
1

Modeling Hybrid AC/DC Power Systems with the
Complex Frequency Concept

Ignacio Ponce, Member, IEEE, and Federico Milano, Fellow, IEEE

Abstract—The concept of complex frequency has been recently
introduced on the IEEE Transactions on Power Systems to
study bus voltage variations in magnitude and frequency and
their link with complex power injections of a power system.
In this paper, the complex frequency is applied to time-varying
series connections, namely, RLC dynamic branches, regulating
transformers and AC/DC converters. The proposed modeling
approach allows deriving an explicit expression for the complex
frequency of the voltage of a certain bus as a linear combination
of three elements: net current injected by the devices connected
to the bus, adjacent voltages, and time-varying series branches.
The proposed formulation unifies the link between voltage and
frequency dynamics in AC, DC, as well as hybrid AC/DC power
systems. A variety of static and dynamic examples are presented
to show the potential of the proposed formulation. Relevant
applications of the proposed modeling approach are outlined.

Index Terms—Hybrid AC/DC power systems, power system
modeling, power system dynamic performance, complex fre-
quency (CF).

I. INTRODUCTION

A. Motivation

The dynamic behavior of power systems is experiencing
unprecedented changes due to the increasing penetration of
converter-interfaced devices. Several recent works have dis-
cussed the challenges this transition is posing to the model-
ing, control, and stability analysis of power systems [1]–[5].
Among these challenges, the most relevant for this paper is
the need to revisit some fundamental aspects of the modeling
of power systems. In particular, recent works have highlighted
the relevance of a more accurate definition and interpretation
of the frequency of power systems [6]–[8]. A novel quantity,
the complex frequency (CF), has been introduced recently
in [9] precisely to provide a more consistent foundation for
the analysis of frequency variations in AC power systems.
The most relevant feature of the CF is the ability to link
the variations of the complex power and the variations of the
voltage in magnitude and frequency in a common framework.
This paper focuses on elaborating on the use of this concept
and further exploiting its potential.

B. Literature Review

The complex frequency has been used recently in promising
applications in power systems modeling. For example, it is
shown in [10] that the differential-algebraic equations that

I. Ponce and F. Milano are with School of Electrical and Electronic
Engineering, University College Dublin, Belfield Campus, D04V1W8, Ireland.
e-mails: ignacio.poncearancibia@ucdconnect.ie, federico.milano@ucd.ie

This work is supported by the Sustainable Energy Authority of Ireland
(SEAI) by funding I. Ponce and F. Milano under project FRESLIPS, Grant
No. RDD/00681.

describe the grid dynamics can be rewritten solely in terms of
the CF and state variables, removing completely the depen-
dence on voltage magnitudes and angles. CF has also already
found relevant applications in control [11], [12], converter
synchronization [13], [14], and state estimation [15], [16]. A
relevant example is provided in [17], where the concept is
used to describe and classify different control schemes and
synchronization mechanisms of power converters. Although
originally applied to voltages and currents, the CF concept can
be also applied to any time-varying complex quantity. In this
paper, we define the CF of time-varying admittances, which
allows describing any series element that can be modeled
through an equivalent circuit.

The relationship between the CF at a bus and the complex
powers was originally presented in [9] through an implicit
equation, where two types of contributions are distinguished.
On one side of the equation, the terms correspond to voltage
variations and complex powers coming from neighbor buses
connected through a constant admittance, and they are said to
be the network contribution. On the other side, the CF of the
bus and the variations of the complex power of every other
element, referred to as the device’s contribution. Under this
formulation, active series devices whose model is different
from a constant admittance block are treated similarly to shunt
devices instead of branches. Thus, the effect of neighbor buses
connected through regulating transformers, AC/DC converters
and other special series connections cannot be directly evalu-
ated. The extension of the use of the CF to admittances allows
a more general and consistent formulation where the effect
of neighbor buses is represented in the same way whether
they are connected through an active series device or not. This
approach allows us deriving an explicit equation for the CF of
the voltage of a bus with separate terms for the effect of local
shunt devices, the network, and dynamic connections.

The aforementioned approach is particularly useful to study
the dynamic behavior of AC/DC converters. In particular,
we analyze the dynamic link between AC- and DC-side
dynamics, which depend on the controllers configured on the
converter. This study is relevant as the dynamic interaction
of the converter’s AC and DC circuits has been shown to
have a significant impact on the dynamic performance of
the system. For instance, authors in [18] show that for wind
farms connected through an MMC-HVDC interconnection,
depending on the control mode, there might be a threat to
the stability of the DC side and undesirable oscillations on
the AC side. The formulation proposed in this work treats the
converter as any other series branch, thus giving the ability to
relate the CF of the voltage at the AC and DC sides using a
single framework.
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C. Contributions

The two main contributions of the paper are as follows:
• A systematic approach to model, based on the concept

of CF, the dynamic behavior of different time-varying
branches.

