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Expansion
Xingrui Li, Chengxi Liu, Senior Member, IEEE, Youjin Jiang, Yongjian Luo, and Federico Milano, Fellow, IEEE

Abstract—This paper proposes a reliable and nonintrusive
approach for calculating economical operating states and at
the same time, maintaining the transient stability of the sys-
tem. It focuses on providing a preventive control strategy to
address transient rotor angle stability and short-term voltage
stability issues resulting from severe disturbances. The objec-
tive function, steady-state and multiple types transient stability
constraints are equivalently and simultaneously reformulated in
polynomial expressions of the control variables such that the
original differential-algebraic equations in the transient stability-
constrained optimal power flow model are eliminated. This
reformulation also allows imposing both rotor angle and voltage
magnitude bounds that achieve transient stability and reduce
the complexity in the optimization stage. A transient constraint
reduction strategy is also proposed to address the large number
of constraints introduced by the polynomial chaos expansion
when transforming multiple types of transient constraints. This
strategy enables the elimination of most transient constraints,
thereby further simplifying the overall optimization model. The
effectiveness of the proposed method is numerically illustrated
and validated through the WECC 3-machine 9-bus system and
the IEEE 69-machine 300-bus system.

Index Terms—Transient stability-constrained optimal power
flow, transient rotor angle stability, short-term voltage stability,
polynomial chaos expansion, constraint reduction strategy.

NOMENCLATURE

A. Abbreviations

AI Artificial intelligence.
COI Center of inertia.
DAEs Differential-algebraic equations.
MAPE Mean absolute percentage error.
MC Monte Carlo.
OOP Optimal operating point.
OPF Optimal power flow.
PCE Polynomial chaos expansion.
PCM Probabilistic collocation method.
SGM Stochastic Galerkin method.
SR Stable region.
TDS Time-domain simulation.
TS Trajectory sensitivity.
TSC-OPF Transient stability-constrained OPF.
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B. Functions

C(·) Cost function.
F (·) Function of dynamic and control variables.
f(·) Differential functions of power system model.
g(·) Algebraic functions of power system model.
hs(·) Steady-state inequality constraint functions.
ht(·) Transient inequality constraint functions.
Γ(·) Cumulative distribution function.
Ω(·) Space of variables.

C. Indices

i, j Index of generators or buses.
ci Index of collocation points.
ti Index of time steps.

D. Variables

ai i-th polynomial coefficient.
HΦ Constant matrix obtained from Φi and uci .
PGi Active power injection of the i-th generator.
Psg Active power injection of the generator con-

nected to the reference bus.
x State variables.
y Algebraic variables.
u Control variables.
ui i-th control variable.
uci i-th set of collocation points.
Vi Voltage magnitude of bus i.
Vsi Voltage magnitude of bus i in the steady state.
z Compact form of x and y.
zci System response of i-th set of collocation points.
z(ti) Actual value of z in the i-th time step.
z̃(ti) Estimated value of z in the i-th time step.
δ̄i Rotor angle of generator i.
δCOI
i , δi COI rotor angle of generator i.
Φi i-th term polynomial basis of multi-dimensional

variables
φij (uj) ij-th order polynomial basis of uj .
ϕij (uj) ij-th order original polynomials of uj .

E. Parameters

Ai, Bi, Ci Fuel cost coefficients of the i-th generator.
d Maximum order of univariate polynomial ba-

sis.
hmax
s ,hmin

s Upper and lower bounds of hs, respectively.
Mi Inertia coefficient of generator i.
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N Total degree of polynomial expansion.
Nt Total number of steps.
nx, ny, nu The dimension of x, y, u, respectively.
tf , tc, tend Fault occurrence, clearing time and end of the

simulation, respectively.
umax,umin Upper and lower bound of u, respectively.
V max
s , V min

s Upper and lower bound of voltage magnitude
in steady state, respectively.

V min Voltage magnitude limit.
δmax Rotor angle limit.

F. Sets

B Set of buses.
G Set of generators.
T , Ts, Tc Set of total time steps, time steps before fault

occurrence and after fault clearing, respectively.

I. INTRODUCTION

A. Motivations

The transient stability-constrained optimal power flow
(TSC-OPF) is an effective and appropriate tool to identify
the preventive control actions that are needed for economical
operation and dynamic security of power systems [1]. How-
ever, there remain unresolved issues. For example, most ex-
isting approaches face significant challenges in efficiently and
accurately addressing multiple types of transient constraints
simultaneously, such as rotor angles and voltage magnitudes
[2]. This limitation often results in a substantial increase
in model complexity and computational burden. Moreover,
research on the reduction of transient constraint quantities
remains limited, particularly in scenarios where the TSC-
OPF model incorporates various types of transient constraints.
In such cases, the excessive number of transient constraints
introduces several potential issues, such as numerical stability
and scalability. This work addresses these issues and proposes
a reliable TSC-OPF analysis method and corresponding tran-
sient constraint reduction strategy.

