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Abstract—This paper discusses the effect of voltage dependency
on stochastic loads. The study shows that the higher the exponent
of the voltage in the load model, the higher the correlation of
the active and reactive power consumption. Counterintuitively,
this correlation is negative. As a consequence, the higher the
exponent of the voltage, the less the impact of the noise on
the dynamic behavior of the system. The paper provides a
theoretical development that supports this conclusion as well as
a comprehensive case study based on a well-known benchmark
system.

Index Terms—Stochastic processes, probability distribution
function, standard deviation, volatility, power system dynamic
performance, voltage-dependent load.

I. INTRODUCTION

A. Motivation

The voltage dependence of loads has a key role in the
stability analysis of power systems. Constant power loads
tend to create more stability issues such as reducing the
voltage stability margin [1], and worsening the effect of
power unbalance and faults [2]–[5], than constant current and
constant impedance ones. Recent studies on the stochastic
nature of loads have shown that correlation plays a similar
role than voltage dependence on the transient response of the
system. That is, for loads with same probability distribution,
mean and standard deviations, the higher the correlation, the
higher the probability that the system becomes unstable [6],
[7]. Previous studies, however, ignore the voltage dependency
of the loads. The impact of load voltage dependency on the
stochastic behavior of loads is the focus of this work.
B. Literature Review

Modeling the load accurately based on the measurement
data is an essential tool for power system dynamic and stability
studies. For example, [1] and [5] provide comprehensive
discussions on the impact of various load models on the power
system voltage stability. Several studies have proposed various
load models such as voltage dependent loads, composite loads
[8], [9], exponential recovery loads [10], [11], dynamic loads
[12], and ZIP loads [13] to name a few. A general overview
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on load modeling and aggregation can be found in [14]. A
literature extensive review on load models can be found in
[15].

The references mentioned above model load consumption
via traditional deterministic models that often fail to capture
the randomness in loads in the time scale of power system
dynamic. This leads to inaccurate estimation of the power
system dynamic behavior. For this reason, this paper utilizes
stochastic load models to study the dynamic of the power
system. Stochastic load models are capable of capturing the
uncertainty and volatility arising due to the non-deterministic
nature of the load consumption.

Load power consumption with noise is the focus of this
work. We are, in particular, interested in modeling the volatil-
ity of the power consumption, which can be represented
through a Stationary Stochastic Process (SSP), which is de-
fined in Appendix A, [16], [17]. A SSP is characterized
by autocorrelation that defines the speed of the process,
correlation, i.e., the similarity between the processes and
Probability Density Function (PDF). The effect of volatility
on the power system dynamic is modeled via Stochastic
Differential-Algebraic Equations (SDAEs) [18].

In recent years, the impact of volatility introduced through
load consumption has been studied in various works. For
example, the effect of stochastic loads on the oscillatory
modes of the power system was studied in [19]. The im-
pact of autocorrelation of stochastic loads on the power
system dynamic is discussed in [20]. References [6] and [7]
demonstrate that the correlated stochastic loads worsen the
power system dynamic. Reference [21] studies the impact
of stochastic loads modeled with similar statistical properties
but different PDFs on the statistical properties of the power
system quantities. All the aforementioned studies analyze the
behavior of stochastic loads and their effect on the power
system dynamic performance but consider constant power load
models, thus neglecting the effect of the voltage dependence
of the power consumption.

C. Contributions

This work provides a discussion on the impact of voltage
dependence of stochastic load models on the power system
dynamic response. We show, through analytical developments,
that the variances and covariances of the active and reactive

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



load power consumption are a function of the voltage de-
pendence of the loads. The effect is counterintuitive as the
higher the voltage dependence, the least the correlation be-
tween active and reactive powers. The paper qualitatively and
quantitatively illustrates the link between power correlation
and voltage dependence. Load models are set up using real-
world measurement data.
D. Organization

The remainder of the paper is organized as follows. Multi-
dimensional SDAEs to model stochastic processes in power
systems are introduced in Section II-A. The voltage dependent
stochastic load model is described in Section II-B. Section
III introduces load models with inclusion of correlated SSPs
and studies the statistical properties of these models. The
expressions for means, variances, and covariances of the
load active and reactive power consumption, as well as bus
voltage magnitudes are provided in Section IV. Section V
presents a case study based on the WSCC 9-bus system where
loads are modeled as voltage dependent stochastic loads, and
evaluates the effect of voltage dependence of these loads on
the dynamic performance of the system. Finally, Section VI
draws conclusions.

