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Abstract—This paper discusses stochastic load mod-
eling for dynamic analysis of power systems. The pro-
posed approach enables modeling loads with correlated
active and reactive powers. In particular, the proposed
model is able to accurately reproduce the statistical
properties of both stochastic variations and jumps of
loads. The case study shows that, the correlation be-
tween the active and reactive powers consumed by loads
impacts the level of uncertainty and stability limits of
the system.

Index Terms—Correlation, load modeling, Poisson
process, stochastic differential equation, Wiener pro-
cess

I. Introduction
A. Motivation

Load power consumption is not fully deterministic. This
has led to the proposal of a variety of stochastic load
models in the literature. These models consider mostly
long-term operation and forecast problems [1], [2]. A
modeling aspect that has not been adequately addressed
is the statistical correlation in short-term dynamics of the
active and reactive powers consumed by each load. This
paper aims to address this aspect.

B. Literature Review
In power system stability studies the loads have tradi-

tionally been modeled as deterministic using either static
or dynamic models [3], [4]. However, loads often vary in
an uncertain manner in the short-term. Recent relevant
studies that consider such an uncertainty of loads are as
follows.

In [5], the effect of load uncertainty on voltage stability
is considered using trajectory sensitivity analysis. Other
such probabilistic analysis considering the effect of load
uncertainty on the system stability are presented in [6], [7].
In [8] it is shown that important information is lost when
only probabilistic analysis of the system is considered for
stability analysis. For this reason it is important to model
the load uncertainty as a stochastic processes evolving
with time.
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Load uncertainty can be modeled as a stochastic process
in time using Stochastic Differential Equations (SDEs).
SDEs are continuous with respect to time and are there-
fore well equipped to reproduce transient random fluctua-
tions. Since power system models are typically formalized
as a set of Differential-Algebraic Equations (DAEs), SDEs
can be readily incorporated into the system model. The
resulting model is a set of Stochastic Differential-Algebraic
Equations (SDAEs).
Several studies have used SDEs for load modeling.

A modified exponential recovery model, with a purely
diffusion term SDEs, modeling the load uncertainty is
utilized in [9]. In [10]–[12], Ornstein-Uhlenbeck (OU) SDE
processes are used to model the load variations and in [13]
OU processes including jumps are proposed for load mod-
eling. However, none of these stochastic models consider
the correlation in the active and reactive power.
Figure 1 shows an example of active and reactive power

measurements obtained with a PMU. The data indicate
that there is a clear correlation between the stochastic
component and the jump component when it comes to
jump time and size in the measured active and reactive
power. Thus, the active and reactive power of the load
are, at least in some cases, correlated and their correlation
needs to be modeled.
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Fig. 1. Active and reactive power consumption of a load measured
with a PMU.



C. Contributions
This paper improves the OU load model with jumps

presented in [13]. The result is a model that is able to
take into account the correlation in the active and reactive
powers of the load consumption. Both correlation in the
stochastic component and the jump component, when it
comes to the jump time and the jump size, can be modeled
with the proposed model. A case study based on the 9-
bus 3-machine test system, including the proposed load
model, is used to demonstrate the effect of modeling the
correlation on system dynamics.

The specific contributions of this paper are twofold.
• A mathematical approach based on SDEs that allows

modeling the correlation between the active and re-
active power consumption.

• An appraisal of the effect that correlation between the
active and reactive load powers has on the dynamics
of power systems.

D. Organization
The remainder of the paper is organized as follows.

Section II presents the proposed correlated load model.
A case study considering the 9-bus 3-machine system is
presented in Section III. There the effect of modeling the
correlation in the active and reactive power of the loads on
the dynamic analysis of the test system is studied. Finally,
in Section IV conclusions are drawn and future work is
outlined.

II. Stochastic Modeling of Loads
This section presents the proposed stochastic load

model. The model is based on the SDE-based jump
diffusion model proposed in [13]. In this paper the model
in [13] is modified to include correlation in the active and
reactive power component of the load.