B. Literature review

The TSC-OPF for preventive control is formulated as a non-
linear optimization problem that includes differential-algebraic
equations (DAEs) for considering the system’s dynamic be-
havior and constructing transient constraints. For this reason,
conventional programming methods are not feasible for direct
application [3]. The solutions to this challenging problem
fall into the following five main categories: (i) numerical
discretization methods, (ii) shooting methods, (iii) sequential
methods, (iv) perturbation methods, and (v) surrogate model
methods.

In the numerical discretization methods, the differential
equations in the original TSC-OPF model are discretized
into large-scale algebraic equations or inequalities, and the
reformulated TSC-OPF model is then solved by classical
optimization methods. In [3], the single machine equivalent
theory is adopted to reduce the original multi-machine model
to a two-machine model and then further reduce the latter
to a one-machine infinite-bus equivalent. In [4], the N-1

contingency TSC-OPF problem is addressed using a mixed-
integer linear programming model combined with successive
linear programming, where the dynamics are discretized in
the time domain, and the dynamic equations are integrated
using the trapezoidal rule. In [5], the rotor angle stability
constraints are transformed into algebraic equations using the
trapezoidal integration method and the transformed TSC-OPF
model integrates pre-fault, fault, and post-fault stages into a
unified framework.

The idea of shooting methods is to replace the representa-
tion of the system dynamics with time-domain simulations
embedded in the optimization process, such that the tran-
sient constraints can be directly evaluated from the simulated
trajectories. The single shooting (SS) approach performs the
simulation over the entire post-disturbance interval as a single
integration process and computes the corresponding sensitivi-
ties to guide the optimization [6]. The scheme of SS integrates
the system dynamics over the entire simulation horizon in a
single run and evaluates sensitivities with respect to control
variables based on the resulting trajectories. Although con-
ceptually straightforward and relatively easy to implement, SS
may suffer from the convergence problem and numerical in-
stability, particularly when state trajectories exhibit divergence
or ill-conditioning under severe contingencies. To alleviate the
drawbacks above, the multiple shooting (MS) scheme divides
the simulation horizon into subintervals, introduces boundary
states as optimization variables, and imposes continuity con-
straints to assemble a complete trajectory [7]. This strategy
enhances numerical robustness and convergence by reducing
error accumulation in long-horizon integration but increases
the computational burden due to repeated simulations and
sensitivity evaluations.

Sequential methods reformulate transient stability require-
ments as active power re-dispatch constraints, and decompose
the problem into two subproblems: a conventional OPF aug-
mented with re-dispatch constraints and a transient stability
assessment [8]. By sequentially solving the two subprob-
lems, the generation dispatch is progressively adjusted until
a transiently stable operating point is obtained. This strategy
avoids discretized dynamic constraints, resulting in a problem
dimension and computational cost comparable to standard
OPF, and markedly lower than those of discretization methods
or shooting methods [9]. In [2], the sequential approach is
extended to address not only rotor angle stability but also
transient voltage drops for the first time. Two projection stages
are designed to ensure both transient rotor angle and voltage
stability through non-heuristic active power re-dispatch.

The perturbation method is a local linear approximation
that consists of observing the system’s dynamic response
under small perturbations around the equilibrium operating
point. In [10], the significance of power generation with
respect to rotor angle deviation is approximated using the
trajectory sensitivity (TS) technique and generation is then
shifted to the least vulnerable generator. However, the ac-
curacy deteriorates significantly when the operating points
deviate from the initial one due to the nonlinearity of the
system. The advantages of the perturbation method include
the ability to provide fast approximations and its relatively
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low computational complexity. However, the first-order TS
method lacks the ability to capture the nonlinear dynamics of
the system. Although increasing the order of TS can improve
accuracy by alleviating the approximation error caused by the
nonlinearity [11]–[13], the computational complexity increases
significantly, especially in large-scale power systems. Besides,
when the operating point deviates from the equilibrium point,
the precision and effectiveness of preventive control measures
could be compromised.

The surrogate model methods build the nonlinear rela-
tionship between the system response and the inputs in
either explicit or implicit form which is then utilized to
reformulate the optimization problem. Artificial intelligence
(AI) algorithms constitute an essential subclass of surrogate
model-based approaches for solving the TSC-OPF problem.
With the rapid advancements in AI techniques, a variety of
learning-based methods have been further introduced, such as
decision tree techniques [14], support vector machines [15],
and artificial neural networks [16]. These methods leverage
data-driven approaches to enhance predictive accuracy and
problem-solving capabilities across diverse applications. In
[17], a deep sigma point processes-assisted chance-constrained
method for transient stability preventive control is proposed,
addressing stability risks induced by uncertainties in renew-
able energy and loads. In [18], an ensemble sparse oblique
regression tree method is proposed for the optimization of
voltage stability-constrained operation. AI algorithms can ef-
ficiently handle complex nonlinear relationships inherent in
transient stability constraints and accommodate diverse types
of constraints simultaneously. However, AI algorithms operate
as black-box models, which lack interpretability and, often,
trustworthiness, making it challenging to provide insights
into the underlying decision-making process and to ensure
compliance with operational standards [19].