II. MODELING

A. Stochastic Differential-Algebraic Equations

Multi-dimensional SDAEs that model stochastic processes
in power system dynamic models are written as:

ẋ = f(x,y,κ) , (1)
0 = g(x,y,κ) , (2)
κ̇ = a(κ) + b(κ)⊙Cξ , (3)

where f and g are the differential and algebraic equations,
respectively; x ∈ Rn and y ∈ Rm are the vectors of state
and algebraic variables, respectively. κ ∈ Rnκ are correlated
stochastic processes; a ∈ Rnκ and b : Rnξ are the drift, and
diffusion terms, respectively. If the drift is a vector of linear
functions, e.g. a(κ) = α◦κ, the elements of the vector α are
called autocorrelation coefficients. ◦ represents the element-
by-element product of two vectors. C is a lower-triangular
matrix and satisfies:

R = CCT , (4)

where R is a semi-positive definite matrix such that its
diagonal elements are 1 and off-diagonal elements define the
correlation between the dependent processes. Finally, ξ ∈ Rnξ

is a vector of nξ-dimensional independent Gaussian white
noise, which is the formal representation of time derivative
of the Wiener process.

Equations (3) are SDEs that can be formally integrated to
obtain:

κ(t) = κ0 +

∫ t

to

a(κ(s))ds+

∫ t

to

b(κ(s))dW (s) . (5)

In (5), the integral of drift term is a deterministic integral
and is represented traditionally as a Riemann-Stieltjes integral.

Several, integration schemes are available to solve this integral.
Whereas, the integration of the diffusion term involves the
Wiener process, which makes this integral non-deterministic.
In power systems, the stochastic integral is usually integrated
using Itô’s calculus [22]. The interested reader can find the
details and the challenges of the numerical integration of SDEs
in [23] and [24]. Based on the recommendations given in
these books, in this paper, the Euler-Maruyama method with
sufficiently small time steps is utilized (see also [18]).

B. Voltage Dependent Load Model

In the literature, voltage dependent stochastic loads are
modeled by introducing stochastic processes into voltage de-
pendent loads [16], [25], as follows:

pL(t) = (κp(t))(ṽ)
γ

qL(t) = (κq(t))(ṽ)
γ ,

(6)

where pL(t) is the active power and qL(t) is the reactive power
of the load consumption; κp(t) and κq(t) are dependent SSPs
defined as in (3) and ṽ is:

ṽ = v(t)/v0 , (7)

where v(t) and v0 are the voltage magnitude at the load bus
at time t and at the initialization of the simulation, i.e., v0 =
v(0), respectively. The exponent γ in (6) is responsible for
defining the voltage dependence of the load. For example, to
impose constant power loads γ takes a value of zero; γ = 1
imposes constant current loads; and constant impedance loads
are achieved at γ = 2. Note that voltage dependent loads
are more general than ZIP loads, as these can be considered
a second order Taylor expansion of equations (6). For this
reason, in this work we consider only voltage dependent loads.

III. DEPENDENT STATIONARY STOCHASTIC PROCESSES

This section aims at determining the statistical properties,
i.e., means, variances, and covariances, of the SSPs in the load
model in (6). Appendix A provides the definition of a SSP.
The voltage dependent load model in (6) comprises of three
dependent SSPs, i.e., κp, κq and ṽ. It is shown in Appendix
B that v is also a SSP if pL and qL are SSPs. To simplify
the calculations for the statistical properties; κp, κq and ṽ are
defined in terms of dependent SSPs using (3).

First, we introduce a SSP κ in (3) in its integral form as
[26]:

κ(t) = µ(κ) + e−ακt[κ0 − µ(κ)] +

∫ t

0

e−ακ(t−s)bκdWκ(s) ,

(8)
where µ(κ) is the mean of κ(t); κ0 is the initial value of κ(t)
at t = 0; and ακ is the autocorrelation coefficient of κ(t). For
κ0 = µ(κ), (8) becomes:

κ(t) = µ(κ) +

∫ t

0

e−ακ(t−s)bκdWκ(s) . (9)
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The dependent SSPs, i.e., κp, κq and ṽ, can be written as:κp

κq

ṽ

 =

pL0

qL0

1

+


∫ t

0
e−αp(t−s)bp∫ t

0
e−αq(t−s)bq

1
v0

∫ t

0
e−αv(t−s)bv

⊙C

dWp(s)
dWq(s)
dWv(s)

 ,

(10)
where µ(κp) = κp(t0) = pL0; µ(κq) = κq(t0) = qL0; µ(v) =
v0; and C has the same meaning as in (3).