• An explicit expression of the CF of the voltage of every
bus of the system as a linear function of the net current
injected by shunt devices at the bus, the effect of time-
varying branches connected to the bus, and the CF of the
voltage of neighbor buses.

The proposed framework is general, as it unifies the model-
ing of AC, DC or hybrid AC/DC power systems. The approach
is also systematic as long as the series element can be modeled
through an admittance block. Finally, the formulation of the
bus CFs is exact and does not require any assumption on the
model of the devices connected to the branch.

D. Paper Organization

The remainder of this paper is organized as follows. Section
II provides a general definition and the notation utilized in
the reminder of the paper. Section III presents the proposed
explicit equation for the complex frequency. Specific expres-
sions for the admittance model and the CF of different types
of time-varying branches are presented in Section IV. The
implementation of the proposed formulation in three study
cases is described in Section V, and some remarks on its
potential applications are provided in Section V-D. Finally,
Section VI presents the conclusions and proposes future work.

II. BACKGROUND

The complex frequency is, in turn, a derivative operator of
a complex number. In fact, any complex quantity, say u, with
non-null magnitude, i.e., |u| = u ̸= 0, can be written as:

u = exp(κ+ jθ) , (1)

where κ = ln(u). If κ and θ are smooth functions of time, the
time derivative of u gives:

u̇ =
du

dt
= (κ̇+ jθ̇) exp(κ+ jθ) =

(
u̇

u
+ jθ̇

)
u . (2)

In the reminder of this paper, the quantity ( u̇u + jθ̇) is called
complex frequency. We define and utilize the CF of several
quantities, including voltages, currents and admittances. The
following notation is used:

• η is the CF of voltage Park vectors,1 namely v̇ = η v. For
economy of notation, we also define η = ρ+ jω, where
ρ = v̇/v and ω = θ̇.

• ξ is the CF of current Park vectors, namely ı̇ = ξ ı.
• χ is the CF of time-varying admittances, namely Ẏ =

χY .
It can be shown that the CF is an invariant geometrical
quantity, that is, its value is the same independently from the
reference frame utilized to define the Park vector [19].

1The interested reader can find a discussion on the definition of Park
vectors, which, in turn, are sort of dynamic phasors in [8].

It may be useful to note that the CF is a derived physical
quantity. It has thus nothing to do with the complex variable
s of the Laplace transform that is widely utilized to study
the frequency response of circuits and control systems. As a
matter of fact, CF can be defined both in the time-domain and
in the s-domain of the Laplace transform. In the remainder of
this work, we consider only the time-domain.

III. PROPOSED FORMULATION

In this section, we derive an expression for the CF of the
voltage of every bus as a linear combination of the CFs of
neighbor voltages, the current injection at the bus, and the
admittance connected to the bus.

Consider a network with n buses. We denote the set of the
network buses as B and the subset of buses containing every
bus except one bus h as Bh = B \ {h}. The starting point is
the equation of the current balance of a node h ∈ B:

ıh =
∑
k∈Bh

ıh→k =
∑
k∈Bh

(vh − vk)Y hk , (3)

where ıh is the net current injection at bus h from every device
connected to h. It is important to remark that there is no
assumption on the expression of Y hk. It can represent the
admittance of any series element, dynamic or not, connected
between nodes h and k.

Isolating vh from (3):

vh
∑
k∈Bh

Y hk =
∑
k∈Bh

vkY hk + ıh . (4)

We denote Y hh = −
∑

k∈Bh
Y hk similarly to how the

diagonal elements of the admittance matrix of a power system
are defined. Thus (4) can be equivalently written as:

−vhY hh =
∑
k∈Bh

vkY hk + ıh . (5)

Differentiating (5) and recalling the property of the CF to
act as a linear derivative operator [9]:

−vhY hh(ηh + χhh) =
∑
k∈Bh

vkY hk(ηk + χhk) + ıhξh , (6)

where ηh is the CF of the voltage of bus h; ξh is the CF of
the net current injected at the same bus; χhk is the CF of the
admittance Y hk; and χhh is the CF of the admittance Y hh,
equal to:

χhh = −
∑

k∈Bh
Y hkχhk

Y hh

. (7)

Solving (6) for ηh and rearranging some terms:

ηh =
∑
k∈Bh

(vh − vk)Y hkχhk

vhY hh

−
∑
k∈Bh

vkY hkηk
vhY hh

− ıhξh
vhY hh

.

(8)
Recalling (3), (8) becomes:

ηh =
∑
k∈Bh

ıh→kχhk

vhY hh

−
∑
k∈Bh

vkY hkηk
vhY hh

− ıhξh
vhY hh

. (9)



3

Let us define the quantities cχhk
, cηhk

and cξh as:

cχhk
=

ıh→k

vhY hh

, cηhk
= − vkY hk

vhY hh

, cξh =
−ıh

vhY hh

. (10)

Then, (9) leads to the sought expression of the CF of the bus
voltages:

ηh =
∑
k∈Bh

cχhk
χhk +

∑
k∈Bh

cηhk
ηk + cξhξh (11)

In (11), the CF of the voltage of a certain bus h is expressed
as a linear combination of the CF of three different types of
variables: admittance connected to h, weighted by a complex
coefficient cχhk

, adjacent voltages, weighted by a complex
coefficient cηhk

, and the net current injected at the node,
weighted by the complex coefficient cξh .

