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ABSTRACT
In this article, we introduce an operator to replace the traditional memristance function in the classical memristor model. This
approach transforms the nonlinear structure of the original model into a linear one. Under appropriate conditions, the operator
can be further replaced by a fractional operator, maintaining the model’s inherent linearity and expanding its applicability. Fur-
thermore, we develop a fractional-order dynamical memristor model that extends the memory representation to capture more
complex dynamics. Finally, we provide numerical examples to illustrate the theoretical results.

1 | Introduction

The word “memristor” is defined from the two terms “memory”
and “resistor.” A memristor is an electrical component that con-
trols the flow of the electrical current in a circuit (resistor). The
property of a memristor is that it will “remember” its state even
if the power at the device will go off (memory). For some histori-
cal facts, see [1]. The memristor was firstly introduced by Leon
Chua, see [2], as a component that relates electric charge and
magnetic flux. In his studies, Chua generalized this concept, and
identified the “memristance” function which is used to describe
mathematically the non-linear dynamic relation between volt-
age and current including memory of past voltages/currents, see
[3, 4]. Mathematically if the graph between voltage and current is
a pinched hysteresis loop then this “proves” the memristor’s exis-
tence, see [5, 6]. Other memristor models were also proposed, see
[7, 8], but the previous papers mentioned introduced it mathe-
matically.

Many researchers in the literature focus in approximating the
behaviour of the memristor model, see [9–12], while other arti-
cles have introduced the concept of incorporating fractional
derivatives to the model, see [13–15]. For some examples and
applications, see [16–18].
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Let 𝑞(𝑡), Φ(𝑡), be electric charge and magnetic flux, respectively.
The derivative of one with respect to the other depends on the
value of one or the other, and so each memristor is characterized
by its memristance function describing the charge-dependent
rate of change of flux with charge:

𝑀(𝑞) = 𝑑Φ
𝑑𝑞

.

Let 𝑉 (𝑡), 𝐼(𝑡) be voltage and current, respectively. Then

𝑉 (𝑡) = 𝑑Φ(𝑡)
𝑑𝑡

, 𝐼(𝑡) = 𝑑𝑞(𝑡)
𝑑𝑡

.

Obviously,

𝑉 (𝑡)
𝐼(𝑡)

=
𝑑Φ(𝑡)
𝑑𝑡

𝑑𝑞(𝑡)
𝑑𝑡

= 𝑑Φ
𝑑𝑞

=𝑀(𝑞),

or, equivalently,

𝑉 =𝑀(𝑞)𝐼 (1)
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FIGURE 1 | 𝑉 -𝐼 graphs: With “red” the case of 𝑀(𝑞(𝑡)) ≡ 𝑅, and
with “blue” an example of a pinched hysteresis loop. [Colour figure can
be viewed at wileyonlinelibrary.com]

If 𝑀(𝑞(𝑡)) ≡ 𝑅, 𝑅 constant resistance, then 𝑉 = 𝑅𝐼 , which is
Ohm’s law. In the case of a memristor,𝑀(𝑞(𝑡)) is not constant and
the graph 𝑉 versus 𝐼 is a pinched hysteresis loop, see Figure 1.

In this article, we initially reformulate the original memristor
model by studying an operator which can replace the memris-
tance function, and under certain conditions, is identically or
numerically equivalent to a fractional-order operator. Addition-
ally, by taking into account the memristor’s memory, we not only
further construct a fractional-order dynamical memristor model
but also model the extension of its memory capabilities.

2 | Main Results

We begin the section with the following definition:

Definition 2.1. Let 𝑘(𝑡) be a function supported on [0,+∞),
and let 𝐼 be a function representing electric current. Then, with


𝐼
, we denote the following operator:


𝐼
(𝑘) = 𝑘 ∗ 𝐼 (2)

The symbol ∗ denotes the convolution of 𝑘(𝑡) and 𝐼 , which is
defined by

𝑘 ∗ 𝐼 =
∫

𝑡

0
𝑘(𝑡 − 𝑠)𝐼(𝑠) 𝑑𝑠.