In (10), v is defined as a process dependent on the two
SSPs of κp, and κq . The exact mathematical formulation
is given in Appendix B. For the sake of simplicity but
without loss of generality, we assume that the processes κp

and κq are normally distributed.1 This makes v in (32) and
consequently ṽ in (10) normally distributed as well. In case
of normal distribution, the diffusion function b in (10) becomes
a constant and can be written as b =

√
2ασ, where σ is the

standard deviation of the normally distributed process.
The means and variances of κp, κq and ṽ in (10) are:

E[κp] = pL0 , E[κq] = qL0 , E[ṽ] = 1 ,

V[κp] =
b2p
2αp

, V[κq] =
b2q
2αq

, V[ṽ] =
1

v20
σ2(v) ,

(11)

where E[.] is the expectation operator; V[.] is the variance
operator; and σ2(v) = b2v/2αv . Since, term ṽ2 appears in
constant impedance loads. The mean and variance of ṽ2 are
given as:

E[ṽ2] = E[ṽ] = 1 , V[ṽ2] = 4V[ṽ] . (12)

The covariances of κp, κq , v and ṽ2 are defined as:

C(κp, κq) = 2

√
αpαq

αp + αq
σ(κp)σ(κq)rpq

C(κp, ṽ) = 2

√
αpαv

v20(αp + αv)
σ(κp)σ(v)rpṽ ,

C(κq, ṽ) = 2

√
αqαv

v20(αq + αv)
σ(κq)σ(v)rqṽ ,

C(κp, ṽ
2) = 2C(κp, ṽ) ,

C(κq, ṽ
2) = 2C(κq, ṽ) ,

(13)

where C is the covariance operator; rpq is the correlation
between κp and κq; rpv is the correlation between κp and
ṽ; and rqv is the correlation between κq and ṽ.

Note that in (13), the covariances C(X,Y ) are the product
of the individual variances (σ(X) and σ(Y )) with the corre-
lation (rX,Y ) between the processes X and Y and some addi-
tional terms. It is known that r ∈ [−1, 1] and σ(X) < E[X].
The product of the terms in (13), ensures that:

E[.] >> C(., .) , (14)

1The theory of stochastic differential equations utilizes, as building block,
Wiener processes, which are normally distributed. Any other stochastic
process can be built based on this building block. Of course, the maths
becomes more involved as the drift and or diffusion term can be nonlinear
in general, but since all processes are ultimately built starting form normally
distributed Wiener processes, there is no loss of generality considering that
the load parameters are normally distributed.

As an example of (14), it can be said that E[κp] >>
C(κp, ṽ

2) > C(κp, ṽ), i.e., the mean is always greater than
the variance and covariance.

IV. MOMENTS OF p, q AND v

In this section, we provide the definitions of the moments,
i.e., mean, variance and covariance of the load consumption,
i.e., pL and qL, and voltage magnitude v . Note that p and q
are products of dependent SSPs, i.e., κp and κq with ṽ or ṽ2,
respectively. We first define the mean of pL and qL for all the
three values of γ in (6).

The mean of the product of two dependent random variables
X and Y is given as:

E[XY ] = E[X]E[Y ] + C(X,Y ) , (15)

Using the results from (12) and (14), the mean of p and q for
all the values of γ are:

Ep[pL] = Ei[pL] = Ez[pL] = pL0 ,

Ep[qL] = Ei[qL] = Ez[qL] = qL0 ,
(16)

where the subscript p is for constant power, i is for constant
current, and z is for constant impedance loads. Note that the
means of pL and qL remain unchanged despite the degree of
the dependence of the loads on the voltage.