In Subsection II-A a brief introduction to jump diffusion
SDEs is presented. The modeling of the correlation in the
stochastic and jump component of the SDE-based model
is outlined in Subsection II-B. The jump diffusion model in
Subsection II-A is then coupled with the correlation proce-
dure presented in Subsection II-B to model the stochastic
variations of the load as presented in Subsection II-C.

A. SDE Jump Diffusion Model
Stochastic Differential Equations (SDEs) are a promi-

nent mathematical modeling technique and have been
utilized in previous power systems studies, e.g for modeling
loads [10]–[12], wind [14], [15] and tidal generation [16].
Additionally, SDEs with jumps have been used to model
solar [17], [18] as well as loads [13].

A general one-dimensional jump diffusion model,
i.e. SDE with jumps is defined as:

dηJ(t) = a(t, ηJ)dt+ b(t, ηJ)dW (t) + c(t, ηJ)dJ(t). (1)

where a and b are continuous functions and are referred to
as the drift and diffusion term of the SDE, respectively.

{W (t), t > 0} is the Wiener processes, which is a random
function characterized by the following properties:
1) W (0) = 0, with probability 1.
2) The function t 7→W (t) is continuous in t.
3) If t1 6= t2, then W (t1) and W (t2) are independent.
4) For ∀ti ≥ 0, all increments, ∆Wi = W (ti+1)−W (ti),

are normally distributed, with mean 0 and variance
h = ti+1 − ti, i.e., ∆Wi ∼ N (0, h).

The jump part is modeled through c, the jump coeffi-
cient which determines the jumps size and {J(t), t > 0}
which is the Poisson process. The Poisson process with
intensity λ > 0 is defined as a type of stochastic process
called a counting process which is characterized by the
following properties:

1) J(0) = 0, with probability 1.
2) It has stationary independent increments.
3) The number of events (or points) in any given time

interval of length t is a Poisson random variable with
the mean λt.

4) Its probability density function is:

f(x, λ) = λx

x! exp(−λ). (2)

An in-depth discussion on SDEs is outside the scope
of this paper. The interested reader is referred to [19] for
details on SDE theory and numerical methods.

B. Modeling Correlation

Loads are modeled as two variables, namely the the
active and reactive power consumed. The stochastic jump
diffusion model, presented in (1) enables the modeling of
these two quantities independently. However, the active
and reactive power are linked and thus may be correlated.
This subsection presents the modeling procedure used to

define the correlation of two SDEs. The resulting model
consists in two correlated Wiener components and two
correlated Poisson jump components.
1) Correlated Wiener Processes: The Wiener process is

the stochastic driving components of SDEs. The correla-
tion of two Wiener processes, say W1(t) and W2(t), can
be achieved by defining a third Wiener process, say V (t),
which is independent fromW1(t). The correlation between
W1(t) and W2(t) is defined through a parameter ρW (t).
This can be constant or time varying. In the latter case,
ρW (t) is modeled as another stochastic process. In this
work, ρW is assumed to be constant as in [20]. ThenW2(t)
is defined as the following adapted Wiener process:

dW2(t) = ρW dW1(t) +
√

1− ρ2
W dV (t). (3)

2) Correlated Poisson Jump Processes: The jumps of
two jump diffusion SDEs as presented in (1) can also be
correlated. To model the correlation between two Poisson
distributed jumps, J1(t) and J2(t), three Poisson dis-



tributed jumps n1(t), n2(t) and n3(t), with jump rates
λ1, λ2 and λ3 are used [21]. J1(t) and J2(t) are defined as:

J1(t) = n1(t) + n3(t), (4)
J2(t) = n2(t) + n3(t). (5)

Thus, the mean of the two Poisson jump processes is:

(λi + λ3)dt, i = 1, 2 (6)

Their covariance is λ3 and their correlation is:

ρJ = λ3√
(λ1 + λ3)(λ2 + λ3)

. (7)