We refer to
𝐼
(𝑘) as a convolution-based operator, as it is defined

through the convolution of the kernel 𝑘(𝑡) with the current 𝐼(𝑡).
The operator 

𝐼
(𝑘) satisfies linearity, causality, and memory

structure properties. As mentioned in the introduction, in the
case that a memristor exists, the graph 𝑉 -𝐼 has the form of a
pinched hysteresis loop, see Figure 1. Obviously, this graph is
given by an equation of a curve in the form of 𝑔(𝐼, 𝑉 ) = 0, or,
equivalently, in the form of 𝑉 = 𝑓 (𝐼). Without loss of generality
from (1), we can give to 𝑀(𝑞)𝐼 the form 𝑓 (𝐼) =𝑀(𝑞)𝐼 . We state
the following theorem:

Theorem 2.1. Consider the memristor model given by (1),
where 𝑓 (𝐼) =𝑀(𝑞)𝐼 . If there exists a function 𝑘(𝑡) supported on

[0,+∞), defined by

𝑘(𝑡) = 1
𝑀0

−1
{

𝐹 (Î(𝑠))
Î(𝑠)

}

,

then an equivalent model to (1) is given by

𝑉 =𝑀0𝐼
(𝑘) (3)

Here, 𝑀0 is a constant normalization coefficient,
𝐼

is the opera-
tor defined in (2),  denotes the Laplace transform, Î(𝑠) = {𝐼(𝑡)}
represents the Laplace transform of 𝐼(𝑡), and 𝐹 (Î(𝑠)) = {𝑓 (𝐼(𝑡))}
denotes the Laplace transform of 𝑓 (𝐼(𝑡)).

Proof. Let 𝑓 (𝐼) =𝑀(𝑞)𝐼 . We are interested in a function 𝑘 sup-
ported on [0,+∞) such that

𝑓 (𝐼) =𝑀0𝐼
(𝑘),

or, equivalently, by using (2),

𝑓 (𝐼) =𝑀0𝑘 ∗ 𝐼.

By applying the Laplace transform , we get

{𝑓 (𝐼(𝑡))} =𝑀0{𝑘}{𝐼},

or, equivalently,
𝐹 (Î(𝑠)) =𝑀0{𝑘}Î(𝑠),

or, equivalently,

{𝑘} = 1
𝑀0

𝐹 (Î(𝑠))
Î(𝑠)

,

or, equivalently,

𝑘(𝑡) = 1
𝑀0

−1
{

𝐹 (Î(𝑠))
Î(𝑠)

}

.

Hence, if the inverse Laplace transform of 𝐹 (Î(𝑠))
Î(𝑠)

exists, then 𝑘(𝑡)
can be defined and given from the above expression. In this case,
(1) can be written in the form of (3). The proof is completed. ◽

We note that although the reformulated model (3) appears linear
with respect to the introduced operator, the memory kernel 𝑘(𝑡)
still captures the nonlinear characteristics of the original mem-
ristance function 𝑀(𝑞). Thus, the essential memory behavior of
the system is preserved through the structure of the convolution
operator.

In the following, we introduce classical convolution-type frac-
tional operators, which are naturally aligned with the structure
of the memory operators defined earlier and are compatible with
Laplace transform techniques. The Caputo (C) fractional deriva-
tive of a function 𝑓 (𝑡) of order 0 < 𝑎 ≤ 1 is originally defined as

𝒟 𝑎

𝑐
𝑓 (𝑡) = 1

Γ(1 − 𝑎) ∫

𝑡

0
(𝑡 − 𝜏)−𝑎 𝑑

𝑑𝜏
𝑓 (𝜏) 𝑑𝜏,

where Γ(⋅) represents the gamma function. Building upon the
Caputo (C) fractional derivative, alternative fractional operators
have been developed to address specific modeling challenges and
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offer unique perspectives on memory effects, see [19–21]. The
Caputo–Fabrizio (CF) fractional operator:

𝒟 𝑎

𝑐𝑓
𝑓 (𝑡) = 𝐵(𝑎)

1 − 𝑎 ∫

𝑡

0
𝑒
− 𝑎

1−𝑎 (𝑡−𝜏) 𝑑

𝑑𝜏
𝑓 (𝜏) 𝑑𝜏,

and the Atangana–Baleanu (AB) fractional operator:

𝒟 𝑎

𝑎𝑏
𝑓 (𝑡) = 𝐵(𝑎)

1 − 𝑎 ∫

𝑡

0
𝐸

𝑎

[

−𝑎 (𝑡 − 𝜏)𝑎

1 − 𝑎

]
𝑑

𝑑𝜏
𝑓 (𝜏) 𝑑𝜏

where 𝐸
𝑎
(𝑧) denotes the Mittag-Leffler function. In both cases,

𝐵(𝑎) is a normalization function.