Next, the definitions for variances of pL and qL are provided
for all the cases of voltage dependence of loads. For this
reason, the variance of the product of two dependent random
variables X and Y are written in terms of their individual
moments as [27]:

V(XY ) =(E[X])2V(Y ) + (E[Y ])2V(X) + E[(∆X)2(∆Y )2]

+ 2E[X]E[(∆X)(∆Y )2] + 2E[Y ]E[(∆X)(∆Y )2]

+ 2E[X]E[Y ]C(X,Y )− (C(X,Y ))2 ,
(17)

where ∆X = X − E[X].
Substituting (11), (12) and (13) into (17), the variances of

p and q are given as:

Vp[pL] = [σ(κp)]
2 ,

Vp[qL] = [σ(κq)]
2 ,

(18)

Vi[pL] =[σ(κp)]
2 + [pL0σ(ṽ)]

2

+ 2pL0C(κp, ṽ)− [C(κp, ṽ)]
2 ,

Vi[qL] =[σ(κq)]
2 + [qL0σ(ṽ)]

2

+ 2qL0C(κq, ṽ)− [C(κq, ṽ)]
2 ,

(19)

Vz[pL] =[σ(κp)]
2 + 4[pL0σ(ṽ)]

2

+ 4pL0C(κp, ṽ)− 4[C(κp, ṽ)]
2 ,

Vz[qL] =[σ(κq)]
2 + 4[qL0σ(ṽ)]

2

+ 4qL0C(κq, ṽ)− 4[C(κq, ṽ)]
2 .

(20)

Note that the higher order moments, i.e, moments above 2nd
order disappear due to the properties of the Wiener process.
Note also that the expressions of the variances Vi[·] and Vz[·]
show extra terms as compared to the variances Vp[·]. On the
one hand, the last term on the r.h.s of (19) and (20) is the
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square of the covariance which is a very small number as
compared to other three terms. This term has negligible effect
on the variances. On the other hand, the third term on the r.h.s
of (19) and (20) is significant enough to make a difference in
the variances because it is a product of the covariance with
the mean, which is a larger number.

The relationship between the variances of loads depends on
the sign of the covariance of v vs κp and κq . Or, equivalently,
the dependence of v on κp and κq . This can be written as:

Vp[·] > Vi[·] > Vz[·] if −∞ < C(κ, ṽ) < 0 ,

Vp[·] < Vi[·] < Vz[·] if 0 < C(κ, ṽ) < ∞ .
(21)

This is shown in Fig. 1 by illustrating the error on the
variances, i.e., Vp[·] vs Vi[·] and Vz[·]. The error is calculated
as:

error% =
value− base

base
× 100 . (22)

Next, we provide the definitions for the covariances of pL
and qL. The covariance of the product of random dependent
variables X , Y and Z is written as [28]:

C(XY,ZY ) = E[Y ]E[Y ]C(X,Z) + E[Y ]E[Z]C(X,Y )

+ E[X]E[Y ]C(Y,Z) + E[X]E[Y ]C(Y, Y ) .
(23)

Substituting the definitions of all the moments of κp, κq and
ṽ into (23), the covariances of p and q for all the cases of
voltage dependence are given as:

Cp(pL, qL) = 2

√
αpαq

αp + αq
σ(κp)σ(κq)rpq , (24)

Ci(pL, qL) = Cp(pL, qL) + pL0qL0V[ṽ]

+ pL0C(κq, ṽ) + qL0C(κp, ṽ) , (25)
Cz(pL, qL) = Cp(pL, qL) + 2pL0qL0V[ṽ]

+ 2pL0C(κq, ṽ) + 2qL0C(κp, ṽ) . (26)

Similar to variances, covariances of pL and qL involve extra
terms for constant current and constant impedance loads. The
last two terms on the r.h.s. of (25) and (26) can either be
positive or negative simultaneously. For both cases of positive
or negative dependence of v on pL and qL, one has:

Cp[·] > Ci[·] > Cz[·] if −∞ < C(κ, ṽ) < 0 ,

Cp[·] < Ci[·] < Cz[·] if 0 < C(κ, ṽ) < ∞ .
(27)

This is illustrated in Fig. 2, where the error on covariances,
i.e., Cp[·] vs Ci[·] and Cz[·] is shown.
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Fig. 1: Percent error on variances, calculated with (22) using Vp[·] as base.

The definitions of variances in (18), (19) and (20) and
covariances in (24), (25) and (26) indicate that the variances
and covariances of pL and qL depend on the sign of the
covariances of κp and κq with the bus voltage. This is
confirmed by the plots shown in Figs. 1 and 2.