The coefficients of (11) can be interpreted as a measure
of the participation of three elements to the dynamic of
the voltage: series branches (cχhk

), neighboring bus voltages
(cηhk

) and net current injections ( cξh ). Valuable information
can be extracted by analyzing the characteristics of these
complex coefficients. For example, the real part of cηhk

can
be viewed as a measure of the self-participation of neighbor
voltages on the CF of every bus. In other words, the real part
of cηhk

measures how much ρk affects ρh and ωk affects ωh.
On the other hand, the imaginary part of cηhk

represents the
cross-participation, i.e., how much neighbor ρk affects ωh and
ωk affects ρh. Hence, it is to be expect that the real part of
cηhk

is greater than its imaginary part, i.e., a small ρ ↔ ω
dynamic coupling compared to the ρ ↔ ρ and ω ↔ ω direct
link between two consecutive buses. Moreover, we note that
all the coefficients in (11) are dimensionless since they relate
normalized variations of different variables expressed in terms
of CFs. While the concept of the CF of the current ξ and
the voltage η has been comprehensively explained in [9], the
value of χ depends on what is actually being modeled as a
time-varying admittance. For instance, dynamic series devices
such as regulating transformers, AC/DC converters, or simply
RLC dynamics. These examples are studied in the following
section. To complete this section, we note that, for constant
admittances, (11) reduces to:

ηh =
∑
k∈Bh

cηhk
ηk + cξhξh . (12)

Then, for buses without a shunt-connected device, namely,
transit buses, (11) reduces to a linear combination of only
neighbor buses dynamics:

ηh =
∑
k∈Bh

cηhk
ηk . (13)

IV. MODELING OF TIME-VARYING BRANCHES

Specific expressions for χ are derived in this section for
different cases of dynamic admittances.

A. Dynamic RLC Branches

Consider the circuit shown in the left side of Fig. 1.

vh vk
LR

ıRL

C

ıGC

vh

G

vk

Fig. 1: Left: series RL circuit; right: parallel GC circuit.

The well-known equation that links the current and the
voltage applied to a series RL circuit is:

L ı̇RL +R ıRL = vh − vk . (14)

Using the CF as a derivative operator:

L ıRLξ +R ıRL = vh − vk , (15)

ıRL

(
Lξ +R

)
= vh − vk , (16)

ıRL =
1

Lξ +R
(vh − vk) , (17)

⇒ Y RL =
1

Lξ +R
. (18)

Thus, χRL can be written as:

χRL =
Ẏ RL

Y RL

⇒ χRL = − ξ̇

ξ + R
L

(19)

Following a similar procedure, it can be shown that the
admittance of a dynamic parallel GC branch, as shown in the
right circuit of Fig. 1, is:

Y GC = Cη +G , (20)

where η is the CF of the voltage applied between both
terminals of the GC block, i.e., (vh − vk). Finally, χGC is
obtained as:

χGC =
Ẏ GC

Y GC

⇒ χGC =
η̇

η + G
C

(21)

For lossless circuits, (19) and (21) become:

χRL|R=0 = − ξ̇

ξ
, and χGC|G=0 =

η̇

η
. (22)

The CF of RLC series connections, PI-type lines, or any
other dynamic circuit composed of a combination of these
basic blocks can be derived using the equations provided in
this subsection.

B. Regulating Transformer

Regulating transformers are series-connected devices that
can modify the magnitude and-or the phase angle difference
between two nodes of a meshed network. Regardless its
control scheme, the regulating transformer can be modeled
as a series of an ideal transformer with a variable complex tap
ratio and an admittance [20]. A graphical representation of the
circuit is shown in Fig. 2.
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vh vk
Y T

ıTh

m : 1

ıTk

Fig. 2: Regulating transformer equivalent circuit.

In Fig. 2, m = mejα represents the complex tap ratio and
Y T is the admittance of the transformer. The link between the
terminal voltages and currents can be written in terms of a
non-symmetric admittance matrix YT as follows [20]:[

ıTk

ıTh

]
=

[
−Y T mejαY T

me−jαY T −m2Y T

] [
vk
vh

]
= YT

[
vk
vh

]
. (23)

Then, χ is calculated for each term of the admittance
matrix of the regulating transformer by imposing the following
equation:

ẎT = XT ◦YT , (24)

where the dot over the matrix denotes the time derivative of
each matrix element, and ◦ represents the Hadamard product,
i.e., the element-by-element product of the two matrices; and
XT is:

XT =


0

ṁ

m
+ jα̇

ṁ

m
− jα̇ 2

ṁ

m

 (25)

C. AC-DC Converter

Figure 3 shows a typical scheme of an AC/DC converter,
which includes a bidirectional ideal converter and a trans-
former on the AC side of the converter.