It should be noted that the (CF) and (AB) operators involve
non-singular kernels and therefore do not strictly satisfy the clas-
sical definition of a fractional derivative. Following the observa-
tions presented in [22], in this work, we treat such operators as
general memory operators rather than true fractional derivatives.
A very recently defined fractional operator with a sinusoidal ker-
nel, referred to in [23], is the (DS) fractional operator:

𝔇𝑎

sin𝑓 (𝑡) =
𝑁(𝑎)
1 − 𝑎 ∫

𝑡

0
sin

[
𝑎

1 − 𝑎
(𝑡 − 𝑠)

]
𝑑

𝑑𝑠
𝑓 (𝑠) 𝑑𝑠,

where 𝑁(𝑎) is a normalization function. In the remainder of
this section, we will use the following notations. The first-order
derivative of 𝑞(𝑡) will be denoted by 𝑞

′(𝑡), that is, 𝑑

𝑑𝑡
𝑞(𝑡) = 𝑞

′(𝑡).
The fractional derivative of order 𝑎 of 𝑞(𝑡) will be denoted by
𝑞
(𝑎)(𝑡), meaning 𝑑

𝑎

𝑑𝑡𝑎
𝑞(𝑡) = 𝑞

(𝑎)(𝑡). Moreover, we use the notation
𝔇𝑎

𝑓 (𝑡) to represent either a fractional derivative, such as the clas-
sical Caputo (C) derivative, or a general memory operator, such
as the Caputo–Fabrizio (CF), Atangana–Baleanu (AB), or (DS)
types. We proceed to prove the following proposition:

Proposition 2.1. We consider the operator (2) and the mem-
ristor model (3). If there exists function 𝑘 supported on [0,+∞)
such that 

𝐼
(𝑘) = �̃�0

𝑀0
𝔇𝑎

𝑞, �̃�0 constant, then an equivalent to
(3) memristor model is given by

𝑉 = �̃�0𝔇𝑎
𝑞 (4)

Where 0 < 𝑎 < 1, and𝔇𝑎 is:

• the (C) fractional operator if and only if 𝑘(𝑡) = 𝑡
−𝑎. In this case,

�̃�0 =𝑀0Γ(1 − 𝑎);

• the (CF) fractional operator if and only if 𝑘(𝑡) = 𝑒
− 𝑎

1−𝑎 𝑡. In this
case, �̃�0 =𝑀0

1−𝑎
𝐵(𝑎)

;

• the (AB) fractional operator if and only if 𝑘(𝑡) =
∑∞

𝑘=0(−1)𝑘
[

𝑎

1−𝑎

]𝑘
𝑡
𝑎𝑘

Γ(1+𝑎𝑘)
. In this case, �̃�0 =𝑀0

1−𝑎
𝐵(𝑎)

;

• the (DS) fractional operator if and only if 𝑘(𝑡) = sin
(

𝑎

1−𝑎
𝑡

)

. In
this case, �̃�0 =𝑀0

1−𝑎
𝑁(𝑎)

.

Proof. We consider the operator (2), the memristor model (3),
and 0 < 𝑎 < 1. If 𝑘(𝑡) = 𝑡

−𝑎 then


𝐼
(𝑘) = 𝑡

−𝑎 ∗ 𝐼,

or, equivalently,


𝐼
(𝑘) =

∫

𝑡

0
(𝑡 − 𝑠)−𝑎𝐼(𝑠)𝑑𝑠 =

∫

𝑡

0
(𝑡 − 𝑠)−𝑎𝑞′(𝑠)𝑑𝑠,

or, equivalently,


𝐼
(𝑘) = Γ(1 − 𝑎)𝒟 𝑎

𝑐
𝑞(𝑡).