In stationary conditions, the mean and variance of v given
in (32) — see the Appendix — are:

E[v] = v(pL0, qL0) = v0 , (28)

V[v] = a2pV[pL] + a2qV[qL] + 2apaqC(pL, qL) . (29)

where ap and aq are the partial derivatives of v with respect
to κp and κq , respectively. The autocorrelation of v is:

Rv(τ) = a2pe
−αpτ + a2qe

−αqτ . (30)

As mean, variance and autocovariance of v do not depend on
time, v satisfies the conditions outlined in (31) and is proven
to be wide-sense stationary.

The mean of v only depends on the means of pL and qL,
as long as E[pL] = pL0 and E[qL] = qL0. The variance of
v is the weighted sum of the variances and covariances of
pL and qL. Similarly, the autocorrelation function of v is the
weighted sum of the autocorrelation functions of pL and qL.
These results indicate that the variance of v changes with the
modification of voltage dependence of κp and κq because it
modifies the variances of pL and qL.

V. CASE STUDY

This section studies the effect of voltage dependence of the
stochastic loads on the power system dynamic. With this aim,
we use the WSCC test system, which includes 9 buses, 9
lines/transformers, 3 load devices and 3 synchronous machines
that are equipped with turbine governors, an automatic gen-
eration control and automatic voltage regulators to avoid any
unrealistic instabilities. In the simulations, the deterministic
part of the SDAEs is integrated with trapezoidal method with a
time step ∆t = 0.01 s and the stochastic integral is interpreted
as an Itô’s integral and integrated using the Euler-Maruyama
integration scheme with a step size h = 0.01 s. All simulations
were solved using the software tool Dome [29].

Load consumption is modeled via voltage dependent
stochastic load model using (6). The processes κp and κq in (6)
are modeled through Gaussian and normal inverse Gaussian
(NIG) distributions for high and low values of autocorrelation
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Fig. 2: Percent error on covariances, calculated with (22) using Cp[·] as base.
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coefficient. The details to setup Gaussian and NIG distribu-
tions can be found in [21]. The case study simulates three
scenarios as follows:

• S0: simulates constant power loads, i.e, γ = 0.
• S1: simulates constant current loads, i.e, γ = 1.
• S2: simulates constant impedance loads, i.e, γ = 2.

The processes κp and κq are simulated with the following
statistical properties: σp = 0.0117 pu and σq = 0.01435 pu
for Gaussian distribution; and kp = 100.11, δp = 0.0141,
kq = 37.70 and δq = 0.00753 for NIG. Note that these
parameters are taken from real-world load measurement data
and were reported in [21]. The highest and lowest values of
autocorrelation coefficients reported in [21] are as follows:
αp = 0.045s−1 and αq = 0.1115s−1 for high speed; and
αp = 0.0048s−1 and αq = 0.0041s−1 for low speed processes.

First, we show that the statistical properties of pL and qL are
modified when the voltage dependence of the loads is altered,
i.e., γ = 0 → 2. This is illustrated in Fig. 3, which shows the
PDFs of κp and κq at bus 5 for Gaussian distribution. Since,
κp and κq are not affected by the exponent γ they reach the
same distributions at stationarity for the three scenarios.

Figure 4 shows the PDFs of pL and qL at bus 5. This figure
shows that pL and qL, for different values of γ, reach different
PDFs at stationarity. This happens despite the fact that κp and
κq have same PDFs at stationarity. The means of pL and qL
are not affected due to the voltage dependence of the loads.
This is in accordance with the discussion in Section IV and
follows (16).

The only differences that be observed in Fig. 4 are in the
variances of pL and qL. The differences in variances of pL
and qL for the three scenarios are quantified using the standard
deviations of pL and qL as follows. The percent increment in
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Fig. 3: Probability distribution of κp and κq modeled via Gaussian distribution
at bus 5 for all scenarios.
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Fig. 4: Probability distribution of pL and qL at bus 5 modeled via Gaussian
distribution for all scenarios.

the standard deviation of pL and qL from scenario S0 to S2
are −7.1 % and −8.9 %, respectively.

Similar differences in the standard deviations of pL and qL
of other load buses, i.e., 6 and 8, are observed. This result
is again in conformity with the discussion in Section IV. The
fact that the variances of pL and qL are decreased when the
voltage dependence is increased implies that v has a negative
dependence on κp and κq , and (21) is the proof of this.