C. Proposed Load Model
The SDE based model, presented in [13], models the

load variations using an Ornstein-Uhlenbeck SDE model
with jumps. This load model is developed based on the
well-known voltage dependent load model. However, it
models the active and reactive power independently. The
updated load model proposed in this paper utilizes the
model proposed in [13] but enables the stochastic and
jump component of the active and reactive power to
be correlated as presented in Subsection II-B. Thus, the
proposed load model is:
pL(t) = (pL0 + ηp(t))(v(t)/v0)k,

qL(t) = (qL0 + ηq(t))(v(t)/v0)k,

dηp(t) = αp(µp − ηp(t))dt+ σpdW1(t) + ςp(t)dJ1(t),
dηq(t) = αq(µq − ηq(t))dt+ σqdW1(t) + ςq(t)dJ2(t),

(8)

where pL(t) and qL(t) are the active and reactive power
of the load, respectively, and pL0 and qL0 are parameters
representing active and reactive load powers at t = 0. v(t)
is the voltage magnitude at the bus where the load is
connected and v0 is the value of this voltage magnitude
at t = 0.

The model in (8) can, through the exponent k define
whether the load is a constant power load (k = 0), a
constant current load (k = 1) or a constant impedance
load (k = 2). The stochastic variability of the load is
modeled through the stochastic processes ηp(t) and ηq(t)
which are formulated as SDE jump diffusion processes,
where α is the mean-reversion speed, µ is the mean and σ
is the diffusion component of the process.

The jump amplitudes ςp(t) and ςq(t) are normally dis-
tributed random numbers, namely ςp(t) ∼ N(0, σςp

) and
ςq(t) ∼ N(0, σςq ). They are modeled to have a correlation
ρJs in the same way as the Wiener process, as presented
in Subsection II-B. The correlation in the Wiener (W1(t)
and W2(t)) and Poisson processes (J1(t) and J2(t)) are
modeled as presented in Subsection II-B.

III. Case Study
A. Test System

The test power system used in this case study is
the Western System Coordinating Council (WSCC) 3-
machine, 9-bus system shown in Fig. 2. The system base

is 100 MVA and the system frequency is 60 Hz. Further
details on the model can be found in [22]. Note that for
this case study the voltage levels of the system have been
lowered compared to the original case. This is done to
demonstrate a case where the lower voltage limits might
be reached.

1

2

3

45

6

7

8

9

G

GG

Fig. 2. The 3-machine, 9-bus test system.

The system is modeled as a set of SDAEs where the
loads are modeled using SDEs as presented in (8). The
parameters used for the load model are set as follows. The
mean reversion parameters of the processes are set as αp =
αq = 0.02. σp and σq are set individually for each load so
that the standard deviation of the variations is 5% of pL0
and qL0, respectively. The standard deviation of the jump
size σςp

and σςq
is set to 10% of pL0 and qL0, respectively.

All simulations are carried out using Dome, a Python-
based software tool for power system analysis [23].

B. Simulation Results
For this case study two different cases are considered:
• Case 1: In this case the loads are modeled without

jumps. That is ςp(t) = ςq(t) = 0. The effect of
correlation in the stochastic component, through ρW ,
is studied.

• Case 2: In this case the loads are modeled with jumps.
The effect of correlation in the jump time (ρJ) and
size (ρJs

) is studied.
Case 1: For this case three different scenarios are ex-

amined. These are: (a) ρW = 0, (b) ρW = 0.5 and (c)
ρW = 0.9.
The test system is simulated 1, 000 times using Monte

Carlo simulation for a duration of 110 seconds and with
a time step of 0.05 seconds for both Cases 1.a and 1.c. A
fault is applied in these simulations at Bus 7 at time 101
seconds that is cleared in 0.1 seconds. The resulting effect
on the voltage at Bus 5 is shown in Figs. 3 and 4. In these
figures, the black line presents the voltage mean value of



the 1, 000 simulations. This process gives an idea of the
effect of the perturbation for the deterministic case, that
is where the loads are not modeled as stochastic. In that
case, the disturbance does not result in the voltage at Bus
5 reaching the lower voltage limit.

The results in Fig. 3 show that the voltage for only one
trajectory goes below the voltage limit. This corresponds
to 0.1% of the simulations. In Fig. 4 where the correlation
in the active and reactive power of the loads is considered
approximately 2% of the trajectories go below the limit
and stay there for a longer duration. This shows the
importance of considering the correlation in the active and
reactive power uncertainty when the voltage stability of
the system is considered.
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Fig. 3. Bus voltage at Bus 5 with no correlation (Case 1.a). The
trajectories of the 1, 000 simulations are shown in gray, the mean
trajectory of the 1, 000 simulations is shown in black and the lower
voltage limit of 0.9 pu is highlighted with a dashed line.