To deal with the issues above, the polynomial chaos expan-
sion (PCE), which belongs to another subclass of surrogate
model methods and depicts the system response using a set
of orthogonal polynomials and corresponding coefficients of
the inputs [20], is applied. The PCE has all advantages of
AI algorithms with respect to numerical discretization and
perturbation methods. In addition, the advantages of PCE with
respect to AI algorithms are that PCE is free from the dataset
and time-consuming offline training process and is reliable
as it retains, even if approximated, the model of the system.
In [21], the transient rotor angle stability is considered and
transient constraints are reformulated using PCE. However,
short-term voltage stability is not included. Besides, the core
idea of [21] is to add the transformed transient constraints to
the conventional OPF model. The power flow equations are
still required in the optimization stage which increases the
complexity. Moreover, the number of reformulated transient
constraints is tremendous because the transformed constraints
of all generators at every moment are added, which may cause
an excessive computational burden and potentially lead to
convergence issues.

C. Contributions

This paper addresses the limitations above and proposes a
reliable PCE-based TSC-OPF analysis approach for preventive
control where both transient rotor angle stability and short-
term voltage stability problems are simultaneously considered.
The two main contributions of the paper are as follows.

• A transient constraint reduction strategy based on the esti-
mation of upper and lower bounds of dynamic response is
proposed for the first time, addressing the challenge posed
by the large number of algebraic inequality constraints
resulting from the PCE reformulation.

• A systematic PCE-based approach to explicitly reformu-
late the original objective function, complicated DAEs
constraints of steady-state and transient rotor angle and
voltage magnitudes to simple AEs constraints simultane-
ously. This not only ensures the accuracy of model and
constraint estimation but also significantly reduces the
computational complexity of the optimization problem.

D. Paper organization

The remainder of the paper is organized as follows. Section
II presents the mathematical formulation of TSC-OPF. Section
III provides the details of PCE theory and describes the pro-
posed strategy of applying it to transform the DAEs constraints
into AEs constraints. The implementation of the proposed
formulation in two study cases is described in Section IV.
Section V gives the conclusions and proposes future work.

II. TSC-OPF MODEL DESCRIPTION

A. Formulation of TSC-OPF

The conventional optimal power flow (OPF) aims to min-
imize a predefined objective function while complying with
a set of static physical and operational constraints. The TSC-
OPF is a highly nonlinear optimization problem that integrates
transient stability constraints in the form of DAEs into the
conventional OPF. The generalized model of TSC-OPF is as
follows:

min
x(t),y(t),u

C(x(t),y(t),u) , ∀t ∈ [0 , tf ) , (1)

subject to:

ẋ = f(x(t),y(t),u) , ∀t ∈ [0 , tend] , (2)
0 = g(x(t),y(t),u) , ∀t ∈ [0 , tend] , (3)

hmin
s ≤ hs(x(t),y(t),u) ≤ hmax

s , ∀t ∈ [0 , tf ) , (4)
ht(x(t),y(t),u) ≤ 0 , ∀t ∈ (tc , tend] . (5)

The objective function C : Rnx+ny+nu 7→R represents the
operating cost of power production; f : Rnx+ny+nu 7→Rnx

are the differential equations; g : Rnx+ny+nu 7→Rny are
the algebraic equations; hs are the steady-state inequality
constraints and hmin

s and hmax
s are the corresponding lower

and upper bounds; ht are the transient inequality constraints;
x ∈ Rnx is a vector of state variables; y ∈ Rny is a
vector of algebraic variables; u ∈ Rnu is a vector of control
parameters; tf , tc, tend are fault occurrence, clearing time and
end of simulation, respectively. Equations (2) and (3) model
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the dynamic behavior and steady-state power flow balances
of power systems, respectively. Equation (4) represents the
technical limits including power production of generators and
bus voltage magnitudes. Equation (5) includes the transient
stability constraints such as maximum acceptable relative rotor
angle deviation and bus voltage magnitude fluctuation. The full
details of the above TSC-OPF model are given in [3].

B. Transient Stability Criteria

TSC-OPF aims to optimize the power system’s equilib-
rium operating point, achieving both economy and security.
From a preventive security perspective, all security limits in
both steady-state and transient stages under one or multi-
contingency cases are required to be satisfied by only adjusting
the pre-contingency control variables u.

The rotor angle stability criterion states that the maximum
rotor angle deviation during the whole simulation period must
be below the instability limit δmax. To make the criterion more
practically meaningful, the center of inertia (COI) framework
of rotor angle is utilized:

δCOI
i (t) = δ̄i(t)−

∑
j∈G Mjδj(t)∑

j∈G Mj

≤ δmax , ∀i ∈ G , ∀t ∈ (tc , tend] .