Where
𝒟 𝑎

𝑐
𝑞(𝑡) ∶= 1

Γ(1 − 𝑎) ∫

𝑡

0
(𝑡 − 𝑠)−𝑎𝑞′(𝑠)𝑑𝑠

is the (C) fractional derivative of order 𝑎. Hence, (3) takes the form

𝑉 =𝑀0Γ(1 − 𝑎)𝒟 𝑎

𝑐
𝑞(𝑡),

whereby setting 𝒟 𝑎

𝑐
𝑞(𝑡) ∶= 𝔇𝑎

𝑞(𝑡) and �̃�0 =𝑀0Γ(1 − 𝑎), we
arrive at (4). If 𝑘(𝑡) = 𝑒

− 𝑎

1−𝑎 𝑡 then


𝐼
(𝑘) = 𝑒

− 𝑎

1−𝑎 𝑡 ∗ 𝐼,

or, equivalently,


𝐼
(𝑘) =

∫

𝑡

0
𝑒
− 𝑎

1−𝑎 (𝑡−𝑠)𝐼(𝑠)𝑑𝑠 =
∫

𝑡

0
𝑒
− 𝑎

1−𝑎 (𝑡−𝑠)𝑞′(𝑠)𝑑𝑠,

or, equivalently,


𝐼
(𝑘) = 1 − 𝑎

𝐵(𝑎)
𝒟 𝑎

𝑐𝑓
𝑞(𝑡).

Where
𝒟 𝑎

𝑐𝑓
𝑞(𝑡) = 𝐵(𝑎)

1 − 𝑎 ∫

𝑡

0
𝑒
− 𝑎

1−𝑎 (𝑡−𝑠)𝑞′(𝑠)𝑑𝑠

is the (CF) fractional derivative of order 𝑎. Hence, (3) takes
the form

𝑉 =𝑀0
1 − 𝑎

𝐵(𝑎)
𝒟 𝑎

𝑐𝑓
𝑞(𝑡),

whereby setting 𝒟 𝑎

𝑐𝑓
𝑞(𝑡) ∶= 𝔇𝑎

𝑞(𝑡) and �̃�0 =𝑀0
1−𝑎
𝐵(𝑎)

we arrive

at (4). If 𝑘(𝑡) =
∑∞

𝑘=0(−1)𝑘
[

𝑎

1−𝑎

]𝑘
𝑡
𝑎𝑘

Γ(1+𝑎𝑘)
then


𝐼
(𝑘) =

∞∑

𝑘=0
(−1)𝑘

[
𝑎

1 − 𝑎

]𝑘
𝑡
𝑎𝑘

Γ(1 + 𝑎𝑘)
∗ 𝐼,

or, equivalently,


𝐼
(𝑘) =

∫

𝑡

0

∞∑

𝑘=0
(−1)𝑘

[
𝑎

1 − 𝑎

]𝑘 (𝑡 − 𝑠)𝑎𝑘

Γ(1 + 𝑎𝑘)
𝐼(𝑠)𝑑𝑠,

or, equivalently,


𝐼
(𝑘) =

∫

𝑡

0

∞∑

𝑘=0
(−1)𝑘

[
𝑎

1 − 𝑎

]𝑘 (𝑡 − 𝑠)𝑎𝑘

Γ(1 + 𝑎𝑘)
𝑞
′(𝑠)𝑑𝑠,

or, equivalently,


𝐼
(𝑘) = sin

[
𝑎

1 − 𝑎
(𝑡 − 𝑠)

]

𝐵(𝑎)𝒟 𝑎

𝑎𝑏
𝑞(𝑡).
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Where

𝒟 𝑎

𝑎𝑏
𝑞(𝑡) = 1

Γ(1 − 𝑎) ∫

𝑡

0

∞∑

𝑘=0
(−1)𝑘

[
𝑎

1 − 𝑎

]𝑘 (𝑡 − 𝑠)𝑎𝑘

Γ(1 + 𝑎𝑘)
𝑞
′(𝑠)𝑑𝑠

is the (AB) fractional derivative of order 𝑎. Hence, (3) takes
the form

𝑉 =𝑀0
1 − 𝑎

𝐵(𝑎)
𝒟 𝑎

𝑎𝑏
𝑞(𝑡),

whereby setting𝒟 𝑎

𝑎𝑏
𝑞(𝑡) ∶= 𝔇𝑎

𝑞(𝑡) and �̃�0 =𝑀0
1−𝑎
𝐵(𝑎)

we arrive at

(4). If 𝑘(𝑡) = sin
(

𝑎

1−𝑎
𝑡

)

then


𝐼
(𝑘) = sin

(
𝑎

1 − 𝑎
𝑡

)

∗ 𝐼,

or, equivalently,


𝐼
(𝑘) =

∫

𝑡

0
sin

[
𝑎

1 − 𝑎
(𝑡 − 𝑠)

]

𝐼(𝑠)𝑑𝑠

=
∫

𝑡

0
sin

[
𝑎

1 − 𝑎
(𝑡 − 𝑠)

]

𝑞
′(𝑠)𝑑𝑠,

or, equivalently,


𝐼
(𝑘) = 1 − 𝑎

𝑁(𝑎)
𝔇𝑎

sin𝑞(𝑡).

