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Abstract—This paper analyzes the impact on the dynamic
behavior of power systems of modeling stochastic processes of the
load consumption through different probability density functions
(PDFs). The statistical properties of the processes modeled on the
loads are obtained through the load consumption data measured
using micro-synchrophasors (µPMU’s). Simulation results show
that stochastic processes with different PDFs, though similar in
statistical properties, lead to different dynamic behaviors. The
case study also demonstrates that the stochastic processes affect
different power system quantities differently.

Index Terms—Stochastic processes, probability distribution
function, standard deviation, volatility, transient stability, load
consumption.

I. INTRODUCTION

A. Motivation

Volatility is defined as fast variations around a mean value
in the time scale of power system dynamic. In power systems,
volatility can be effectively modeled as a stochastic process
using stochastic differential equations (SDEs) [1]. For the
stochastic process to be realistic, it has to properly capture
statistical properties, such as the autocorrelation [2], correla-
tion [3], and the probability distribution function (PDF) [4].
The motivation of this paper is the observation that stochastic
processes with different PDFs can lead to different impacts
on the dynamic behavior of the power system [4]. This paper
provides a discussion on the impact of modeling stochastic
loads through various stochastic processes on power system
dynamic response. The study is data-driven and based on
measurement time series such as the one shown in Fig. 1.

B. Literature Review

The impact of load models on the power system dynamic
has been analyzed in a number of studies such as [6]–[8]. The
drawback of these works is that they do not include volatility in
load models. The recent studies that explore the impact of load
volatility on the power system dynamic are [2], [3], [9]. These
works model power system dynamic via stochastic differential-
algebraic equatuions (SDAEs), which allows for the inclusion
of stochastic processes in power systems. Even though these
works utilize various stochastic processes to model sotocahstic
loads and are able to model the processes with different PDFs,
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Fig. 1: Active power consumption in pu with a base of 100 MVA [5].

they do not analyze the impact of processes modeled with
similar statistical properties but different PDFs on the dynamic
of power system.

The impact of processes with different statiscal properties
but similar PDFs using SDAEs was first analyzed in [4].
This reference shows that, when wind volatility is modeled
with different PDFs exhibiting similar statistical properties, the
power system dynamic undergoes different behaviors. It also
demonstrates that certain wind speed PDFs worsen the impact
of contingencies. The work in [4] is the main motivation for
the study presented in this paper.

C. Contributions

This work discusses the impact of data-driven stochastic
load models on the dynamic response of power systems. It
is shown that the load consumption modeled using differ-
ent stochastic processes exhibiting similar statistical behavior
have distinct impacts on the power system quantities. The
case study shows that different power system variables are
affected differently. The study is founded on the real-world
data described in [5], where different stochastic load models
were derived based on the measurements obtained with micro-
synchrophasors (µPMU’s) [10].

D. Organization

The remainder of the paper is organized as follows. Section
II-A introduces SDAE model that is utilized to introduce
volatility in power system dynamic. Section II-B outlines
the stochastic load model. The load measurement data to
determine the statistical properties and shape of the PDFs
is analyzed in Section III-A. Section III-B introduces SDE
models to formulate the processes with various PDFs. Section



IV illustrates a case study utilizing a 9-bus system with
the inclusion of stochastic loads and analyzes the impact of
various stochastic processes on the power system dynamic
response. Finally, Section V draws conclusions.

II. MODELING

A. Stochastic Differential-Algebraic Equations

Stochastic processes can be included into the dynamic
model of power systems through the following set of (l +
m+ n)-dimensional SDAEs [1], [5]:

ẋ = f(x,y,η) , (1)
0 = g(x,y,η) , (2)
η̇ = a(η) + b(η)⊙L , (3)

where f : Rl+m+n 7→Rm, and g : Rl+m+n 7→Rl are the
differential and algebraic equations; x ∈ Rl is the vector of
state variables; y ∈ Rm is the vector of algebraic variables;
η ∈ Rn are the stochastic processes; a ∈ Rn is the vector of
drift term; b ∈ Rn is the vector of diffusion term; ⊙ represents
the Hadamard product, i.e., the element-by-element product of
two vectors; and L ∈ Rn is a vector of n-dimensional Lévy
processes.

Each element of L(t), say Li(t), i = 1, ..., n, is a Lévy
process if it satisfies the following conditions [11]:

1) Li(0) = 0, with probability 1.
2) Li(t) has independent increments, i.e., ∀0 ≤ s < t,

cov[dLi(t), dLi(s)] = 0.
3) Li(t) has stationary increments, i.e., the probability dis-

tribution of the increments dLi(t) and dLi(s) depends
only on the length of the time interval t− s.