The correlation also affects the steady state standard
deviation of the voltage as can be seen in the spread of
the simulated trajectories around the mean value in Fig. 4
when compared to Fig. 3. To further examine this point,
the ramp rates of the voltage are computed and compared
for the different scenarios. Ramp rates are computed as:

∆hxt = xt − xt−h (9)

for time lags h = 0−150 s, where xt is the voltage at time
t. Then, the standard deviation of the ramp rates, ∆hxt,
for each time step h is computed.
For computing the ramp rates the system is simulated

once for a duration of 10, 000 seconds with a time step of
0.1 seconds without any disturbance. Figure 5 shows the
standard deviations of the ramp rates of the voltage at
Bus 5 for Case 1.a, 1.b and 1.c. The standard deviation in-
creases as the correlation, ρW is increased. Thus, the more
the stochastic variations of the active and reactive load
power are correlated the bigger the variations/uncertainty
in the voltages of the system.
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Fig. 4. Bus voltage at Bus 5 with correlation (Case 1.c). The
trajectories of the 1, 000 simulations are shown in gray, the mean
trajectory of the 1, 000 simulations is shown in black and the lower
voltage limit of 0.9 pu is highlighted with a dashed line.
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Fig. 5. The standard deviation of the ramps in the voltage at Bus 5
of the test system for Cases 1.a, 1.b and 1.c.

Case 2: In this case three different scenarios are consid-
ered. In all scenarios ρW = 0. These are (a) ρJ = ρJs

= 0,
(b) ρJ = 0.9 and ρJs

= 0 and (c) ρJ = ρJs
= 0.9.

Figure 5 compares the standard deviation of the ramp
rates in the voltage at Bus 5 for Case 2. If the jump
times are correlated (Case 2.b), the standard deviation of
the ramps in the voltage is significantly decreased when
compared to the base case with no correlation (Case 2.a).
Case 2.b, where the jump times are correlated but not
the jump size, results in the lowest levels of ramps in
the voltage. Case 2.c, where the jump times and sizes are
both correlated, results in lower voltage ramps than if no
correlation is considered.
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Fig. 6. The standard deviation of the ramps in the voltage at Bus 5
of the test system for Cases 2.a, 2.b and 2.c.

C. Remarks
The results for Cases 1 and 2 highlight the importance

of modeling the correlation in the system loads as it
affects the variations of the system voltages and thereby
the stability limits of the system. The level and type of
correlation in the active and reactive power may vary for
different types of loads. Thus, it is important to examine
measured data for different loads to be able to define this
correlated behavior further.

IV. Conclusions
The paper deals with load modeling for dynamic analy-

sis of power system. A SDE-based load model with jumps
is proposed that can model correlation in the stochastic
and jump component of the active and reactive power of
loads.

A case study is presented where the effect of modeling
the correlation in the load consumption is analyzed. It is
shown that if the active and reactive powers of the load are
correlated, the uncertainty of the system bus voltages is
different compared to the scenario in which they are not
correlated. Thus, it is important to define the level and
type of correlation within the loads for accurate power
system stability analysis.

In future work, measured load data will be analyzed to
define how the correlation in the active and reactive powers
may vary for different types of loads.

References
[1] B. F. Hobbs, S. Jitprapaikulsarn, S. Konda, V. Chankong, K. A.

Loparo, and D. J. Maratukulam, “Analysis of the value for unit
commitment of improved load forecasts,” IEEE Transactions on
Power Systems, vol. 14, no. 4, pp. 1342–1348, 1999.

[2] Z. Chen, L. Wu, and M. Shahidehpour, “Effective load carrying
capability evaluation of renewable energy via stochastic long-
term hourly based SCUC,” IEEE Transactions on Sustainable
Energy, vol. 6, no. 1, pp. 188–197, 2015.