Where

𝔇𝑎

sin𝑞(𝑡) =
𝑁(𝑎)
1 − 𝑎 ∫

𝑡

0
sin

[
𝑎

1 − 𝑎
(𝑡 − 𝑠)

]

𝑞
′(𝑠)𝑑𝑠

is the (DS) fractional derivative of order 𝑎. Hence, (3) takes
the form

𝑉 =𝑀0
1 − 𝑎

𝑁(𝑎)
𝔇𝑎

sin𝑞(𝑡),

whereby setting 𝔇𝑎

sin𝑞(𝑡) ∶= 𝔇
𝑎
𝑞(𝑡) and �̃�0 =𝑀0

1−𝑎
𝑁(𝑎)

we arrive
at (4). The proof is completed. ◽

Physically, it is important to remember that memory effects are
naturally present in memristor behavior, as the voltage depends
on the accumulated charge. In the traditional memristor model,
this memory is described through a nonlinear dependence of the
voltage on the instantaneous value of the charge. However, under
the conditions established in Proposition 2.1, the model can be
reformulated as a linear expression involving a fractional oper-
ator acting on the charge 𝑞(𝑡). This reformulation introduces a
more explicit and structured modeling of memory effects: the
present behavior depends on the entire past evolution of the
charge with a gradually decaying influence. The fractional-order
𝑎 allows for the modeling of different types of memory behav-
iors, from strong long-term memory (for smaller values of 𝑎) to
near-instantaneous response (as 𝑎 approaches one), providing a
more flexible and realistic description of systems with memory.

In addition, the framework allows for the introduction of alter-
native operators beyond those explicitly considered here. To
preserve the structure and analytical tractability of the model,
such operators must satisfy essential properties such as linear-
ity, causality, memory structure, and compatibility with Laplace
transform techniques.

Having established the memory structure through the fractional
modeling framework, we now proceed to generalize the model
expression. Equation (4) presents a linear expression and can be
generalized for 0 ≤ 𝑎 ≤ 1 to cover the following cases:

• If 𝑎 = 0 then for �̃�0 =
1
𝐶

, with 𝐶 being Capacitance, (4)
takes the form 𝑉 = 1

𝐶
𝑞;

• If 𝑎 = 1 then 𝑑

𝑑𝑡
𝑞 = 𝐼 , and for �̃�0 = 𝑅, with 𝑅 being resis-

tance, (4) takes the form 𝑉 = 𝑅𝐼 ;

• If 0 < 𝑎 < 1 then (4) has the form 𝑉 = �̃�0𝔇𝑎
𝑞, and under

the assumptions of Proposition 2.1, this configuration is con-
sidered a memristor model.

In general, one may observe that in the case where 𝔇𝑎 repre-
sents a true fractional derivative, such as the classical Caputo (C)
derivative, the expression 𝑉 = 𝑐

𝑑
𝑎

𝑑𝑡𝑎
𝐼 leads to different scenarios

depending on the value of 𝑎. Notably, these scenarios can vary
depending on the use of fractional operators other than the ones
used in Proposition 2.1:

• If 𝑎 = 0, it yields 𝑉 = 𝑐𝐼 , corresponding to resistance, where
𝑐 = 𝑅 is constant, illustrating Ohm’s law.

• For 𝑎 = 1, we have 𝑉 = 𝑐
𝑑

𝑑𝑡
𝐼 , representing inductance with

𝑐 = 𝐿 as a constant.

• When 𝑎 = −1, the expression becomes 𝑉 = 𝑐 ∫
𝑡

0 𝐼(𝑠)𝑑𝑠, indi-
cating capacitance with 𝑐 = 1

𝐶
as a constant.

• The case becomes particularly interesting when 𝑎 is frac-
tional, posing the question of what physical interpretation
can be assigned to 𝑑

𝑎

𝑑𝑡𝑎
𝐼 , which denotes the fractional deriva-

tive of order 𝑎 of 𝐼 .

