All-island 

Irish Transmission System (AIITS), which is a real-world national power system 

operated with high penetration of CIG. In particular, the paper investigates the 

frequency stability and dynamics of the system as it migrates from the present 

situation towards 100% CIG. The VSG controlled CIG is assumed to come from 

stochastic wind generation combined with Electrical Energy Storage (ESS). Two 

different implementations of combining the storage with the wind generation is 
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considered, one where the storage is located in the DC link of the wind turbines and 

one where the storage is co-located, external to the wind turbines.  The minimum ESS 

rating required in order to maintain the present stability level is investigated. 

1.4 Organization 

The remainder of this paper is structured as follows. Section II briefly reviews the 

VSG modeling and its operation. Section III introduces the dynamic model of the 

AIITS considered in the case study. Section IV analyzes the dynamic response of the 

system under a 100% CIG penetration following the worst-case contingency. The 

capacity of ESS required to maintain stability in the 100% CIG scenario is also 

evaluated. Section V analyzes the effect of the stochastic wind and demand on 

frequency dynamics. Finally, Section VI draws relevant conclusions. 

2 Review of Virtual Synchronous Generator 

VSG control has been extensively described in previous works and here we present 

only a brief overview of the aspects which are of particular relevance to this work. 

Here the VSG control is proposed to be embedded into the grid-tied VSC, where the 

DC bus is supplied by a power source which, as discussed later, is either renewable 

generation and/or ESS. The VSG applies the swing equation to determine the voltage 

phase angle with respect to the grid and voltage support to determine the voltage 

amplitude, thus, the VSC output voltage is directly controlled. The full details are 

given in [19,20,46] and here we briefly explain the structure which is described by the 

set of equations given by (1 - 10).  

Assuming the DC link voltage of the VSG is fixed, the VSG control is an additional 

outer loop of the conventional outer voltage inner current control of the VSC as 

shown in Fig. 1. The core VSG control part contains three subparts, the active power 

regulation which determines voltage angle, the voltage regulation which determined 

voltage magnitude and the virtual impedance which can be used to alter the apparent 

output impedance. The active power regulation emulates the SG swing equation (1) 

with inertia M and damping D which provides synchronization of phase 𝛿  and 
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frequency 𝜔!"# . It also allows for turbine governor (TG) emulation (2) with active 

power droop computed from, 𝐾$   and the difference between the detected grid 

frequency 𝜔%&&   (detected by PLL) and the reference frequency 𝜔∗ . The voltage 

regulation part emulates the automatic voltage regulator (AVR) (3) with a 

compensation gain 𝐾(  to determine the emulated electric potential E. The virtual 

impedance allows for stator impedance emulation as a virtual impedance 𝑟( + 𝑗𝜔!"# 𝑙(  

(4). The overall VSG control provides the reference voltage 𝑣)∗  to the conventional 

VSC,  which is implemented with outer voltage (5) inner current (6) control and an 

LC filter (7,8), where 𝐾%(/𝐾*(  and 𝐾%+/𝐾*+ are the PI settings for the voltage and 

current control respectively, and 𝑙,and 𝑏,are the filter inductance and capacitance 

respectively.  The output voltage 𝑣)  tracks the reference voltage which is connected to 

the grid with voltage 𝑉-   through the transmission line with its impedance 𝑟- +

𝑗𝜔-.*$𝑙-  (9). The delivered power, 𝑃 (10) feeds back into the swing equation and the 

grid voltage is supported by the AVR emulator. Therefore, equations (1~10) define the 

Differential-Algebraic Equation (DAE) model of the VSG where the equation 

correspond to the different blocks as indicated in Fig. 1. 