(6)

For simplification, δi stands for δCOI
i in the rest of the paper

unless otherwise specified.
In the transient stage, induction motors may decelerate

sharply due to voltage fluctuations and even stall if the electri-
cal torque cannot overcome the mechanical load. Then, a large
amount of reactive current is required and this substantially
further decreases the voltage magnitudes and hinders voltage
recovery. Thus, the transient evolution of voltage magnitudes
also plays a vital role in transient stability. The short-term
voltage stability criterion states that the voltage magnitudes of
all buses are greater than a predetermined limit after the fault
is cleared:

Vi(t) ≥ V min , ∀i ∈ B , ∀t ∈ (tc , tend] . (7)

Traditionally, not only because of the highly nonconvex and
nonlinear features but also the additional DAEs constraints
(2) and (3) compared to the traditional OPF, it is difficult to
solve the TSC-OPF problem, especially when the transient
stability criteria include different variables. To address this,
the next section introduces the PCE technique to construct a
surrogate model that represents the original objective function
(1), the steady-state constraints (4) and transient constraints (5)
through a set of polynomial equations, thereby reformulating
the problem in a tractable polynomial form that implicitly
incorporates the DAEs in (2) and (3). Through this refor-
mulation, the overall complexity of the TSC-OPF model is
effectively reduced.

III. REFORMULATION OF TRANSIENT STABILITY
CONSTRAINTS USING POLYNOMIAL CHAOS EXPANSION

A. Surrogate Model based on Polynomial Chaos Expansion

The overall procedure of the proposed PCE-based TSC-
OPF analysis for preventive control of rotor angle stability
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Perform several time-domain simulations by 

setting the collocation points as initial conditions

Calculate the polynomial coefficients by using 

the simulation results

Estimate the upper and lower bounds of variables 

in constraints and retain parts of the constraints 

according to reduction strategy

Eq. (11)

Eq. (10)

Eq. (2)

 & Eq. (3)

Eq. (12)

Details

Construct univariate orthogonal basis of each 

random variable using Gram-Schmidt 

orthogonalization

 Construct multi-dimensional basis 

Generate collocation points based on the root 

method

Read network data, generation data and load data 

to construct dynamic power system model 

Start

End

Reformulate the TSC-OPF model into 

polynomial form

Solve the reformulated TSC-OPF model

Eq. (20) - 

Eq. (22)

Eq. (23) -

Eq. (25)

Fig. 1. Flowchart of the proposed PCE-based TSC-OPF method.

and short-term voltage stability is summarized in Fig. 1.
The proposed framework consists of several sequential parts.
Orthogonal polynomial bases are first constructed to provide
the functional representation of system responses. Collocation
points are then selected and time-domain simulations are per-
formed, from which the PCE surrogate model is established.
A transient constraint reduction procedure is subsequently em-
ployed to retain only the critical stability constraints. Finally,
the reformulated TSC-OPF model is solved by utilizing a
nonlinear programming solver.

As shown in (2) and (3), the system’s dynamic behavior of
x(t) and y(t) is implicitly related to the control parameters
u. To derive an explicit relationship, the PCE technique is
utilized to build a surrogate model that x(t) and y(t) are
expressed using a set of polynomial equations of u. To
simplify expressions, z(t) ∈ Rnx+ny is used as the compact
form of x(t) and y(t) in the remainder of the paper.

Control parameters u, representing the generator’s active
injection, can be adjusted arbitrarily within a predetermined
and continuous range. The elements of vector u inherently
satisfy two key properties: (i) unbiasedness, meaning that
the values of the elements of u are equally likely in their
specified ranges; and (ii) independence, indicating that the
variations of u are unaffected by external factors or the states
of other generators. These properties enable the transition from
an interval-based representation to a probabilistic modeling
framework. In practice, the elements of u can be regarded as
multi-dimensional random variables following uniform distri-
butions with cumulative distribution function Γ(u) and space
Ω(u). The dimension of u refers to the number of controllable
generators.
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Let z(t) be an implicit function F (t,u) of u:

z(t) = F (t,u) , ∀t ∈ T . (8)

Note that t changes from a continuous variable to a discrete
variable at each simulation step, making the transient con-
straints in the subsequent optimization process finite.

For a single variable z(t) in z(t), the PCE method is
used to construct an explicit relationship between z(t) and u
through a series of orthogonal polynomials and corresponding
coefficients as follows:

z(t) ≈
N∑
i=0

ai(t)Φi(u) , ∀t ∈ T , (9)

where N = (nu+d)!
nu!d!

− 1.
The set of multi-dimensional basis {Φi} is constructed

based on univariate basis φij (uj) as:

{Φi} = {φi1(u1)φi2(u2) · · ·φinu
(unu

) ,

nu∑
j=1

ij ≤ d} . (10)

To derive the univariate basis φij (uj), Gram-Schmidt or-
thogonalization [22] is utilized. For uj , the Gram-Schmidt
orthogonalization process constructs a set of orthogonal poly-
nomials {φ0j (uj), φ1j (uj), · · · , φdj (uj)} from a given in-
dependent polynomial set {ϕ0j (uj), ϕ1j (uj), · · · , ϕdj (uj)}.
First, the 0-th order polynomials φ0j (uj) and ϕ0j (uj) are set
to 1. Next, the orthogonal polynomials are obtained iteratively
using the following recurrence procedure:

φjk (uj) = ϕjk (uj)−
k−1∑
i=0

⟨ϕjk (uj) , φji (uj)⟩
⟨φji (uj) , φji (uj)⟩

φji (uj) , k ≥ 1 ,

(11)
where ⟨·, ·⟩ is the inner product. After the above procedure
is implemented to all control variables, the multi-dimensional
basis {Φi} can be obtained using (10).