The results discussed above imply that, while the mean
value of v is not modified, its variance changes when the
voltage dependence of the load changes. This is confirmed
by (28) and (29), which indicate that the mean of v depends
on the means of pL and qL, while the variance of v depends on
the variances and covariances of pL and qL. To verify this, the
variances of v at bus 5 for all the scenarios are evaluated. The
standard deviation of v for different values of γ are observed
to increase from S0 to S1 with −11.9 % and from S0 to S2
with −20.9 %.

As V[pL] and V[qL] are decreased when γ is increased,
one might infer that the decrement in V[v] is solely due to
the decrement in V[pL] and V[qL]. However, from (29), it is
obvious that V[v] also depends on C(pL, qL). To observe the
effect of C(pL, qL) on V[v], it is required that V[pL] and V[qL]
remain constant in all the scenarios.

The differences in V[pL] and V[qL] are easily removed by
heuristically adjusting V[κp] and V[κq] for the three scenarios.
The PDFs of pL and qL achieved after modifying V[κp] and
V[κq] are shown in Figs. 5 and 6. Figures 5 and 6 illustrate
the PDFs of pL and qL for Gaussian and NIG distributions,
respectively. In Figs. 5 and 6, it is visible that the PDFs of
pL and qL for all the scenarios are overlapping and V[pL] and
V[qL] remain the same.

Note that C(pL, qL) for all the scenarios depend not only
on V[pL] and V[qL] but also on αp and αq , see (24), (25) and
(26). It is crucial that αp and αq are kept constant through all
the scenarios, so that the effect of C(pL, qL) on V[v] can be
studied solely due to voltage dependence of loads.

Figures 7 and 8 display the autocorrelation functions of pL
and qL for the Gaussian and NIG distributions for the three
scenarios, i.e., S0, S1 and S2. Figures 7 and 8 indicate that
the autocorrelation functions of pL and qL remain the same
for all the scenarios.

Next, the voltage at load bus 5 is observed for all the
scenarios. Figs. 9 and 10 illustrate the PDFs of v at bus 5 for
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Fig. 5: Probability distribution of active and reactive power modeled using
Gaussian distribution at bus 5 for all scenarios.
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Fig. 6: Probability distribution of active and reactive power modeled using
NIG distribution at bus 8 for all scenarios.

the Gaussian and NIG distributions for all the three scenarios.
These figures lead to several conclusions, some to be expected
and other less intuitive. On the one hand, a reduction in the
value of α causes a shrink in the spread of the PDFs or in
other words a reduction in V[v]. This is consistent with (29)
because a modification in α will modify C(pL, qL). This has
also been reported in other studies, e.g., [19], [20]. On the
other hand, modeling pL and qL with NIG instead of Gaussian
distribution causes the PDF of v to widen and exhibit heavy
tails. This result was also reported in [21].

The non-intuitive result that can be inferred from Figs. 9
and 10 is that in the case of both distributions, i.e., Gaus-
sian and NIG, the spread of v decreases when the voltage
dependence of loads is modified from constant power to
constant impedance loads, while constant current being in the
middle. This is quantified by presenting the values of standard
deviations of selected quantities of the WSCC in Tables I to
IV.

The results shown in Tables I to IV indicate that the standard
deviations of bus voltage magnitudes and reactive power
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Fig. 7: Autocorrelation function of active and reactive power modeled using
Gaussian distribution for highest αp and αq at bus 5 for all scenarios.
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Fig. 8: Autocorrelation function of active and reactive power modeled using
NIG distribution for lowest αp and αq at bus 5 for all scenarios.
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Fig. 9: Probability distribution of voltage magnitude at bus 5 for modeling
stochastic processes for highest α for all scenarios.
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Fig. 10: Probability distribution of voltage magnitude at bus 5 for modeling
stochastic processes for lowest α for all scenarios.

qG injections of synchronous machines observe significant
reduction when the voltage dependence of loads, i.e., γ is
increased from 0 to 2. This reduction in the standard deviation
is independent of the statistical properties, i.e., shape and
parameters of PDF and autocorrelation of pL and qL, because
they are kept constant in all the scenarios.