𝑀
𝑑Δ𝜔!"#

𝑑𝑡
= 𝑃∗ + 𝑃$.))% + 𝐷Δ𝜔!"# − 𝑃

𝛿̇ = Δ𝜔!"#

5				(1) 

𝑃$.))% = 𝐾$(𝜔∗ −	𝜔%&&)																				(2) 

𝐸 = 𝑉∗ + 𝐾(<𝑉∗ − 𝑉-=																				(3) 

𝑣)$∗ = 𝐸𝑐𝑜𝑠𝛿 − 𝑖$𝑟( + 𝑖/𝜔!"# 𝑙(
𝑣)/∗ = 𝐸𝑠𝑖𝑛𝛿 − 𝑖$𝜔!"# 𝑙( − 𝑖/𝑟(

D						(4) 

𝑖+($∗ = 𝐾%((𝑣)$∗ − 𝑣)$) + 𝐾*(𝜀$ − 𝜔!"#𝑏,𝑣)/
𝑖+(/∗ = 𝐾%(<𝑣)/∗ − 𝑣)/= + 𝐾*(𝜀/ + 𝜔!"#𝑏,𝑣)$

𝜀$̇ = 𝑣)$∗ − 𝑣)$
𝜀/̇ = 𝑣)/∗ − 𝑣)/ ⎭

⎪
⎬

⎪
⎫

				(5) 
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𝑣+($∗ = 𝐾%+(𝑖+($∗ − 𝑖+($) + 𝐾*+𝛾$ − 𝜔!"# 𝑙,𝑖+(/
𝑣+(/∗ = 𝐾%+<𝑖+(/∗ − 𝑖+(/= + 𝐾*+𝛾/ + 𝜔!"# 𝑙,𝑖+($

𝛾$̇ = 𝑖+($∗ − 𝑖+($
𝛾/̇ = 𝑖+(/∗ − 𝑖+(/ 	 ⎭

⎪
⎬

⎪
⎫

				(6) 

𝑙,
Ω0

𝑑𝑖+($
𝑑𝑡 = 𝑣+($ − 𝑣)$ − 𝑟,𝑖+($ + 𝜔-.*$𝑙,𝑖+(/

𝑙,
Ω0

𝑑𝑖+(/
𝑑𝑡 = 𝑣+(/ − 𝑣)/ − 𝑟,𝑖+(/ − 𝜔-.*$𝑙,𝑖+($

⎭
⎪
⎬

⎪
⎫

				(7) 

𝑏,
Ω0

𝑑𝑣)$
𝑑𝑡 = 𝑖+($ − 𝑖$ + 𝜔-.*$𝑏,𝑣)/

𝑏,
Ω0

𝑑𝑣)/
𝑑𝑡 = 𝑖+(/ − 𝑖/ − 𝜔-.*$𝑏,𝑣)$

⎭
⎪
⎬

⎪
⎫

			(8) 

𝑙-
Ω0

𝑑𝑖$
𝑑𝑡 = 𝑣)$ − 𝑉-cos	(−𝛿) − 𝑟-𝑖$ + 𝜔-.*$𝑙-𝑖/

𝑙-
Ω0

𝑑𝑖/
𝑑𝑡 = 𝑣)/ − 𝑉-sin	(−𝛿) − 𝑟-𝑖/ − 𝜔-.*$𝑙-𝑖$

⎭
⎪
⎬

⎪
⎫

			(9) 

𝑃 = 𝑖$𝑉- cos(−𝛿) + 𝑖/𝑉- sin(−𝛿)			(10) 

2.1 VSG and Renewable Generation 

VSG control can be viewed as an advanced droop control [41], which was initially 

proposed to be used to control storage to support grid frequency in both steady state 

and transients, typically with a storage reference power setpoint, 𝑃∗ = 0 in (1). In this 

work, we consider the storage to be co-located with wind generation. We consider two 

options for the structure of the co-location, which are referred to as an outer VSG 

implementation (VSGo) and an inner VSG implementation (VSGi) in this paper, 

which are shown in Fig. 2 and Fig. 3 respectively.   