B. Probabilistic Collocation method

Once the bases are determined, either the probabilistic
collocation method (PCM) [20] or the stochastic Galerkin
method (SGM) [23] can then be utilized to calculate the
polynomial coefficients ai in (9). SGM is intrusive, requir-
ing substantial reformulation of the system equations and
the solution of high-dimensional deterministic DAEs, which
may become intractable for large-scale systems. By contrast,
PCM is non-intrusive, as it relies only on the input–output
relation of the simulation model and constructs the surrogate
through multiple independent runs at collocation points. This
feature enables straightforward integration with commercial
simulation platforms and allows for efficient parallelization.
For these reasons, PCM is adopted in this work.

The collocation point sets {uci} can be regarded as a set
of samples representing the probabilistic features of u. The
accuracy of approximation results is significantly related to
the selected collocation points. Based on the root method
[23], the collocation points are selected by the combinations
of roots of one higher-order univariate polynomial basis.
For example, consider a 2nd-order PCE with random input

variable u following uniform distributions. The collocation
points are selected based on the roots of the corresponding
one-order-higher orthogonal polynomial of univariate random
variable, namely the 3rd-order Legendre polynomial. The 3rd-
order Legendre polynomial is given by φ3(u) = 5u3 − 3u
and the roots are {−

√
3/5, 0,

√
3/5}. For multi-dimensional

random inputs, such as when there are nu random inputs,
the total number of collocation point combinations formed
by the roots is 3nu .The number of collocation sets equals
the number of polynomial bases (N + 1), which is also the
number of required time-domain simulations to calculate the
corresponding system dynamic response zci . To determine the
(N + 1) polynomial coefficients in the PCE model, (N + 1)
subsets are selected randomly from the complete sets. Then,
the polynomial coefficients ai(t) are calculated based on the
collocation point sets uci and the system response zci by
solving the following linear equation:[

a0(t), a1(t), · · · , aN (t)
]T

= H−1
Φ

[
zc1(t), zc2(t), · · · , zcN+1

(t)
]T

, ∀t ∈ T ,
(12)

where HΦ is a constant matrix obtained from the basis Φi

and collocation point sets uci :

HΦ =


Φ0(uc1) Φ1(uc1) · · · ΦN (uc1)
Φ0(uc2) Φ1(uc2) · · · ΦN (uc2)

...
...

...
...

Φ0(ucN+1
) Φ1(ucN+1

) · · · ΦN (ucN+1
)

 .

C. Transformation of the Objective Function and Constraints

First, we define the objective function in this paper as the
operating cost of power production:

C(PGi) =
∑
i∈G

(AiP
2
Gi +BiPGi + Ci) . (13)

Regarding the selection of control variables, in the proposed
approach, the power flow equations are resolved in advance
during the simulation stage. Specifically, the output of the
generator at the reference bus Psg is treated as a system
response determined by the outputs of the other generators
instead of a control variable, and its PCE representation is
derived accordingly. This allows the objective function to be
expressed explicitly in terms of control variables and PCE
coefficients, without the need to include power flow constraints
in the subsequent optimization problem. Meanwhile, the opti-
mality of the solution is not affected. To transform the Psg in
the objective function, (9) is utilized as:

Psg(t) ≈
N∑
j=0

a
(Psg)
j (t)Φj(u) , ∀t ∈ Ts . (14)

So, the transformed objective function is of the polynomial
coefficients a(Psg)

j and control variables u. Note that since Psg

is determined by the outputs of the controllable generators, Psg

does not satisfy the independence assumption required for the
probabilistic modeling of input variables.
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Next, we reformulate the steady-state constraints using (9).
For example, the voltage magnitudes in the steady-state stage
can be expressed as:

Vsi(t) ≈
N∑
j=0

a
(Vsi)
j (t)Φj(u) ,∀i ∈ B , ∀t ∈ Ts . (15)

Accordingly, the steady-state voltage magnitude constraints
are:

V min
s ≤

N∑
j=0

a
(Vsi)
j (t)Φj(u) ≤ V max

s , ∀i ∈ B , ∀t ∈ Ts .

(16)
By reformulating the objective function and steady-state

constraints, the power flow equations in the steady-state stage
are replaced and eliminated. Since the original power flow
equations are implicit functions of u, while the reformulated
objective function and steady-state constraints are explicit, the
complicity of the optimization model is reduced.