We now consider a fractional derivative based on the exponen-
tial function. Notably, Fourier’s definition, articulated through
the Fourier transform, serves as an illustrative example of such
a fractional derivative, see [24]. For 𝑎 fractional, this fractional
derivative is defined as follows:

𝑑
𝑎

𝑑𝑥𝑎
𝑒
𝜇𝑥 = 𝜇

𝑎
𝑒
𝜇𝑥
, where 𝜇 is a constant (5)

Any function that is expressible as a sum of exponential func-
tions, such as cosine and sine functions, can be differentiated in
this manner. Using the fractional derivative (5), and if for example
𝐼 = sin(𝑡), we deduce

• For 𝑎 = 0, 𝑉 = 𝑅 sin(𝑡), aligning with resistance where 𝑐 =
𝑅 is a constant.

• If 𝑎 = 1, this leads to 𝑉 = 𝐿 cos(𝑡) = 𝐿 sin
(

𝑡 + 𝜋

2

)

, pertain-
ing to inductance with 𝑐 = 𝐿 as a constant.

• With 𝑎 = −1, we find 𝑉 = − 1
𝐶

cos(𝑡) = 1
𝐶

sin
(

𝑡 − 𝜋

2

)

, reflect-
ing capacitance where 𝑐 = 1

𝐶
is a constant.

• When 𝑎 is fractional, then 𝑉 = 𝑐 sin
(

𝑡 + 𝑎
𝜋

2

)

describes a
property related to phase shifts or phase behavior in an elec-
trical component, indicating a niche or newly proposed con-
cept within certain research areas or theoretical studies.
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Next, we focus on the property of the memristor that includes
memory of past voltages/currents, and construct an alternative
fractional-order dynamical memristor model. We state the fol-
lowing Theorem:

Theorem 2.2. A fractional-order dynamical memristor model
is described by the equation:

𝑉 =𝑀(𝑞) 𝑑
𝑎

𝑑𝑡𝑎
𝑞 (6)

where 𝑀(⋅) is the memristance function and 𝑑
𝑎

𝑑𝑡𝑎
𝑞 denotes a frac-

tional derivative of 𝑞 of order 𝑎, with 0 < 𝑎 < 1. This formulation
captures additional memory characteristics compared with the tra-
ditional model presented in (1), enabling the modeling of more com-
plex dynamical behaviors associated with fractional-order effects.

Proof. From (1), we have

𝑞
′(𝑡) = 𝐻(𝑞(𝑡)),

where 𝐻(𝑞(𝑡)) = 1
𝑀(𝑞)

𝑉 . In order to simply explain why the pro-
posed fractional-order model and its memory effect will relate to
the memristor model, we will use the discrete form of the above
equation:

𝑞
𝑘+1 = 𝐻(𝑞

𝑘
).

This is a first-order difference equation. The term 𝑞
𝑘+1 is only

related to just a previous step in time, namely the term 𝑞
𝑘
. This

means that we obtain the values of 𝑞
𝑘+1 by only absorbing infor-

mation from just a previous step in time 𝑘, and not by considering
all the “history” of changes at times 𝑘 − 1, 𝑘 − 2, … , 𝑘0. Where
𝑘0 the initial time step which can be assumed zero, that is, 𝑘0 = 0.
To incorporate the information from all previous time steps, we
use the fractional nabla operator of order 𝑎with 0 < 𝑎 < 1, which,
for a sequence 𝑐

𝑘
, is defined as

∇−𝑎𝑐
𝑘
=

𝑘∑

𝑗=0
𝑑
𝑘−𝑗𝑐𝑗 ,

where 𝑑
𝑘−𝑗 =

1
Γ(𝑎)

Γ(𝑘−𝑗+𝑎)
Γ(𝑘−𝑗+1)

; see [25, 26]. As mentioned, one has to
consider not only one time step to absorb information from the
past but also the “history” of changes throughout the timeline
0, 1, … , 𝑘 − 1, 𝑘. Hence, we incorporate to the first-order differ-
ence equation further delays as follows:

𝑞
𝑘+1 =

𝑘∑

𝑗=0
𝑑
𝑘−𝑗𝐻(𝑞𝑗)

Equivalently, we then have

∇𝑎
𝑞
𝑘+1 = 𝐻(𝑞

𝑘
).

Where 0 < 𝑎 < 1 is the fractional order of the nabla discrete oper-
ator. Returning to the continuous time equation, and by using the
previous discussion, we propose the following fractional-order
version of the dynamic memristor model:

𝑑
𝑎

𝑑𝑡𝑎
𝑞 = 𝐻(𝑞),

or, equivalently,
𝑞
(𝑎)(𝑡) = 1

𝑀(𝑞(𝑡))
𝑉 (𝑡),

or, equivalently,
𝑉 =𝑀(𝑞)𝑞(𝑎),

which corresponds to (6). This completes the proof. ◽

It should be noted that the reintroduction of nonlinearity through
the fractional operator in the present model relies on the spe-
cific memory and convolution properties of fractional deriva-
tives. Extending this behavior to more general operators would
require additional structural assumptions, such as the existence
of a memory structure and compatibility with the dynamical sys-
tem formulation.