Y vacvintvdc

m,α

AC/DC Converterıdc

ıac

Fig. 3: AC/DC converter graphical representation.

Note that vdc and ıdc are assumed to be complex quantities,
although their phase angle is null, to allow for a general formu-
lation of hybrid AC/DC systems. Neglecting the magnetization
and the iron losses of the transformer, the electrical equations
of the averaged model of the converter are [21]:

vint = vdcm, (26)

m = mej(θac+α) , (27)

ıac = (vint − vac)Y , (28)
0 = ℜ{vdcıdc}+ ℜ{vintı∗ac} , (29)

where, using the notation of Fig. 3, m is the scaling factor of
the AC/DC converter; α is the phase shift the AC/DC converter
introduces between AC node vac = vac∠θac and the internal
node vint; and Y is the series admittance of the filter and
transformer on the AC side of the converter. Note that, while

the rectangular form is the most common representation of m
in the literature, i.e., m = md + jmq , we have nevertheless
utilized the polar form shown in (27) for consistency with the
formulation of the other models.

It is important to remark that the derivation that follows
is valid independently from the control scheme implemented
in the converter. This is due to the fact that the admittance
block and, thus, χ, depend only on the electrical equations
of the AC/DC converter (26)-(29). Thus, the dynamics of the
controllers are implicitly reflected in m.

Differentiating χ requires prior knowledge of the equivalent
admittance block of the converter. One approach to obtain
this block is to first represent the AC/DC converter model
as an equivalent circuit, which requires including additional
elements to be consistent with (26)-(29). Examples of this
strategy can be found in [22] and [23], where a shunt
susceptance is included to balance the reactive power. An
alternative, more direct approach, which we use in this work,
is to manipulate (26)-(29) to obtain the following form:[

ıac
ıdc

]
=

[
Y acac Y acdc

Y dcac Y dcdc

] [
vac
vdc

]
. (30)

By taking the first row of (30):

ıac = Y acacvac + Y acdcvdc . (31)

On the other hand, from (28) and using (26):

ıac = −Y vac +mY vdc . (32)

Comparing (31) and (32), Y acac and Y acdc are found:

Y acac = −Y , (33)

Y acdc = mej(α+θac)Y . (34)

Next, by taking the second row of (30) and splitting the real
and imaginary part:

ıdc = ℜ{Y dcac}ℜ{vac} − ℑ{Y dcac}ℑ{vac}+ ℜ{Y dcdc}vdc ,
(35)

0 = ℜ{Y dcac}ℑ{vac}+ ℑ{Y dcac}ℜ{vac}+ ℑ{Y dcdc}vdc .
(36)

On the other hand, from (29) and using (26) and (28):

0 = vdcıdc + vdcℜ{mı∗ac} , (37)

ıdc = −ℜ
{
m(v∗int − v∗ac)Y

∗}
, (38)

ıdc = −ℜ
{
m∗(mvdc − vac)Y

}
, (39)

ıdc = ℜ
{
−m2Y

}
vdc + ℜ

{
Y m∗vac

}
, (40)

ıdc = ℜ
{
Y m∗}ℜ{vac} − ℑ

{
Y m∗}ℑ{vac}+ . . . (41)

· · ·+ ℜ
{
−m2Y

}
vdc .

Considering Y = Y ejγ = G + jB, and comparing (35) and
(41):

Y dcac = Y m∗ = me−j(α+θac)Y , (42)

ℜ{Y dcdc} = ℜ
{
−m2Y

}
= −m2G . (43)
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Replacing (42) in (36):

0 = ℑ{Y m∗vac}+ ℑ{Y dcdc}vdc , (44)

ℑ{Y dcdc} = −ℑ
{
Y m∗vac

vdc

}
, (45)

ℑ{Y dcdc} = jm
vac
vdc

Y sin(α− γ) , (46)

ℑ{Y dcdc} = jm
vac
vdc

(G sin(α)−B cos(α)) . (47)

Finally, the equivalent admittance block of the AC/DC con-
verter is obtained as follows:

Yacdc =

[
Y acac Y acdc

Y dcac Y dcdc

]
, (48)

where:

Y acac = −Y , (49)

Y acdc = mej(α+θac)Y , (50)

Y dcac = me−j(α+θac)Y , (51)

Y dcdc = −m2G+ jm
vac
vdc

(G sin(α)−B cos(α)) . (52)

Then, χ is calculated for each term of Yacdc by imposing:

Ẏacdc = Xacdc ◦Yacdc . (53)

The calculation of χacac, χacdc, χdcac is analogous to the
calculations of the coefficients of the regulating transformer:

χacac = 0 (54)

χacdc =
ṁ

m
+ j

(
α̇+ θ̇ac

)
(55)