We further express the system dynamic responses z(t) to
polynomial form. The transient inequality constraints (6) and
(7) can be transformed into polynomials correspondingly:

δi(t) ≈
N∑
j=0

a
(δi)
j (t)Φj(u) ≤ δmax , ∀i ∈ G , ∀t ∈ Tc , (17)

Vi(t) ≈
N∑
j=0

a
(Vi)
j (t)Φj(u) ≥ V min , ∀i ∈ B , ∀t ∈ Tc . (18)

In this way, the DAEs of the TSCOPF model are completely
eliminated since (17) and (18) contain all dynamic information
of the rotor angle and voltage magnitude in the transient
process, respectively. Therefore, the TSC-OPF model can be
reformulated in compact form as:

min
u

C(a(Psg)(t),u) , ∀t ∈ Ts , (19)

subject to:

hmin
s ≤ hs(a

(z)(t),u) ≤ hmax
s , ∀t ∈ Ts , (20)

ht(a
(z)(t),u) ≤ 0 , ∀t ∈ Tc . (21)

An advantage of the proposed method is that the objec-
tive function and all constraints are expressed in an explicit
polynomial form. As a result, the system parameters, power
flow equations, and system dynamic equations are no longer
required to be input and modeled in the optimization solver
which significantly reduces the complexity of the model.
The DAEs constraints (2) and (3), which are not directly
solvable in commercial optimization software, are eliminated
and implicitly embedded within the transformed model. This
reformulation results in a set of explicit polynomial inequality
constraints (20) and (21), which can be effectively solved using
commercial optimization software equipped with nonlinear
solvers.

Regarding the quadratic property of the transformed objec-
tive function (19), when the 1st-order PCE is applied, the
mapping from the polynomial coefficients to the generator
outputs is linear, and the transformed objective function (20)
remains quadratic. For the 2nd-order or higher expansions, the

polynomial basis introduces higher-order terms, which result
in the transformed objective no longer being quadratic. As
for convexity, although the cost function remains quadratic
for the 1st-order expansion, the overall TSC-OPF model is
inherently non-convex due to the power flow equations and
transient stability constraints. This non-convexity persists in
the surrogate model (19)-(21) for higher-order expansions. In
practice, high-quality solutions can be obtained by applying
local nonlinear solvers with multiple initial guesses, including
physically meaningful ones such as the current operating point
or typical system setups.

In this paper, the CONOPT solver in GAMS is utilized to
solve the reformulated optimization problem. Moreover, the
construction process of the surrogate model is non-intrusive
and commercial simulation software can be directly utilized
to build the surrogate model. Only predetermined collocation
points and system dynamic response are needed to derive the
polynomial expressions (9) which means the modification of
the built-in models or numerical solvers is not required. The
advantages above ensure ease of use for power utilities. Note
that since PCE is applied to model the dynamic response at
each time instant, it provides a versatile framework to address
additional objectives. For instance, by imposing bounds on the
difference between the system’s response at two arbitrary time
points and ensuring that the variation remains within a prede-
fined threshold, the transient fluctuations can be mitigated.

D. Reduction Strategy of Transient Stability Constraints
Converting the transient stability constraints into inequal-

ity constraints leads to a high number of inequalities. The
computational burden of solving this high-dimensional poly-
nomial optimization problem can become untractable. To solve
this issue, we propose a strategy to reduce the number of
constraints, based on the estimation of the upper and lower
bounds of δi(t) and Vi(t). In [20] and [24], the expectation
and standard deviation of the system response are obtained
from the PCE model, and the corresponding bounds are subse-
quently determined using the 3σ criterion, which assumes that
nearly all samples lie within three standard deviations from the
mean. Nonetheless, notable discrepancies arise between the
estimated and actual upper and lower bounds, particularly near
the inflection points of the response curves. This discrepancy
primarily results from the fact that the 3σ rule presumes a
Gaussian distribution of the samples, whereas the actual dis-
tribution of system response deviates from any standard form
due to the inherent nonlinearities of the system. In addition,
inaccuracies in the approximated expectation and standard
deviation employed within the 3σ rule further contribute to
the observed estimation errors.

Instead of using the expectation and standard deviation
that has been utilized in other works (see, e.g., [20], [24]),
we derive the upper and lower bounds of δi(t) and Vi(t)
at each time step directly by solving optimization problems
where the objective functions are minimizing or maximizing
the polynomial expressions of transient rotor angles (17) and
voltage magnitudes (18) and the constraints are the closed
intervals [umin,umax]. Then, only binding constraints are
included in the transformed TSC-OPF model (19) to (21).
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The bounds of transient rotor angles and voltages are
determined by solving the following optimization problems,
respectively:

min
u

or max
u

N∑
j=0

a
(δi)
j (t)Φj(u) , ∀i ∈ G , ∀t ∈ Tc , (22)

or:

min
u

or max
u

N∑
j=0

a
(Vi)
j (t)Φj(u) , ∀i ∈ B , ∀t ∈ Tc , (23)

subject to:
umin ≤ u ≤ umax . (24)

Note that the proposed reduction strategy is most effective if a
small subset of rotor angles or voltage magnitudes exceed their
limits during specific time intervals. This is however the most
common situation and it is what we have observed to happen
in all scenarios that we have considered while preparing this
work. In addition, the applicability of this approach relies
on the accuracy of the underlying surrogate model, which
guarantees that the eliminated constraints correspond to states
with zero probability of violation. Therefore, while the strategy
effectively reduces complexity, its validity is inherently linked
to the surrogate model’s representation accuracy. Moreover,
given that each optimization model operates independently, a
parallel computing framework can be leveraged to accelerate
the computational process.