4) Li(t) has stochastic continuity, i.e., ∀ϵ > 0,
limh→0 P (|Xt+h −Xt| ≥ ϵ) = 0.

Note that Wiener process and Poisson process are examples
of the Lévy processes.

Equations (3) are SDEs that can be formally integrated to
obtain:

η(t) = η(to) +

∫ t

to

a(η(s))dt+

∫ t

to

b(η(s))dL(s) , (4)

In (4), the drift term is being integrated w.r.t. time, and can
be represented as a traditional integral such as the Riemann-
Stieltjes integral. However this is not the case for the diffusion
term which is being integrated w.r.t. the Lévy process, which
is a stochastic process. The Lévy process has unbounded
variations, which makes the integral non-deterministic. In
power systems, the stochastic integral is usually represented
as an Itô’s integral, and is integrated using Itô’s calculus [12],
[13].

B. Load Consumption

In this paper, we utilise a well-known voltage dependent
stochastic load model that has been used in various power
system studies [1], [6], and is written as:

pL(t) = (pL0 + ηp(t))(v(t)/v0)
k

qL(t) = (qL0 + ηq(t))(v(t)/v0)
k ,

(5)

where pL(t) and qL(t) are the active and reactive powers of the
load, respectively; and pL0 and qL0 are the active and reactive
powers of load at t = 0; v(t) is the voltage magnitude at the
load bus; v0 is the value of this voltage magnitude at t = 0;
the coefficient k defines the voltage dependence of the load
such that k = 0 imposes constant power loads while k = 2
makes it a constant impedance load; and ηp(t) and ηq(t) are
the stochastic processes associated to active and reactive load
powers and are modeled using (3).

III. DATA MODELING

A. Data Analysis

In this section, the measurement data of the active power
is analyzed to determine the appropriate stochastic process to
be modeled on the load consumption. The stochastic process
in (3) has three parameters drift a, diffusion b and the driving
process L. All are discussed as follows.

The drift term in (3) is responsible for defining the time
evolution of the process. The drift of a stochastic process can
be conveniently determined by calculating the Autocorrelation
Function (ACF). The ACF measures the correlation of a
time series with the delayed version of itself. ACF can be
mathematically expressed as a function of time lag τ , and
written as:

R(τ) =
E[(ηt − µ)(ηt+τ − µ)]

σ2
, (6)

where E is the expectation operator; ηt is the value of the
process at time t; and σ is the standard deviation of process
η. Off course the ACF at τ = 0 is R(0) = 1.

The ACF of the active power measurements for a period of
15 minutes is illustrated in Fig. 2. The choice of 15 minutes
is motivated by the fact that the process becomes stationary
at 15 minutes. This point is clarified later in this section. The
exponential function fitting the data ACF is also shown in Fig.
2. It can be observed that the ACF follows the exponentially
decaying function.

For this reason, we model the drift term as an exponentially
decaying process and rewrite (3) as:

η̇ = −α⊙ (η − µ) + b(η)⊙L , (7)

where α ∈ Rn is the vector of autocorrelation coefficients or
the mean-reversion speeds; and µ ∈ Rn is the mean value of
the process η. The rest of the variables have the same meaning
as in (3).

Next, we determine the diffusion and the Lévy process.
The diffusion term in combination with the Lévy process
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Fig. 2: Autocorrelation function (ACF) of active power.



determines the PDF of the stochastic process η. Whereas the
Lévy process provides increments for the SDE in (3).

To model the driving process, i.e., the Lévy process, the
distribution of the active power increments ∆p is observed.
Two conditions are to be fulfilled here, i.e., independence
and stationarity. The independence of the ∆p is demonstrated
by illustrating the ACF in Fig. 2. This shows that no self
correlation is observed in ∆p, and hence the increments are
independent.

Next step is to demonstrate that the increments follow
stationary distribution. Figure 3 shows standard deviation
σ(∆p) and mean µ(∆p) of the increments of the active power
for a period of 60 minute with a rolling window of 15 minute.
The size of the window is chosen to be 15 minutes because
σ(∆p) and µ(∆p) become stationary at 15 minutes.

Figure 3 shows that σ(∆p) settles at different values for
different windows. This is conformed in Fig. 4, which shows
the σ of ∆p and α of the active power calculated from the
data for a rolling window of 15 minutes. It can be observed
that at the maximum value of σ the value of α is the lowest.
While the maximum α corresponds to a value of σ that is not
the maximum. This result is very important for determining
the impact of stochastic loads on the power system dynamics.
In fact, reference [2] shows that high values of α coupled with
higher σ are responsible for causing instabilities in the system.