3 | Numerical Examples

In this section, we provide a set of examples to illustrate the
main theoretical results established in the previous section. We
first consider the traditional nonlinear memristor model 𝑉 =
𝑀(𝑞)𝐼 . We then reformulate this model into an equivalent form
involving a convolution-based memory operator, as presented in
Theorem 2.1. Following this, we show, based on Proposition 2.1,
how this convolution structure can be replaced by a suitable frac-
tional operator under appropriate conditions. Finally, we con-
struct a fractional-order dynamical memristor model incorporat-
ing nonlinear dependence, as described in Theorem 2.2, to cap-
ture enhanced memory characteristics. Let the current be defined
by 𝐼(𝑡) = sin(𝑡), and the voltage be given by

𝑉 (𝑡) = sin(𝑡) − 1
2

sin(2𝑡).

We first consider the memristor model (1). It is straightforward
to verify that

𝑞 =
∫

𝑡

0
sin(𝑠)𝑑𝑠 = 1 − cos(𝑡),

and hence

𝑉 (𝑡) = sin(𝑡) − sin(𝑡) cos(𝑡) = (1 − cos(𝑡)) sin(𝑡),

or, equivalently,

𝑉 = 𝑞𝐼, with 𝑀(𝑞) = 𝑞,

which is the form of (1). If we give to the above expression the
form 𝑉 = 𝑓 (𝐼), we get

𝑉 = 𝐼

(

1 ±
√

1 − 𝐼2
)

.

The graph 𝑉 -𝐼 , which is a pinched hysteresis loop, is shown in
Figure 2.

3.1 | Example 1: Reformulation Via
the Convolution Operator

𝑰
(𝒌)

As a first example, we apply Theorem 2.1 to reformulate the tra-
ditional memristor model in terms of the convolution operator

5 of 8
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FIGURE 2 | 𝑉 -𝐼 graph of the memristor model 𝑉 =𝑀(𝑞)𝐼 for 𝐼 =
sin(𝑡). [Colour figure can be viewed at wileyonlinelibrary.com]


𝐼
(𝑘) defined in (2). Our objective is to express the memristor

model in the form given by (3). Specifically, we have

sin(𝑡) − 1
2

sin(2𝑡) =𝑀0𝑘(𝑡) ∗ sin(𝑡),

or, equivalently, by applying the Laplace transform

1
1 + 𝑠2 −

1
2

2
4 + 𝑠2 =𝑀0

1
1 + 𝑠2 𝐾(𝑠),

where 𝐾(𝑠) = {𝑘(𝑡)} denotes the Laplace transform of 𝑘(𝑡).
Equivalently,

𝑀0𝐾(𝑠) = 1 − 1 + 𝑠
2

4 + 𝑠2 ,

or, equivalently,

𝑀0𝐾(𝑠) = 1 − 4 + 𝑠
2 − 3

4 + 𝑠2 ,

or, equivalently,

𝑀0𝐾(𝑠) = 1 − 1 + 3
4 + 𝑠2 ,

or, equivalently,
𝐾(𝑠) = 3

2𝑀0

2
4 + 𝑠2 ,

whereby applying the inverse Laplace transform, we get

𝑘(𝑡) = 3
2𝑀0

sin(2𝑡).

Hence,


𝐼
(𝑘) = 𝑘 ∗ 𝐼 = 3

2𝑀0 ∫

𝑡

0
sin[2(𝑡 − 𝑠)] sin(𝑠)𝑑𝑠,

and the memristor model (3) is given by

𝑉 = 3
2


𝐼
(sin(2𝑡)) (7)

FIGURE 3 | Plot of 𝑀0𝑘(𝑡) =
3
2

sin(2𝑡) versus 𝑡. [Colour figure can be
viewed at wileyonlinelibrary.com]

FIGURE 4 | Plot of 𝑀0𝐾(𝑠) =
3
2
× 2

4+𝑠2 versus 𝑠. [Colour figure can
be viewed at wileyonlinelibrary.com]

From the derivations above, by comparing the Laplace trans-
forms, it follows that the normalization constant is 𝑀0 =

3
2

. This
value ensures consistency between the convolution model and
the original expression of the voltage𝑉 (𝑡). To further illustrate the
behavior of the model, we plot the function 𝑀0𝑘(𝑡), its Laplace
transform 𝑀0𝐾(𝑠), and the operator 𝑀0𝐼

(𝑘), corresponding
to the voltage 𝑉 (𝑡). These plots provide additional insight into
the structure of the memory kernel in both time and frequency
domains, and clarify the action of the convolution operator.