2.2 Outer VSG implementation 

In this case, VSG control is implemented into the converter, interfaced directly to 

the ESS and the ESS is co-located with renewable energy sources, i.e. Wind Turbine 
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Generation (WTG) as in Fig. 2. The advantage of this topology is that there is no 

modification required for the original WTG system, for which the Grid-tied converter 

(G-converter) still works in grid-following mode with outer power inner current 

control. This is, of course, a feasible and economical means to co-locate VSG 

controlled storage with existing renewable energy sources. However, the VSG control 

in this topology only acts as a support to the generation providing emulated inertia 

(1), droop control (2) and voltage regulation (3). The generated power from the WTG 

does not go through the swing equation (1), so that the VSG introduces no damping to 

the generated wind power conversion. Consequently, in this configuration, the 

dynamics arising from stochastic wind would increase the corresponding frequency 

variations especially in a WTG dominated system.  

2.3 Inner VSG implementation 

In this case, the VSG control is implemented into the G-converter of the WTG as 

shown in Fig. 3, and the ESS connects to the DC link of the WTG system via the E-

converter which implements the DC voltage control. In this topology, the entire VSG-

controlled WTG system moves from being grid-following to grid-forming. The 

generated power goes through the swing equation with inertia and damping via the 

VSG-controlled G-converter to the grid. Thus, the dynamics from stochastic wind are 

filtered, and the power injection to the grid is much smoother. Note, the mismatched 

power between the generation and grid injection is supplied or stored by the ESS.  

3 Case Study: All-Island Irish Transmission System 

In this section, the VSG control strategies discussed above are implemented and 

tested with the AIITS, which represents a leading example of a relatively rapid move 

towards a power system operated with high penetration of CIG. Presently with 

approximately 32% average electricity generation from wind energy, the system is 

instantaneously operated with up to 65% non-synchronous penetration [49]. With 

recently announced targets of achieving an average of 70% electricity generation from 

renewables by 2030 [50], the system will be required to operate with much higher 
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instantaneous levels of non-synchronous generation, the majority coming from on-

shore and off-shore wind and PV [51]. 

The AIITS consists of 1,479 buses, 1,851 transmission lines and transformers, and 

245 loads. It has a very limited transmission capacity to other systems as it is only 

interconnected with the UK via two HVDC interconnectors, the largest of which is a 

500 MW VSC based HVDC link [52] which also represents the largest infeed to the 

system. If this UK interconnector fails unexpectedly (the largest infeed outage), the 

backup power relies on the local reserve and in this context, the fast frequency 

response control scheme of the CIG is crucial to maintain the power balance of the 

system. 

The transition from the conventional SG-based generation to the converter-based 

generation with high renewable penetration will decrease the system inertia and 

potentially result in stability issues. The Irish TSO, EirGrid, requires that the 

frequency deviation shall remain within 50±0.2 Hz under normal operation, while it 

shall remain within 50±2 Hz, with RoCoF limited to 1 Hz/s in the first 500 ms [53] 

after a contingency. Therefore, the application of the VSG control in the existing ESS 

and planned WTG systems would be of great importance to the system stability. In 

fact, the importance of such response is already recognized by the TSO as evidenced 

by the recent introduction of a fast frequency response product [54]. The important 

question being investigated here is whether the system would maintain the same 

stability level if it migrates to the 100% CIG.  

Since 80% of renewable electricity in Ireland is generated from wind, the VSG 

control is only considered to be implemented into the WTG system. The VSG-

controlled WTG system is modeled as in Figs. 2 or 3, where the wind turbine used is a 

Full Converter Wind Turbine (FCWT) model [55]. The storage model is simplified as 

a constant DC voltage source with power limits. The VSG is modelled as equation (1-