The rationale behind the reduction in the standard deviation
of v and consequently of qG is easily understandable by
carefully inspecting the voltage dependent stochastic load
model in (6). From (6), it is obvious that when γ is non-zero,
the processes κp and κq are multiplied either with ṽ or ṽ2.
This multiplication introduces a negative correlation between

TABLE I: Standard deviation of power system quantities of WSCC for the
three scenarios simulating stochastic loads with Gaussian distribution and
highest value of autocorrelation coefficient.

Variable S0 S1 % inc S2 % inc
v(Bus 5) 0.001128 0.001035 -8.24 0.000966 -14.36
v(Bus 6) 0.000855 0.000772 -9.71 0.000709 -17.08
v(Bus 8) 0.000845 0.000753 -10.89 0.000684 -19.05
qg(G1) 0.008409 0.007681 -8.66 0.00711 -15.45
qg(G2) 0.004262 0.003919 -8.05 0.00366 -14.12
qg(G3) 0.002816 0.002637 -6.36 0.002513 -10.76

TABLE II: Standard deviation of power system quantities of WSCC for the
three scenarios simulating stochastic loads with Gaussian distribution and
lowest value of autocorrelation coefficient.

Variable S0 S1 % inc S2 % inc
v(Bus 5) 0.001054 0.000978 -7.21 0.000918 -12.9
v(Bus 6) 0.00074 0.000678 -8.38 0.000629 -15
v(Bus 8) 0.000681 0.000619 -9.1 0.000569 -16.45
qg(G1) 0.008191 0.007501 -8.42 0.006954 -15.1
qg(G2) 0.00429 0.003944 -8.07 0.003678 -14.27
qg(G3) 0.002791 0.002633 -5.66 0.002524 -9.57
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TABLE III: Standard deviation of power system quantities of WSCC for the
three scenarios simulating stochastic loads with NIG distribution and highest
value of autocorrelation coefficient.

Variable S0 S1 % inc S2 % inc
v(Bus 5) 0.00273 0.00237 -13.38 0.00210 -23.23
v(Bus 6) 0.00268 0.00239 -10.82 0.00218 -18.59
v(Bus 8) 0.00268 0.00236 -11.80 0.00214 -20.08
qg(G1) 0.02137 0.01887 -11.68 0.01697 -20.55
qg(G2) 0.01304 0.01197 -8.22 0.01117 -14.33
qg(G3) 0.01068 0.01003 -6.15 0.00955 -10.64

TABLE IV: Standard deviation of power system quantities of WSCC for the
three scenarios simulating stochastic loads with NIG distribution and lowest
value of autocorrelation coefficient.

Variable S0 S1 % inc S2 % inc
v(Bus 5) 0.002307 0.002049 -11.21 0.001844 -20.07
v(Bus 6) 0.002338 0.002149 -8.07 0.002002 -14.37
v(Bus 8) 0.001909 0.001735 -9.14 0.001603 -16.05
qg(G1) 0.020329 0.018151 -10.72 0.016439 -19.14
qg(G2) 0.012761 0.011720 -8.16 0.010922 -14.41
qg(G3) 0.011095 0.010523 -5.15 0.010091 -9.04

the final load consumption processes, i.e., pL and qL. Refer
to Section IV for a detailed discussion.

References [6] and [7] indicate that a positive correlation
between pL and qL, when the load is not voltage dependent,
results in an increase in the standard deviation of the bus
voltage magnitudes and other power system quantities. On the
other hand, in this study a decrease in the standard deviation
of power system quantities is observed. This decrease is a
consequence of the introduction of negative correlation among
pL and qL, which causes the actual correlation to decrease
when γ is increased from 0 → 2.

For this reason, the active and reactive power load con-
sumption processes at each load bus are considered and the
correlation between them is observed by visualizing the scatter
plot of pL versus qL. Figure 11 illustrates the scatter plot of
pL versus qL at bus 5 for NIG distribution at highest auto-
correlation simulated for scenarios S0 and S2. The correlation
between pL versus qL at load buses is quantified in Table V.
Fig. 11 and Table V show that when γ is increased from 0
to 2, the correlation between pL and qL is increased in the
negative direction, which means that pL and qL are negatively
correlated. This results in the reduction in standard deviation
of v and other quantities. This is consistent with the discussion
in Section IV.