Finally, note that the stability of the optimization results
is determined by the accuracy of the PCE-based surrogate
model, rather than the proposed reduction strategy of transient
stability constraints. The constraints eliminated by the pro-
posed reduction strategy are redundant, meaning that, within
the admissible range of control variables, the PCE-represented
voltage and rotor angle trajectories never violate their limits.
Consequently, removing these constraints neither alters the
stable region nor changes optimization results.

E. Diagram for Illustration

The diagram of the proposed transient constraint reduction
strategy and the stable region estimation are shown in Fig. 2.
In this simple example, two control variables, u1 and u2,
are considered, with the constraints consisting of steady-
state constraints hs1 and hs2, as well as transient constraints
corresponding to ht1 at times tm and tn, and ht2 at times ti
and tj . First, taking the transient constraint ht1 as an example,
its upper and lower bounds can be estimated by solving the
optimization model defined by (22) to (24). As shown in Fig. 2,
at time tm, the lower bound of ht1 is below its limit hmin

t1 ,
indicating that inappropriate values of the control variables u1

and u2 may result in a violation of the transient constraint.
Thus, the constraint on ht1 at tm is identified as a critical
constraint. In contrast, the constraint on ht1 at tn is considered
a redundant constraint.

To intuitively illustrate the distinction between critical and
redundant constraints, the probability density of ht1 at tm and
tn is also depicted in Fig. 2. The probability density of ht1 is
derived by applying the Monte Carlo method to its polynomial
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Fig. 2. Transient constraint reduction and stable region estimation process.

expression [25]. The probability distribution shows that ht1 is
at risk of violating its limit at tm, whereas no such risk exists
at tn. Based on the proposed constraint reduction strategy, only
critical constraints, such as the constraint ht1(tm), are retained,
while redundant constraints, such as ht1(tn), are discarded.
Within the domain of the control variables, the inequality
ht1(tm) ≥ hmin

t1 defines a stability region that satisfies the
constraint on ht1 at tm.

The same process is applied to transient constraint ht2,
allowing critical constraints, such as ht2(ti) and ht2(tj), to be
identified. The impact of steady-state constraints hs1 and hs2

can be determined by solving the inequalities hmin
s1 ≤ hs1 ≤

hmax
s1 and hmin

s2 ≤ hs2 ≤ hmax
s2 . Finally, the stable region is

depicted by taking the intersection of steady-state constraints
with the retained critical transient constraints.

Note that we consider one single harmful contingency in the
rest of the manuscript. However, multi-contingency scenarios
can be readily considered by adding (21) to the transformed
TSC-OPF model for each contingency. In what follows, only
single-contingency cases are illustrated.

IV. CASE STUDIES

In this section, we apply the proposed PCE-based TSC-OPF
method in the WECC 3-machine, 9-bus system [26] and the
IEEE 69-machine, 300-bus system [27]. In both case studies,
the detailed 6-order generator model, excitation, and turbine
system [28] are considered. The 9-bus system is presented
to illustrate the features of the PCE method by comparing
the accuracy, reliability, and cost with the 2nd-order TS [13],
while the 300-bus system serves to illustrate the robustness
of the proposed method when applied to a larger system with
more constraints and more state and algebraic variables that
potentially violate the constraints.

All simulations are carried out using Matlab R2023a and
GAMS 23.8.1 on a laptop with Intel Ultra 5 125H (4.5GHz)
and 32 GB RAM. The power flow results for the initialization
of time-domain simulations are calculated by MATPOWER
7.1 [29]. The time-domain simulations are carried out based
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Fig. 3. Topology of the 9-bus system.

on modified PSDAT [28], and the time step of numerical
integration is 0.01 s. The TSC-OPF problem is finally solved
using CONOPT in GAMS.

A. WECC 9-Bus System

This case serves to compare the accuracy, stability, and cost.
The full static and dynamic data of the WECC 3-machine, 9-
bus system can be found in [29] and [28], respectively. The
whole time-domain simulation time is 5 s, whereas a three-
phrase fault occurs at 0.5 s on bus 9 and is cleared after 0.15
s by tripping line 9-4. The single-line diagram of the 9-bus
system is shown in Fig. 3.