10) and this model has been verified via hardware experiment in our previous work 
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[46]. The AIITS dynamic model is built in Dome, a Python-based power system 

software tool [56] using data provided by EirGrid. There are 21 conventional 

synchronous power plants, which reflect the conventional generation portfolio in 

Ireland which consists of 5 coal, 10 gas, 4 hydro and 2 distillate plants [57]. Each 

plant is modelled as a single SG with individual AVR and TG controls, using 6th order 

synchronous machine models. Due to reasons of commercial sensitivity, the dynamic 

parameters of the generators are not exactly those used in practice but are based on 

generic generator models of the generator technology tuned to provide a close match 

with the actual system dynamics [58]. In addition to the conventional generators, 

there are 176 existing wind power plants, of which 142 are Doubly-Fed Induction 

Generator (DFIG) based and 34 are Constant Speed Wind Turbine (CSWT). Note, 

these 142 DFIGs uses conventional grid-following converters with constant power 

control and participate in primary frequency support with static droop control, while 

34 CSWT do not participate frequency support. The largest generator, 288.52 MW in 

the system is set as a slack bus. In the following case study, all the generators are 

online. As a baseline scenario, we consider the situation where 50.77% of the 

generation is from the existing wind farms, i.e. 50.77% Wind Penetration (WP). The 

WP refers to the percentage of the total production being supplied by WTG in the 

initial state, i.e. before the disturbance. Note, the TSO currently allows the operation 

of the system with up to 65% non-synchronous penetration [59]. The grid frequency 

is measured by the central of inertia (COI). The time step of the simulation is 10 ms. 

The model provides a dynamic representation of the actual Irish electrical grid with 

accurate topology and load data and should reflect the real Irish system response.  

Using the model above, the paper investigates the following aspects of the system-

level impacts of the VSG:  

1). The frequency stability in respect to the migration from the SG-dominated 

system to the 100% VSG-controlled CIG-dominated system in the event of a 

contingency (loss of largest infeed). Based on these results, the minimum quantity of 
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the ESS with VSG control required to ensure the stability of the system is 

investigated.  

2). The frequency dynamics of the system under different WP scenarios, including 

a comparison of the different VSG configurations (VSGo as Fig. 2 or VSGi as Fig. 3) 

considering stochastic variation in wind generation and loads. 

4 VSG-based Frequency Support in the AIITS 

It could be argued that, since the virtual inertia implementation simply emulates 

the electromechanical behavior of the SG, then the VSG would be expected to have a 

similar performance to the SG during frequency transients after a contingency if the 

VSG settings are set identical to the SG characteristics. However, VSG control is 

applied to the power converter with a typical response time on the order of 

milliseconds, while the response of the SG and its primary control, TG, are much 

slower, i.e. on the order of seconds. Thus, the VSG could potentially provide faster 

frequency control and have better performance than the SG. On the other hand, the 

VSG compensated power is provided from the storage through a power converter, 

with binding current limits to avoid overcurrent, whereas the SG can tolerate 

overcurrent for a limited time. This restricts the quantity of emulated inertia, since 

the droop power and inertia power share the same power source and the same grid-

tied interface. To be a fair comparison, the relevant parameters of the VSG control are 

set to be identical to that of the SG they replaced, i.e. virtual inertia is set identical to 

the SG inertia, the frequency-power droop gain is set identical to the TG gain, and the 

virtual impedance is set to the SG stator impedance. The capacity of the WTG system 

with the ESS is set to have the same power rating as the original SG with TG. The 

initial operation point is also set to be identical for the discussed devices. The VSC 

voltage and current controller parameters are set following the design approach for a 

voltage controlled VSC given in [60]. In the following analysis, two versions of the SG 

are used for the results. SG1 is the baseline case which uses the original SG data (TG 

time constant is in a range of 5-10 s). The SG2 case is a hypothetical case where it is 
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assumed that the SG can have a modified and fast TG response time of 0.1 s. The 

purpose of using SG2 is simply to provide a comparison between the inertial response 

from the VSG and an SG with similar characteristics. To illustrate the limitations of 

providing frequency support from the conventional grid-following CIG, a “Droop” 

case is also used, where the SG are replaced by a conventional grid-following WTG co-

located with storage providing frequency support through a grid following droop 

control. In all cases, the VSGo and droop-controlled storage are co-located with a 

FCWT. Initially in this section, the wind input is set to be constant. The installed 

generation is 6.157 GW, while overall system load at this time is 2.36 GW, and the 

contingency which is the loss of the largest infeed, i.e. the HVDC line to the UK 

outage (400 MW), occurs at 1 s.  Note this represents a relatively low loading scenario 

for the system, but something of a worst case in terms of disturbance as the loss of 

largest infeed represents the loss of a large portion of existing supply. 