VI. CONCLUSIONS

This paper studies the impact of voltage dependence of the
stochastic loads on the correlation of active and reactive power,
and consequently on the dynamic of the power system. The
paper shows that an increment in the voltage dependence of
the loads causes a reduction in the variances and covariances
of active and reactive load power consumption. The reduction
in the covariances while keeping variances constant causes a

Fig. 11: Scatter plot of active and reactive power modeled using NIG
distribution for highest αp and αq at bus 5 for scenarios S0 and S2.

TABLE V: Standard deviation of power system quantities of WSCC for the
three scenarios simulating stochastic loads with NIG distribution and lowest
value of autocorrelation coefficient.

Bus S0 S1 S2
Dist: Gaussian; autocorrelation: high
5 -0.141 -0.277 -0.389
6 0.133 0.079 0.036
8 0.0565 0.00 -0.033

Dist: NIG; autocorrelation: high
5 0.036 -0.17 -0.32
6 0.16 0.00 -0.228
8 0.07 -0.07 -0.2
Dist: Gaussian; autocorrelation: low
5 -0.105 -0.2 -0.3
6 -0.16 -0.237 -0.3
8 0.12 0.07 0.03

Dist: NIG; autocorrelation: low
5 -0.134 -0.35 -0.49
6 0.062 -0.15 -0.32
8 0.063 -0.066 -0.18

reduction in the variance of the voltages, which compensates
the dynamic behavior of the power system.

Simulation results show that increasing the voltage de-
pendence of the stochastic loads causes an improvement in
the dynamic behavior of the power system by causing a
reduction in the correlation of active and reactive load power
consumption. Thus the theoretical developments presented in
the paper are fully supported by simulation results.

Future work will consider two directions. One the one hand,
extend the analysis of this paper to nonlinear and dynamic load
and distributed energy resources models. Then, leverage on the
results obtained in this paper to design voltage or frequency
regulators able to reduce the effects of the long tails observed
in the power system quantities.

APPENDIX

A. Stationary Stochastic Process (SSP)

A continuous-time real-valued random process X(t), t ∈ R
is considered to be wide-sense stationary if its statistical prop-
erties remain invariant with respect to time. This means that
the first and second moments, namely the mean and variance,
respectively, of X(t) remain constant with respect to time.
Another important characteristic of a stationary stochastic
process is that its autocovariance function is not dependent
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on time, but rather on the time difference. In other words,
the autocovariance function only depends on the time lag
between two points in time and is constant throughout the
entire process. Mathematically, we can write the properties
as:

E[X(t)] = E[X(t+ τ)] ,

V[X(t)] = V[X(t+ τ)] ,

CX(t1, t2) = E
[
(X(t1)− E[X(t)])

(X(t2)− E[X(t)])
]
= CX(t1 − t2) .

(31)

B. Voltage as a SSP

The goal of this section is to demonstrate that the voltage v
at the load bus is a stationary stochastic process (SSP) if the
load consumption processes, i.e., p and q, are SSPs as well.
For this reason, we consider a single load infinite bus system.
This system comprises of a bus that can transfer infinite power;
a stochastic load that is connected at the load bus; and a line
connecting the two buses. The expression for voltage v at the
load bus can be determined as:

v =

√√√√−
(
qx− v21

2

)
±
√(

qx− v21
2

)2

− x2(p2 + q2) ,

(32)
where v1 is the voltage at the infinite bus; and x is the line
impedance.

To show that v in (32) is a SSP, the properties mentioned
in (31) should hold. For this reason, and to simplify the
calculations, we linearize (32). A nonlinear expression can be
linearized via second-order Taylor Series expansion. Expres-
sion for v in (32) is linearized at the mean values of p and q,
and written as:

v ≈ v(pL0, qL0) +

[
(∆p)

∂

∂p
+ (∆q)

∂

∂q

]
v(pL0, qL0) , (33)

where ∆X = X−E[X], this means that p and q are centered
at zero mean, i.e.,:

∆X =

∫ t

0

e−αX(t−s)bXdWX , (34)

and ∂
∂X is the partial derivative with respect to X .

In (32), v is a linear combination of two SSPs, i.e., p and q,
which are centered at zero-mean. The conditions for the Wold
Decomposition Theorem are satisfied. This theorem states that
any wide-sense stationary stochastic process can be expressed
as the sum of a deterministic component, which is v(pL0, qL0),
and a stationary stochastic component, which is the linear
combination of ∆p and ∆q.
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