Finally, we determine the fitting PDF for the stochastic
process. At first glance, the ∆p seems to be normally dis-
tributed as can be seen in Fig. 5. With careful inspection of
the PDF, it is easily determined that the Gaussian distribution
fails to capture the long tails and the narrow shape of ∆p. This
shows that modeling ∆p with the Gaussian distribution does
not merit. However, the Gaussian distributed process might be
the best candidate to approximate the behavior of the actual
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Fig. 3: Standard deviation (σ) and mean (µ) of the increments ∆p for rolling
window of 15 minutes.
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Fig. 4: Standard deviation (σ) and autocorrelation coefficient (α) for rolling
window of 15 minutes. Note that the curves are normalized with max{σ} =
0.0157 pu and max{α} = 0.045 s−1.

process in cases where the information on the measured PDF
is not available.

A more representative distribution that exhibits symmetry
and can capture long tails is the Normal Inverse Gaussian
distribution (NIG). If XNIG is a NIG distributed stochastic
process then:

XNIG ∼ NIG(κ, β, δ, µ) (8)

where κ is a steepness parameter, β is an asymmetry parame-
ter, δ is a scale and µ is the location parameter. As noted above
in this section, a symmetrical distribution is required. For this
reason, β = 0 and µ = 0 are assumed. These values lead
to a symmetrical distribution centered on a zero mean. Note
that a NIG process is not so straight-forward to implement in
software as it is to implement Gaussian processes.

A further improvement to ease the implementation of the
stochastic process is required. This is provided by a compound
process a jump-diffusion process. This process was utilized in
[5] to capture the long tails of ∆p. It is a combination of the
Gaussian and the compound Poisson process. Note that in this
paper, we are interested in evaluating the impact of various
stochastic processes on the dynamic of the power system. The
procedure to fit the distribution is not discussed. Interested
reader can find details on the topic in [5].

B. Process Modeling

The SDE in (7) can be used to achieve different distributions
discussed Section III-A. To elaborate on this, we start by
describing the Lévy as a standard Wiener process W ∈ Rn,
and re-write (7) as:

η̇OU = −α⊙ (η − µ) + β ⊙ dW , (9)

where β ∈ Rn defines the standard deviation of the resulting
process such that βi =

√
2αi σi; and ηOU is a Gaussian

distributed process with mean µ and standard deviation σ.
The process in (9) is known as Ornstein-Uhlenbeck’s process
(OUP).

Next, the NIG distributed process model is required. As
explained in Section III-A, it is complicated to implement such
a distribution in programming. In this paper, a more convenient
method is utilized to simulate the NIG distributed process.
The NIG distributed process can be conveniently obtained as a
memoryless transformation of the OUP in (9). This is achieved
by calculating the inverse Cumulative Density Function (CDF)
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Fig. 5: Increments of active power. Data is converted to per unit with a base
of 100 MVA.



of the Gaussian CDF of the OUP. This is mathematically
expressed as:

ηNIG(t) = F−1(Φ(ηOU(t)) , (10)

where ηNIG is a stochastic process that follows NIG distribu-
tion; F−1 is the inverse CDF of NIG; and Φ is the CDF of
the Gaussian distribution.

Finally, the jump-diffusion process is conveniently obtained
by introducing jumps in the OUP, and writing (9) as:

η̇ = −α⊙ (η − µ) + β ⊙ dW + c(η)⊙ dJ(t) , (11)

where c ∈ Rn defines the amplitude of the jumps; and J ∈ Rn

is a Poisson random variable with intensity λ such that

dJi =

{
1 with probability λdt
0 with probability 1− λdt

(12)

IV. CASE STUDY

This section analyzes the impact of stochastic load mod-
els, which are based on measurement data, on the dynamic
behavior of the power system. The power system chosen for
the study is the 9-bus Western System Coordinating Council
(WSCC), which contains 3 synchronous generators, 3 load
devices and 9 buses. The WSCC is also equipped with turbine
governors, an automatic generation control and automatic
voltage regulators to avoid any unrealistic instabilities. All
simulation results presented in this section were obtained with
the software tool Dome [14]. SDAEs are integrated using
the trapezoidal method for the drift and the Euler-Maruyama
integration scheme for the diffusion term [12], [15] as well as
jumps [16].

The stochastic processes are introduced into the WSCC
through the active and reactive powers on the load consump-
tion, which are modeled via stochastic load model in (5)
using constant power loads. The processes ηp and ηq in (5)
are modeled through the Gaussian, NIG, and jump-diffusion
processes. For the evaluation of the impact of stochastic
processes and their statistical properties on the power system
dynamic, two scenarios are proposed as follows:

• S1: simulates ηp and ηq with highest values of α calcu-
lated from the measured active and reactive power.