4.1 Case 1: device test 

In order to better understand the full system-level results in later sections, we first 

show the response of a single device when it replaces a single SG in the baseline 

system. In this test, we compare the responses for each of the discussed devices, i.e. 

SG1 (baseline case), SG2, VSGi, VSGo and droop-controlled storage. In each case, the 

tested device replaces the SG keeping the same rating, 110 MW. Fig. 4 presents the 

grid frequency and device active power output after the HVDC interconnector outage 

at 1 s.  

It can be seen from Fig. 4 that the lowest grid frequency nadir in this test occurs 

for the SG1, where the TG is set generally in second-time scale. Although the SG1 can 

provide the inertia (see the instant 1 s at Fig. 4 (b)), due to the slow TG reaction, the 

transient power compensation is less (1~8 s in Fig. 4 (b)). The droop response verifies 

that the power converter can have a much faster droop response, but, due to the 

absence of the inertia, it follows the frequency variation and therefore leads to the 

lower nadir in the grid frequency. The VSGs clearly combines the fast droop response 
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with an inertial response. The frequency support function, i.e. the frequency to power 

loop, of the VSGi and VSGo are identical, therefore, the VSGi and VSGo have the 

same response to the contingency. The response is also similar to that of the SG2, 

which highlights the fact that in terms of frequency response the VSG acts like an SG 

with fast TG but otherwise similar settings  

For these results, only a single SG has been replaced in the system and therefore 

the different device responses make only a small difference in the overall system 

frequency behavior as indicated by the different curves in Fig. 4(a).  However, from 

the results in Fig. 4(b) it can be anticipated that the widespread replacement of SG by 

VSG might improve overall system frequency response, due to the similar inertial 

response but faster droop response.  

The next subsection investigates the system frequency response as all the SG are 

replaced by VSG, corresponding to a system with greater levels of generation from 

wind farms. 

4.2 Case 2: Possibility of 100% Renewable Penetration 

In this test, we increase the WP in the system by gradually replacing the SG by 

VSG all the way to achieving a fully non-synchronous system where all of the 

generation is provided from the wind. When replacing the SG, three types of wind 

farm and storage control is considered, the inner (VSGi), the outer VSG (VSGo) and 

the grid following with droop. For each case, the frequency behavior of the system in 

response to the contingency is obtained similar to the result in Fig. 4 (a). 

Fig. 5 compares the system frequency in a 100% WP situation under the different 

control approaches to the original system frequency response (SG1). As expected, the 

VSG dominated system shows an improved frequency response compared to the 

original system (SG1) with the enhancement of the frequency nadir from 49.26 Hz to 

49.68 Hz, while the droop-controlled case is unstable. The VSGo and VSGi as 

expected have identical responses.  
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 Fig. 6 records the resulting frequency nadir and RoCoF measured at 500 ms after 

the contingency for each case. Compared with the original system, due to the faster 

response of the VSG as indicated in Fig. 4(b), the increase of the VSG-controlled WTG 

improves the overall system frequency transients both in terms of improved nadir 

and RoCoF. However, the droop-controlled storage plus WTG system, due to the 

reduction of the overall system inertia, worsens the system transients, resulting in a 

significant increase in the RoCoF, with the system becoming unstable when the WP 

increases to 80%. The comparison with the droop case simply highlights the 

importance of the virtual inertia which has been shown in previous works 

[40][46].The main result is that the VSG-controlled WTG can facilitate 100% WP 

actually with improved frequency stability, at least under the assumption of similarly 

rated VSG, compared to the system with SG. 