The plot of𝑀0𝑘(𝑡) as a function of 𝑡 is shown in Figure 3, illustrat-
ing the time-domain behavior of the kernel. The corresponding
Laplace transform 𝑀0𝐾(𝑠) is depicted in Figure 4, highlighting
its frequency-domain characteristics. Finally, the resulting volt-
age 𝑉 (𝑡) =𝑀0𝐼

(𝑘) is plotted in Figure 5, showing the effect of
the convolution operator on the input current.

6 of 8 Mathematical Methods in the Applied Sciences, 2025
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FIGURE 5 | Plot of 𝑉 (𝑡) = sin(𝑡) − 1
2

sin(2𝑡) versus 𝑡. [Colour figure
can be viewed at wileyonlinelibrary.com]

3.2 | Example 2: Operator Replacement by a
Fractional Operator

In this second example, we apply Proposition 2.1 to express the
convolution operator 

𝐼
(𝑘) in terms of a fractional operator.

From the previous computations, we recall that

𝑘(𝑡) = sin(2𝑡).

We select the fractional-order 𝑎 = 2
3

and 𝑁

(
2
3

)

= 1. This choice
allows the convolution operator to be replaced by a fractional
operator associated with the sine kernel structure. Specifically,
applying the (DS) fractional operator to the charge 𝑞(𝑡), we obtain
an expression equivalent to (7):

𝑉 (𝑡) = 1
2
𝔇

2
3
sin𝑞(𝑡).

Thus, the voltage 𝑉 (𝑡) can be represented directly in terms of a
fractional operator of the charge 𝑞(𝑡).

3.3 | Example 3: Construction of a Fractional
Dynamical Memristor Model

We now proceed to the third example, where we construct a
fractional-order dynamical memristor model that incorporates
memory effects directly through a fractional derivative. Unlike
the previous example, where a fractional operator was used pri-
marily for reformulation, here the fractional-order behavior is
embedded in the dynamical evolution of the system itself, as
described by Theorem 2.2 and model Equation (6). We use the
fractional derivative defined in (5), which gives

𝑑
𝑎

𝑑𝑡𝑎
𝑞(𝑡) = − cos

(

𝑡 + 𝑎𝜋

2

)

.

Hence, from Theorem 2.2 and (6), we have

𝑉 = (cos(𝑡) − 1) cos
(

𝑡 + 𝑎𝜋

2

)

.

FIGURE 6 | 𝑉 -𝐼 curves for different values of the fractional-order 𝑎 ∈
{0.3, 0.6, 0.9}. [Colour figure can be viewed at wileyonlinelibrary.com]

To illustrate the influence of the fractional-order 𝑎 on the mem-
ory characteristics of the system, we compute and plot the corre-
sponding 𝑉 -𝐼 curves for representative values 𝑎 ∈ {0.3, 0.6, 0.9}.
The results are shown in Figure 6, where it is evident that the
shape of the hysteresis loop varies significantly with 𝑎. This visu-
alization highlights how the fractional order modifies the mem-
ory behavior: smaller values of 𝑎 correspond to stronger memory
effects, while larger values lead to a behavior closer to traditional
models.

4 | Conclusions

In this article, we have proposed new mathematical memris-
tor models. Initially, we introduced an operator and demon-
strated that, under certain conditions, it could serve as a substi-
tute for the memristance function in the original model. More-
over, we showed that in some instances, this operator could be
replaced by a fractional-order operator. Further, we developed a
fractional-order dynamical memristor model, incorporating the
crucial aspect of memory, which accounts for the history of past
voltages and currents. Examples were provided to substantiate
our theoretical propositions. The mathematical structure of the
developed models, based on convolution operators and fractional
derivatives, also parallels the formulation of mechanical systems
exhibiting memory effects, such as systems with hereditary prop-
erties or mechanical vibrations with damping. Extending the
present framework to complex mechanical systems incorporating
memory characteristics appears feasible and represents an inter-
esting direction for future research.
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