χdcac =
ṁ

m
− j

(
α̇+ θ̇ac

)
(56)

On the other hand, the term χdcdc requires more work. First,
Y dcdc is separated as the following:

Y dcdc = Y
(1)

dcdc + Y
(2)

dcdc , (57)

Y
(1)

dcdc = −m2G , (58)

Y
(2)

dcdc = jm
vac
vdc

(G sin(α)−B cos(α)) , (59)

⇒ χdcdc =
Y

(1)

dcdcχ
(1)
dcdc + Y

(2)

dcdcχ
(2)
dcdc

Y
(1)

dcdc + Y
(2)

dcdc

, (60)

where

χ
(1)
dcdc = 2

ṁ

m
, (61)

χ
(2)
dcdc =

ṁ

m
+

v̇ac
vac

− v̇dc
vdc

+ α̇
G cos(α) +B sin(α)

G sin(α)−B cos(α)
. (62)

If losses are neglected, χdcdc becomes:

χdcdc|G=0 =
ṁ

m
+

v̇ac
vac

− v̇dc
vdc

− α̇ tan(α) (63)

V. CASE STUDIES

In this section, we apply the proposed general expression
(11) for the CF as well as the various model-dependent
expressions derived in Section IV to three benchmark systems.
In Section V-A, we use a purely AC system to present a
steady-state analysis of the values of the coefficients of (11).
In Section V-B, we use a DC network to present a dynamic
analysis focused on the coefficients of our equation regarding
dynamic RLC branches. In Section V-C, we present a hybrid
system including different types of time-varying branches
described in Section IV, namely RLC dynamic branches and
AC/DC converters. We also show the ability of our general
formulation to study together such a diverse system and the
different ways the AC/DC converter propagates the frequency
dynamics depending on its control mode. Finally, Section V-D
collects remarks on practical applications of the proposed
modeling approach.

A. AC System

The proposed formulation is applied to the WSCC 9-bus
benchmark system. The network consists of three synchronous
generators feeding three loads through a delta-type topology.
The single-line diagram of the WSCC system is shown in
Fig. 4.

G2 G3

G1

8

5

1

4

6

9 372

slack

90 MW

30 MVAr

100 MW

35 MVAr

125 MW

50 MVAr

163 MW 85 MW

1.025 pu1.025 pu

Fig. 4: Single-line diagram of the WSCC 9-bus system.

Let us consider first the case of an admittance matrix with
constant elements. Thus, we use the simplified expression (12).
The power flow solution is found for the base-case operating
conditions shown in Fig. 4. The solution is used to calculate
cηhk

and cξh for every bus h. The steady-state coefficients
given by the power flow solution are shown in Table I.

Columns 2-10 of the table show the participation of neigh-
bor buses to the CF of every bus. Elements corresponding to
non-neighbor buses are null, as expected, and left blank in
the table. The table is sparse in the same way the admittance
matrix of a system is sparse, i.e., rather than an absolute
measure of the relationship between every pair of buses, the
information has the same structure of the connectivity matrix
of the grid. Thus, even if a coefficient linking a given pair
of buses is null, the voltage variations in one bus impact
on the voltage of the other bus though the intermediate bus
connections. The coefficients cηhk

are predominantly real,
which means that, as expected, the results verify a small
ρ ↔ ω dynamic coupling compared to the ρ ↔ ρ and ω ↔ ω
direct link. The impact of the net injected current is shown in
the last column of Table I. As this coefficient is proportional to
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TABLE I: Steady state coefficients of the CF for the WSCC 9-bus system.

Bus cηh1 cηh2 cηh3 cηh4 cηh5 cηh6 cηh7 cηh8 cηh9 cξh

1 - - - 0.99-j0.04 - - - - - 0.01+j0.04

2 - - - - - - 1.00-j0.10 - - 0.00+j0.10

3 - - - - - - - - 1.01-j0.05 -0.01+j0.05

4 0.45-j0.02 - - - 0.29+j0.00 0.27+j0.02 - - - -

5 - - - 0.69+j0.00 - - 0.35+j0.07 - - -0.04-j0.07

6 - - - 0.67+j0.01 - - - - 0.36+j0.04 -0.03-j0.05

7 - 0.45+j0.01 - - 0.17+j0.00 - - 0.38-j0.01 - -

8 - - - - - - 0.59+j0.03 - 0.43+j0.01 -0.02-j0.04

9 - - 0.53-j0.02 - - 0.17+j0.01 - 0.30+j0.01 - -

the net current injected at the bus, buses with a shunt device
interchanging more power exhibit a higher magnitude than
those with less power. For instance, the magnitude of cξh
for bus 2, which has G2 injecting 163 MW, is approximately
twice compared to the value for bus 3, which has G3 injecting
85 MW. In the case of transit buses 4, 7 and 9, cξh is null.
However, the coefficients cξh are generally much smaller than
the coefficients cηh

because of the different scaling between
voltage and current coefficients. Thus, the different magnitudes
are not an indication that the current injected by devices has
a negligible impact on the voltage.