4.3 Case 3: Level of ESS Frequency Response 

The previous section established that in the 100% WP situation, after the 

contingency, compared with the original SG dominated system, the Irish system is 

improved by the inclusion of the VSG control with lower frequency nadir at 49.67 Hz 

and RoCoF at 0.31 Hz/s. However, in that case, the inertial response and primary 

reserve power capacity come entirely from the ESS. Due to the improved frequency 

response, the level of response provided by the VSG could be reduced which would 

allow a reduction in the ESS power rating, thus potentially saving capital cost. To 

investigate the potential for reduction of the ESS power capacity, we take the 100% 

WP situation and gradually reduce the level of frequency support (i.e. the droop gain 

is reduced in 5% steps) from the ESS and again observe the frequency nadir and 

RoCoF. Note here the reduction in droop gain can be viewed as a reduction in the 

reserve in relation to the TG gain reduction from the baseline case SG1. Considering, 

however that the inertial and droop power share the same power source, if a 

reduction in ESS rating is to be achieved then to avoid the converter hitting its rated 

power limit , both the inertia and droop gain must be reduced. Previous work [35, 61] 

has shown that the terminal response of the VSG can be approximated by a second 
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order response with a damping ratio which is directly proportional to droop gain and 

inversely proportional to the square root of inertia setting. Hence in order to preserve 

the terminal response damping ratio, the inertia is reduced proportionally to the 

square root of the droop gain [61].  

Fig. 7 records the frequency transients during this process, where for comparison, 

the frequency nadir and RoCoF from the original baseline system (55% WP) with 

reduced TG gain are also shown. It should be noted that in this scenario, the online 

SG inertia remains constant and is independent on the droop response. It can be seen 

that the reduction gives a lower frequency nadir after the contingency in all scenarios. 

The primary reserve reduction has no effect on the RoCoF for the SG1 scenarios, as 

the inertia in the SG dominated system is unchanged. Meanwhile, in the VSG 

dominated system, the inertia must also reduce as it is limited by the reduced ESS 

power capacity. The Irish grid code now requires that the RoCoF should be limited to 

1 Hz/s in the first 500 ms, and that the frequency deviation should be within ±2 Hz. 

Considering these grid code requirements, the response reduction is first constrained 

by the RoCoF at 20% of the original capacity. Of course, if the system is operated to 

maintain the same frequency nadir or RoCoF as in the original SG dominated system, 

then the response can only be reduced to 45% or 60% of the original respectively.  

Fig. 8 presents the frequency transients after the contingency for all reduced 

response values at all steps. It can be seen that the gap between each step is 

increasing with the ESS response decrease. This is also reflected in Fig. 7, where the 

frequency nadir and RoCoF for the VSG dominated system become exponentially 

worse with the response reduction. In addition, the response reduction in the VSG 

dominated system, although adequate to ride through the transients, has a negative 

impact on the steady-state frequency deviation as would be expected from a reduced 

steady-state droop response. If the system is required to maintain the same steady-

state frequency deviation under primary control as the original system, then the 

droop should maintain the same volume as the original.  
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5 Frequency Variation under VSG Generation 

For the previous investigation of frequency stability from the VSG, the generation 

power from the wind was assumed constant. For the VSG, the generated power comes 

from the wind farms and therefore obviously has variability. The co-located ESS can, 

of course, mitigate this variability. However as indicated in Section II, the structure of 

the co-located wind turbine and ESS may be expected to have an influence on the 

VSG-controlled WTG system generation. In the VSGi system, the variable generated 

wind power is fed to the grid via the VSG-controlled converter interface and thus 

damped, due to the emulated swing equation, while for the VSGo system, the 

generated wind power directly feeds into the grid with no damping contribution. The 

VSG controlled co-located ESS in this case only reacts to the resulting grid frequency 

variations. This difference leads to different frequency dynamic characteristics in the 

two cases. This section investigates the frequency variations from these two VSG-

controlled WTG topologies in the low WP (50.77%) and high WP (100%) cases. For 

this analysis, the wind input is now set to be stochastic using a Weibull distribution 

model and the simulation is run 100 times for each case. The average value and 

variance of the frequency are analyzed in the results. 