[3] D. J. Hill, “Nonlinear dynamic load models with recovery for
voltage stability studies,” IEEE Transactions on Power Sys-
tems, vol. 8, no. 1, pp. 166–176, 1993.

[4] V. Knyazkin, C. A. Cañizares, and L. H. Söder, “On the param-
eter estimation and modeling of aggregate power system loads,”
IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 1023–
1031, 2004.

[5] G. Hou and V. Vittal, “Trajectory sensitivity based preventive
control of voltage instability considering load uncertainties,”
IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 2280–
2288, 2012.

[6] L. Meiyan, M. Jin, and Z. Dong, “Uncertainty analysis of load
models in small signal stability,” in International Conference
on Sustainable Power Generation and Supply (SUPERGEN),
Nanjing, China, 2009.

[7] Y. Zhou, Y. Li, W. Liu, D. Yu, Z. Li, and J. Liu, “The stochas-
tic response surface method for small-signal stability study
of power system with probabilistic uncertainties in correlated
photovoltaic and loads,” IEEE Transactions on Power Systems,
vol. 32, no. 6, pp. 4551–4559, 2017.

[8] F. Milano and R. Zárate-Miñano, “A systematic method to
model power systems as stochastic differential algebraic equa-
tions,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp.
4537–4544, 2013.

[9] Z. Y. Dong, J. H. Zhao, and D. J. Hill, “Numerical simulation for
stochastic transient stability assessment,” IEEE Transactions
on Power Systems, vol. 27, no. 4, pp. 1741–1749, 2012.

[10] N. Duan and K. Sun, “Stochastic power system simulation
using the Adomian decomposition method,” arXiv preprint
arXiv:1710.02415, 2017.

[11] M. Perninge, M. Amelin, and V. Knyazkins, “Load modeling
using the Ornstein-Uhlenbeck process,” in IEEE 2nd Interna-
tional Power and Energy Conference (PECon), Johor Bahru,
Malaysia, 2008, pp. 819–821.

[12] C. Roberts, E. M. Stewart, and F. Milano, “Validation of the
Ornstein-Uhlenbeck process for load modeling based on µPMU
measurements,” in Power Systems Computation Conference
(PSCC), Genova, Italy, 2016.

[13] F. M. Mele, R. Zárate-Miñano, and F. Milano, “Modeling load
stochastic jumps for power systems dynamic analysis,” IEEE
Transactions on Power Systems, vol. 34, no. 6, pp. 5087–5090,
2019.

[14] R. Zárate-Miñano, M. Anghel, and F. Milano, “Continuous
wind speed models based on stochastic differential equations,”
Applied Energy, vol. 104, pp. 42–49, 2013.

[15] G. M. Jónsdóttir and F. Milano, “Data-based continuous wind
speed models with arbitrary probability distribution and auto-
correlation,” Renewable Energy, 2019.

[16] ——, “Modeling of short-term tidal power fluctuations,” IEEE
Transactions on Sustainable Energy, 2019.

[17] M. Anvari, B. Werther, G. Lohmann, M. Wächter, J. Peinke,
and H.-P. Beck, “Suppressing power output fluctuations of
photovoltaic power plants,” Solar Energy, vol. 157, pp. 735–743,
2017.

[18] G. M. Jónsdóttir and F. Milano, “Modeling solar irradiance for
short-term dynamic analysis of power systems,” in IEEE PES
General Meeting, Atlanta, GA, 2019.

[19] P. E. Klöden, E. Platen, and H. Schurz, Numerical solution
of SDE through computer experiments. Springer Science &
Business Media, 2012.

[20] L. Márkus and A. Kumar, “Comparison of stochastic correlation
models,” Journal of Mathematical Sciences, vol. 237, no. 6, pp.
810–818, March 2019.

[21] R. Tabar, Analysis and data-based reconstruction of complex
nonlinear dynamical systems. Springer, 2019.

[22] P. W. Sauer and M. A. Pai, Power system dynamics and
stability. Prentice Hall, 1998.

[23] F. Milano, “A Python-based software tool for power system
analysis,” IEEE PES General Meeting, 2013.