Property 1: It is interesting to note that a remarkable
property of the coefficients is verified: for each bus, each row
in Table I always sums exactly 1. The proof can be derived by
taking (4) and dividing both sides by the left-hand side of the
equation. This property has a physical interpretation: for every
bus, the sum of the self-participation of neighbor buses and
the net current injected naturally adds up to 100%, whereas
the sum of the cross-participations vanishes.

Finally, as a sensibility analysis, the line connecting buses
7 and 8 is replaced by a regulating transformer to examine its
corresponding coefficient according to (11). The model used
is as described in IV-B, with a series resistance and inductance
equal to the parameters of the original line. The tap ratio is
set to 1, and the active power reference is set equal to the
solution of the power flow of the original case. Under these
conditions, the coefficients presented in Table I are unaltered.
However, the coefficients modeling the dynamic effect of the
regulating transformer also become relevant for buses 7 and
8. The resulting expression for the CF of bus 7 is:

η7 =
∑

k∈{2,5,8}

cη7k
ηk︸ ︷︷ ︸

Original terms

+ cχ78

(
ṁ

m
+ jα̇

)
︸ ︷︷ ︸

Regulating transformer term

(64)

where cχ78
= −(0.01+0.03j). Note that cχ78

, which weights
the impact of the control of the regulating transformer on η7
has a small magnitude, and has same order of magnitude of
the coefficients cξ of the net injected current. However, since
the control of the regulating transformer is “slow”, one has to
expect that its effect on η7 is small.

B. DC System

The proposed expression (11) is utilized for the DC sub-
system of the hybrid Chaudhuri’s Multi-terminal DC (MTDC)
system [24]. This subsystem consists of a 4-bus 350 kV
DC grid with four converter stations, each connected to an
equivalent AC grid. The scheme of the DC subsystem is shown
in Fig. 5. The original data are modified by including an
auxiliary RL branch between nodes N2 and N3 with ten times
the resistance and inductance of the existing connection. The
perturbation consists in disconnecting the auxiliary RL branch.

N2 N1

N4N3

900 MW900 MW

900 MW 350 kV DC

AC grid 3 AC grid 4

AC grid 2 AC grid 1

topen = 0.5 s

Fig. 5: Scheme of the DC subsystem of the Chaudhuri’s MTDC
system.

The DC transmission system is modeled considering series
resistance, inductance, and shunt capacitance of all branches.
A time-domain simulation is carried out to study how the
coefficients of (11), especially those capturing line dynamic
effects, vary during the transient.

Starting from the operating point given by the conditions
shown in Fig. 5, the auxiliary RL branch is disconnected at
t = 0.5 s. The trajectories of the voltages of the four DC
nodes is shown in Fig. 6. The perturbation causes an oscillation
of about 27 Hz which is due to the coupling of branch
inductances and capacitances. These oscillations are noticeable
on the DC voltage of every bus except N1. This happens
because the d-axis control loop configured in converter one
actively controls the DC voltage with a faster time constant
than the dynamics triggered by the perturbation.

The trajectories of the real part of the coefficients of (11)
for N3 is shown in Figs. 7 and 8. The imaginary part is
null for the DC grid. As expected, since all the coefficients
depend on the system variables, they inherit the dynamic
triggered by the perturbation. Figure 8 indicates that the
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Fig. 6: Trajectories of the voltages of DC nodes.
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Fig. 7: Trajectories of the real part of the coefficients corresponding
to the neighbor voltages for N3.

coefficient related to the dynamic of shunt capacitance blocks
(cχN3g ) is considerably lower and almost negligible than those
corresponding to series inductance blocks. This difference is
due to the current flowing through each branch.

Property 2: It is also interesting to observe another property
of the proposed expression (11): the sum of all the coefficients
corresponding to the time-varying branches (cχN3N2 + cχN3N4 )
equals the value of the net injected current coefficient (cξN3

).
This property can also be obtained from (3) and the definition
of the coefficients cχhk

given in (10).
Finally, note that cηN3N2 , cηN3N4 and cξN3 exhibit a spike in

the second oscillation peak after the perturbation. The rationale
behind this phenomenon lies in the fact that the modeling ap-
proach presented in Section IV uses instantaneous equivalent
admittance blocks that depend on variable CF quantities. In
particular, (18) shows that for an RL branch, the equivalent
admittance equals the inverse of (Lξ+R). Consequently, it is
possible to have a singularity in case (Lξ+R) = 0. In the case
of AC grids, the issue does not occur due to the imaginary part
of ξ, which corresponds to the instantaneous frequency of the
current. However, in DC grids, (Lξ + R) is real and can be
viewed as an equivalent resistance with expression:

Req = L
ı̇

ı
+R . (65)

To illustrate this peculiar behavior, Fig. 9 shows the equiv-
alent resistance Req of branch N2-N3, which change sign in
correspondence of the spike of the trajectories shown in Fig. 7.
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Fig. 8: Trajectories of the real part of the coefficients corresponding
to dynamic branches and net current injected coefficients for N3.
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Fig. 9: Trajectories of the equivalent resistance of branch N2-N3.