5.1 Case 4: Frequency variation in the 50.77% WP system 

In this case, the system is the same as in case 1 with 50.77% WP, where only one 

SG is replaced by the tested device (VSGo and VSGi) with 110 MW initial generation. 

The objective here is just to compare the output from a single device so as to better 

understand the later results for the system. Thus, in order to make a clearer 

comparison between VSGo and VSGi, only the discussed single VSG-controlled WTG 

system has the stochastic wind applied while the others still have constant wind. Fig. 

9 compares the total power output between the VSGo and VSGi systems and Fig. 10 

presents the system frequency for the VSGo and VSGi scenarios.  

It can be seen from Fig. 10 that the frequency response is very similar in these two 
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VSG configurations with a variance of 0.008 Hz. However, Fig. 9 verifies that the 

virtual inertia and damping from the swing equation smooths the VSGi active power 

output, compared to the VSGo scenario. Thus, the similar system frequency response 

is because there is only one such device in the system. In other words, if the 

penetration of VSGi increased in the system, the benefit of the damped power 

generation would be anticipated to be greater, resulting in lower frequency variations.  

5.2 Case 5: Trade-off between VSGo and VSGi  

In this case, the tested system is the same as in case 2 with 100% WP, where all of 

the SGs are replaced by either VSGo or VSGi devices. The wind speeds for all wind 

turbines used in the system (VSGo, VSGi, and existing 142 DFIGs and 34 CSWTs) are 

now changed to have a stochastic variation. In addition, the system loading is also 

changed to have stochastic variations where the load stochastics are modeled by the 

Ornastein-Uhlenbeck’s process [62] with ±5% of variation to their original values. 

Keeping in mind that the system frequency is to be kept within ±0.2 Hz frequency 

variation, this section quantifies the relationship between the frequency variance (due 

to stochastic wind and load) and the penetration of the VSGi vs VSGo in the system 

under the 100% WP scenario. For this study, the system starts with all of the added 

WTGs being of the VSGo structure, and these are then gradually changed to the VSGi 

structure with all being VSGi at the end. Fig. 11 presents the grid frequency variations 

under pure VSGo and VSGi situations. Fig. 12 records the variance for all tests as a 

percentage of the VSGi generation to the whole system generation with the 0.2 Hz 

standard marked as a black dashed line in the figure. 

It can be seen from Fig. 11, as expected, compared with the VSGo scenarios, the 

VSGi scenarios have significantly improved the system frequency dynamics, with a 

reduction in variance from 0.26 Hz in the VSGo case to 0.13 Hz in the VSGi case, i.e. a 

50% reduction. Installation of only the VSGo to achieve the 100% WP does not ensure 

the meeting of the ±0.2 Hz frequency variation tolerance. On the other hand, using 
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the VSGi topology can satisfy the standard. However, as mentioned earlier, 

considering costs a mixed combination of both approaches may be better. With this 

consideration, Fig. 12 indicates that if at least 8% of the total capacity consists of 

VSGi, the system frequency deviation would satisfy the standard.  

  

6 Conclusions 

The paper evaluates power system frequency dynamics, under VSG control of co-

located wind and storage as a solution to achieving a 100% CIG system operation. The 

Irish power system is used as a realistic case study, consisting as it does, of a system 

with relatively high levels of existing conventional, grid feeding WTG, and with no 

synchronous interconnection to larger systems.  

Based on the results, the following conclusions are relevant. 