• S2: simulates ηp and ηq with lowest values of α calculated
from the measured active and reactive power.

Scenario S1 has the following parameters: αp = 0.045s−1;
αq = 0.1115s−1; σp = 0.0117 pu and σq = 0.01435 pu
for Gaussian distribution; and κp = 100.11, δp = 0.0141,
κq = 37.70 and δq = 0.00753 for NIG. Scenario S2 has
the following parameters: αp = 0.0048s−1; αq = 0.0041s−1;
σp = 0.0119 pu and σq = 0.0196 pu for Gaussian distribution;
and κp = 64.51, δp = 0.009, κq = 150.34 and δq = 0.0575
for NIG.

First, the PDFs of the load measurement data and ηp for
scenarios S1 and S2 are shown in Fig. 6. From Fig. 6, it is
clear that the NIG and the jump-diffusion processes are good
candidates for capturing the long tails of the measurement
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Fig. 6: PDF of load measurement data and ηp for scenarios S1 and S2.

data. Note that even though both the NIG and the jump-
diffusion processes capture the tails with good precision, only
NIG process can capture the height and shape of the PDF of
the load measurement data.

Next, the ACF of ηp and the load measurement data for
scenarios S1 and S2 is shown in Fig. 7. Figure 7 clearly shows
that ACFs of η obtained from all the PDFs are able to follow
the ACF of the load measurement data. Note that ACF in
both the scenarios take different times to reach an equilibrium
point. These differences in time account for the slow and fast
time-varying processes. As demonstrated in a previous study
[2], fast time-varying processes coupled with high standard
deviations can cause instabilities in the power system.

Next, the bus voltage magnitude at the load bus 6 v(Bus 6)
for scenarios S1 and S2 is shown in Fig. 8. Note the difference
in the spread of the PDFs for scenario S1 versus S2. It is clear
that S1 has a larger spread as compared to S2. This is due to
the fact that S1 has a higher α as compared to S2.

Another notable result is the spread of the PDFs for each
scenario. Figure 8 illustrates that the Gaussian and the jump-
diffusion processes follow similar behavior. Also the tails of
these two processes are quite close to each other. On the other
hand, the NIG process shows a bigger spread and longer tails
than the Gaussian and the jump-diffusion processes.

Interestingly, the spread and tails of the PDFs of the bus
voltages for the NIG case strongly depends on the location
of the bus. For example, Fig. 9 shows the PDFs of v at bus
2 for both scenarios. Compared to Fig. 8, for scenario S2,
the NIG case shows a voltage with a significantly different
behavior, namely, narrower tails. NIG, Gaussian and jump-
diffusion processes have similar effect on the voltage at bus
2. This result is non-intuitive. However, it can be explained
considering that the voltage at bus 2 is controlled by the AVR
of the synchronous machine connected at that bus, whereas
bus 6 is an uncontrolled load bus.
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Fig. 8: PDF of bus voltage magnitude at the load bus 6 for S1 and S2.
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Fig. 9: PDF of bus voltage magnitude at the generator bus 2 for S1 and S2.

Next, the rotor speed and the active power injection of the
synchronous machine G1, ω(G1) and pg(G1) respectively, are
observed. Figures 10 and 11 illustrate the PDFs of ω(G1) and
pg(G1) for both scenarios. The intuitive result in the both
Figs. 10 and 11 is that scenario S1 has a larger spread of the
process as compared to S2. It is also obvious from Figs. 10
and 11 that the Gaussian and NIG processes have overlapping
PDFs while the jump-diffusion process has longer tails.

Simulation results indicate that the dynamic of the power
system is affected by the modeling PDF of the stochastic
process. This is consistent with the study presented in [4].
Moreover, this paper also shows that the behavior of particular
power system quantity also depends on the location of the
noise, on the network topology and on the control.
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V. CONCLUSIONS

This paper analyzes the impact of data-driven stochastic
load models on the dynamic response of power systems. With
this aim, the paper focuses on the effect of long tails in the
PDF of stochastic processes such as load consumptions.

The case study demonstrates that stochastic processes with
PDFs having similar statistical properties but different func-
tions can cause over- or under-voltages and/or large fre-
quency variations in the power system. In particular, Gaussian
processes, Gaussian processes with jump-diffusion and NIG
processes are compared. Among these three, NIG process is
the one that impacts the most the voltage magnitudes and can
cause the voltages to violate the system limits. On the other
hand, the jump-diffusion process impacts mostly on the rotor-
speed and active power injections of the machines.

Future work will investigate the differences in the behavior
of the voltage, frequency and power injections based on the
location of noise, network topology, load model and different
PDFs.
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