C. Hybrid AC/DC System

Here we illustrate the behavior of the elements of the
proposed formula (11) for the complete hybrid Chaudhuri’s
MTDC system [24]. A multi-terminal DC (MTDC) system is
connected to the grid through two different buses. The DC grid
is also connected to two remote isolated AC grids. The main
AC grid consists of a multi-machine AC network with two
areas, two synchronous generators each. The MTDC system
injects real power into the main AC grid. The system’s single-
line diagram is shown in Fig. 10.

G1

G2

G3

G4

G5

G6

2 1

43

6

312

4

2

7 1

1417

10

11

15

9 5

8

N2 N1

N4N3

16 13

700 MW

700 MW

700 MW

slack

slack

slack

1500 MW
-100 MVAr

2500 MW
-250 MVAr

900 MW300 MW

900 MW 380 kV DC

230 kV AC230 kV AC

230 kV AC 230 kV AC

200 MW
-150 MVAr

topen = 1 s

Fig. 10: Single-line diagram of the Chaudhuri’s MTDC system.
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The DC lines are modeled considering series resistance,
inductance, and shunt capacitance, as described in Section
V-B. For simplicity but without lack of generality, the AC
transmission system is modeled as a constant admittance
matrix. Besides, the four AC/DC converters are modeled as in
Section IV-C plus different control schemes. Their controlled
variables are shown in Table II for each device. While convert-
ers 2 and 3 contribute to the frequency regulation in the main
AC area, converter 4 supports the frequency of the isolated AC
grid it is connected to. Converter 1 sustains the DC voltage
instead of having a frequency-control loop. Finally, all the
synchronous generators are equipped with standard governors
and AVR models. There is also an AGC in the three AC areas.

TABLE II: Control modes configured in each converter.

Control Loop
Converter

1 2 3 4
d-axis (P-control) vdc fac fac fac

q-axis (Q-control) vac vac vac vac

A time-domain simulation is carried out to study the re-
lationship between the CF of AC and DC buses based on
the proposed equation. In particular, we show the effect of
the AC/DC converter model depending on the control mode
configured on each converter. The contingency is a sudden
disconnection of the load connected at bus 15 at t = 1 s.
Figures 11 and 12 show the evolution of the frequency of
the COI of the three AC areas and the DC RoCoV at the
four DC nodes, respectively. As expected, the frequency of the
main AC area (fCOI1 ) increases after the load disconnection.
Consequently, converters 2 and 3 reduce their power injection,
leading to a deviation in the DC voltage at N2 and N3. The AC
dynamic propagates through the DC network to converters 1
and 4, which show different behaviors. Converter 4 observes
a dynamic event at N4, but it does not propagate it to the
AC side, i.e., fCOI2 is constant. On the other hand, converter
1 keeps a constant DC voltage at N1 (ρN1 = 0), but current
variations propagate the dynamic event to the AC side, leading
to a significant frequency deviation in that area (fCOI3 ). The
difference lies in the dynamics of m and α according to the
control mode of each converter.
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Fig. 11: Trajectories of the COI-frequencies of the three AC areas of
the Chaudhuri’s MTDC system.

Equation (11) is implemented at buses 13 and 14 to explain
the effect of the control of converters 1 and 4. Since our for-
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Fig. 12: Trajectories of the DC RoCoVs of the Chaudhuri’s MTDC
system.

mulation allows us to treat the AC/DC converters as branches,
buses 13 and 14 become transit buses, and thus, (11) becomes:

ηh =
∑
k∈Bh

cχhk
χhk +

∑
k∈Bh

cηhk
ηk (66)

In the case of bus 13, the only non-null terms of (66)
are those corresponding to adjacent buses: η05 , ηN4 , and the
AC-DC converter: χ13N4 . The time evolution of the real and
imaginary parts of these three CFs is shown in Fig. 13. The
dynamic caused by the contingency is seen by converter 4 at
the DC bus in the real part of ηN4 . The imaginary part is
zero by definition (DC bus). The reaction of the converter is
expressed through χ13N4 . Despite the different magnitudes,
the real part of χ13N4 exhibits the same dynamic but with an
opposed sign.

The adjacent AC bus remains unaltered, i.e., it shows a zero
real part and a constant unit imaginary part. The contribution
of the three CFs is multiplied by the corresponding complex
coefficients and added according to (66) to give η13 . The
time evolution of η13 is shown in Fig. 15. The effect of the
converter is such that it compensates the dynamic received at
N4, thus giving an unaltered η at bus 13, i.e., zero real part
and unit imaginary part. In other words, the DC dynamic does
not propagate to the AC side.