1) In principle for this case study of a realistic system, it is possible to have a stable 

system with improved frequency dynamics in a 100% CIG system with VSG control of 

storage co-located with wind generators. Under the pure grid-following control of 

wind turbines with additional droop-based frequency support from storage, the 

system will become unstable significantly before the 100% CIG scenario, in this case 

study, at approximately 80% CIG penetration.    

2) Due to the faster response of the converters, the replacement of SG by VSG 

could result in improved frequency stability compared to the original SG dominated 

system. The advantage could be taken of the improved frequency response, to reduce 

the level of response provided and hence the ESS power rating required in the VSG 

dominated system, e.g. to 45% of the original in Ireland. However, it is important to 

note that because the inertia and droop power share the same power source, the ESS 

power rating reduction reduces the system inertia, so that eventually RoCoF limits 

the reduction possible, e.g. to 60% in Ireland case study. On the other hand, if it 
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considers the steady-state frequency deviation, the droop power should remain in the 

same level as using TG in the SG dominated system. 

3). From the perspective of supplying virtual inertia in the system, the outer ESS 

WTG system (VSGo) and the inner ESS WTG system (VSGi) provide a similar 

response. However, in terms of smoothing the frequency variations from varying 

wind, the VSGi is damped and smoother than the VSGo. This has a significant 

difference in the high WP system and, in particular, the VSGi results in significantly 

reduced frequency deviations due to the stochastic variation of load and wind. The 

more VSGi devices in the system, the smaller the frequency deviations and for 

example in the 100% WP Irish system, at least 8% of the total WTG capacity should 

be installed as VSGi in order to keep the frequency variation within a 0.2 Hz band. 

Although the case study used here is very much focused on the Irish power 

system, we believe that all of the above conclusions are relevant to any power system 

as it transitions to the use of 100% CIG.  

In summary this paper indicates that the VSG is an option to replace the SG in 

order to achieve higher CIG penetration while maintaining the system stability. 

However, it is realized that there are several issued related to 100% CIG penetration 

which the study does not directly address and which are considered for future work. 

For example, it is also known that voltage stability issues are equally important in the 

case of high penetration of CIG [37] and that a suitable control approach for reactive 

power provision should be provided. However, this aspect is deemed beyond the 

scope of this work. It should also be noted that the modelling of the system in this 

work is fundamental frequency modelling, which typically neglects line dynamics. On 

the other hand, it is known that due to fast dynamics of the CIG there can be 

interactions between the converter and line dynamics which give rise to higher 

frequency oscillations, which can only be revealed by detailed EMT modelling. These 

oscillations can be avoided or damped at the device control level by proper choice of 
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VSG parameters or by the inclusion of virtual resistance [35]. In addition, as it is 

unlikely that all CIG in a system will be controlled as a VSG the question of the 

required slit between grid forming and grid following arises. Note in this study as the 

baseline case has approximately 50% of the generation coming from the existing grid 

following converters, the 100% CIG scenario represents a situation where these is 

approximately a 50:50 split between grid following and grid forming converters. 

Other studies have suggested that the percentage of grid forming could be lower, e.g. 

30% [16], but the determination of this percentage has not been a focus of this study.  

Future work should investigate these issues in a more comprehensive study which 

should also include investigations under different loading and wind generation 

scenarios. 

 
Fig. 1. VSG control structure 
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Fig. 3. VSGi system 

 
Fig. 4. Case 1: Single device test 

 

 
Fig. 5. Case 2: 100% wind penetration 
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Fig. 6. Frequency transient response VS. wind penetration increase 

 
Fig. 7. Frequency transient response VS. ESS rating reduction 

 

 

 
Fig. 8. Case 3: ESS rating reduction 
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Fig. 9. Case 4: WTG system total generation 

 

Fig. 10. Case 4: Grid frequency in the 50.77% WP system 

 

 
Fig. 11. Case 5: Stochastic generation and load under 100% WP 
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Fig. 12. Case 6: VSGi penetration vs. frequency deviation 
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