In the case of bus 14, the only non-null terms of (66)
are those corresponding to adjacent buses: η06 , ηN1 , and the
AC-DC converter: χ14N1 . The trajectories of the real and
imaginary parts of these three CFs are shown in Fig. 14. In this
case, the real part of the CF at the DC bus ηN1 is nearly zero
as converter 1 controls the DC voltage. However, this requires
the converter to move its control variables, thus inducing a
dynamic in both the real and imaginary parts of χ13N1 , which
is finally propagated to the AC side. Fig. 15 shows the result
for η14 . In this case, the converter does propagate the dynamic
to the AC side.

D. Remarks and Applications

The steady-state analysis of the coefficients of the proposed
expression (11) given in Section V-A illustrates how these co-
efficients are useful dimensionless weights of the participation
of adjacent buses to the dynamic of the voltage of a particular
bus. Moreover, the ratio between the real and imaginary parts
indicates the instantaneous coupling between ρ and ω. On



9

0 5 10 15 20 25 30

Time (s)

-0.01

0.00

0.01

0.02

0.03

0.04

R
ea

l
p
a
rt

o
f

C
F

(p
u
)

×10−2

0 10 20 30
−1

0

×10−6

ηN4 η05 χ13N4

0 5 10 15 20 25 30

Time (s)

1.03

1.02

1.01

1.00

0.99

...

0.01

0.00

-0.01

Im
a
g
.

p
a
rt

o
f

C
F

(p
u
)

ηN4 η05 χ13N4

Fig. 13: Trajectories of the CFs of non-null terms of (66) for bus 13
of the Chaudhuri’s MTDC system.
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Fig. 14: Trajectories of the CFs of non-null terms of (66) for bus 14
of the Chaudhuri’s MTDC system.

the one hand, estimating the value of the coefficients appears
useful for monitoring the power system state, especially for
weak interconnections. On the other hand, taking their value
as an input for a control scheme arises as an application worth
exploring. Dynamic analysis shows that despite being affected
by the dynamics of the system, the steady-state value of the
coefficients of the expression tends to prevail. This confirms
the potential use of the coefficients that appear in (11) as
a metric to evaluate the level of synchronization between
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Fig. 15: Trajectories of the CF at bus 13 of the Chaudhuri’s MTDC
system. Calculated using equation (11).
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Fig. 16: Trajectories of the CF at bus 14 of the Chaudhuri’s MTDC
system. Calculated using equation (11).

adjacent buses.
The formulation of series elements of the network as dy-

namic admittances requires the definition of special quantities,
which are useful for measuring some phenomena present in the
system. For instance, the instantaneous equivalent resistance
carries the information of the instantaneous energy exchange
between L and R in an RL branch. The CFs of the dynamic
admittances also appear as useful quantities to evaluate the dy-
namic impact of time-varying (e.g., controlled) series devices.
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The proposed equation offers a quantitative framework for
the analysis of time-domain simulation results. Particularly
interesting is to explore its ability to evaluate the interaction
between dynamic devices and the propagation of dynamics
events. Notably, due to the exact nature of the formulation,
this capability is model-agnostic, e.g. simulation of EMT or
RMS models.

The dynamic admittance model used to represent AC/DC
converters allows unifying the formulation of hybrid systems.
Besides, the proposed equation explicitly relates the dynamics
of the AC and DC side together with the effect of the converter.
This opens the possibility of studying how to design a control
scheme that achieves a specific objective of the propagation
of ρ and ω. For instance, designing a control that translates
the dynamic of ω of the AC side to ρ of the DC side and
blocks the dynamic of ρ of the AC side at the same time.
Such a scheme naturally transfer the information of the state
of the frequency of a remote AC area throughout the DC grid
without the need for communications.

VI. CONCLUSION

The paper introduces an explicit equation for the CF of
the voltage in terms of the CF of three variables: the net
current injected at the bus, the voltage of adjacent buses,
and dynamic branches connected to the bus. The paper also
provides specific expressions for dynamic RLC circuits, regu-
lating transformers, and AC/DC converters. The representation
of the AC/DC converter allows modeling hybrid systems in
a unique formulation, and keeps track of the relationship
between the dynamic behavior of the real and imaginary parts
of the complex frequencies of the AC side and the DC side.

The case studies show that the proposed formulation is
a useful tool to monitor the power system state, as the
coefficients of (11) constitute a dimensionless measure of the
dynamic link between adjacent buses. The novel quantities
required to build the unique formulation presented in this paper
can also be applied to quantify transient phenomena, such as
the instantaneous energy exchange in a dynamic RL circuit
or the reaction of active series branches. The latter case is
especially promising in the case of AC/DC converters, where
the formulation opens the possibility of designing a control
scheme to achieve a specific objective of ρ ↔ ω propagation
from AC to DC and vice-versa.

Future work will focus on the extension of the expression
(11) to relevant devices, e.g., detailed models of grid-following
and grid-following converters. Finally, upcoming research will
explore applications of (11) for the monitoring, control and
stability analysis of power systems.
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