The steady-state constraints are set as the voltage magni-
tudes of PQ buses are within the limits of [0.95, 1.05] p.u. The
transient rotor angle and voltage constraints are δmax = 100◦

[30] and V min = 0.8 p.u. [31], respectively. Note that in this
case, due to the system parameters and fault settings, by only
adjusting PG2 and PG3, the voltage magnitudes are inevitably
below V min for a period of time after the fault is cleared.
Thus, following the work of [1], the acceptable maximum
duration of the voltage violation td is introduced in this case
and td is set to 0.75 s. This setting is based on the control
capability of the implemented control measures, ensuring that
the chosen duration aligns with the system’s ability to effec-
tively mitigate disturbances. It is worth noting that td is not a
fixed parameter; rather, it can be adapted according to differ-
ent system conditions and operational requirements, thereby
providing flexibility in accommodating diverse grid codes or
reliability standards. The cost coefficients are [A1, A2, A3]

T =
[0.0525, 0.0175, 0.0275]T, [B1, B2, B3]

T = [0.3, 0.25, 0.25]T,
[C1, C2, C3]

T = [37.5, 75, 33.75]T, which are modified from
the benchmark in [29] to introduce a more distinct difference
in the optimal operating points obtained by different methods.

To quantitatively evaluate and compare the accuracy, the
mean absolute percentage error (MAPE) ez is used:

ez =

Nt∑
i=1

∣∣∣∣z(ti)− z̃(ti)

z(ti)

∣∣∣∣ 100Nt
% . (25)

Note that the reason for choosing MAPE as the index is that it
normalizes errors by the magnitude of actual values, providing

a percentage-based measure that is scale-independent and in-
tuitive. Additionally, the use of MAPE aligns with established
practices in the literature, such as [21], where it has been
employed effectively to compare the accuracy.

For the discussion presented in this subsection, we consider
the active power injection PG2 ∈ [100, 170] MW of generator
2 and PG3 ∈ [50, 120] MW of generator 3 as the control
variables, while bus 1 is the reference bus. The rotor angle of
generator 2 (δ2) and the voltage magnitude of bus 9 (V9) are
selected as representatives since they may violate the stability
constraints during the simulation. The initial equilibrium oper-
ating point (OP) is PG0 = [PG20, PG30]

T = [135, 85]T MW
for the 2nd-order TS. Then, the OPs are set from 80%PG0

to 120%PG0 to test the estimated accuracy for both PCE and
the 2nd-order TS. The actual trajectories are obtained using
the original DAEs which are set as benchmarks.

The MAPE comparison of δ2 and V9 is summarized in Ta-
bles I and II, respectively. For the 2nd-order TS, the estimation
error increases as the OPs get farther away from PG0, as
expected. The reason is that though the 2nd-order TS takes
the nonlinearity of the system response into consideration,
the approximation model is still constructed based on small
perturbations around the initial equilibrium point, that is, PG0.
Consequently, the farther the OPs are from PG0, the worse the
accuracy caused by the system nonlinearity. In contrast, the ac-
curacy of PCE remains stable when the OP changes. Because
the probabilistic density function is considered rather than one
single OP. Also, in the 3rd-order PCE, the inherent nonlinear
characteristics of the system are more accurately preserved
than in the 2nd-order TS which leads to higher accuracy. With
the order of PCE increases from 1 to 3, the accuracy improves
significantly. The observed improvement in accuracy with
increasing expansion order reflects the inherent convergence
property of the PCE. Specifically, as the expansion order
is raised, the PCE approximation increasingly captures the
underlying functional mapping between the input uncertainties
and system responses with higher accuracy. Tables I and II
reflect the superiority of the proposed method in terms of
accuracy for trajectory estimating, especially when OPs are
far from PG0.

TABLE I
MAPE OF TRAJECTORIES OF δ2 IN THE 2ND-ORDER TS AND DIFFERENT

ORDERS OF PCE

Method eδ2
80%PG0 90%PG0 110%PG0 120%PG0

2nd-order TS 1.03% 0.97% 1.01% 1.05%
PCE, d=1 1.15% 1.63% 1.52% 1.48%
PCE, d=2 0.83% 1.01% 0.71% 1.03%
PCE, d=3 0.45% 0.14% 0.30% 0.23%

The evolution of error of δ2 and V9 using the 2nd-order
TS and PCE when OP is 80%PG0 are shown in Fig. 4.
Note that the vertical axis represents the general error rather
than specifically the MAPE. The error of PCE decreases as
the order increases, as expected. Meanwhile, the accuracy
of trajectory estimation affects the determination of stability
boundaries, thus affecting the performance of the optimization
results.
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TABLE II
MAPE OF TRAJECTORIES OF V9 IN THE 2ND-ORDER TS AND DIFFERENT

ORDERS OF PCE

Method eV9

80%PG0 90%PG0 110%PG0 120%PG0

2nd-order TS 0.12% 0.10% 0.09% 0.26%
PCE, d=1 0.11% 0.15% 0.19% 0.37%
PCE, d=2 0.09% 0.13% 0.12% 0.30%
PCE, d=3 0.04% 0.01% 0.02% 0.02%
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Fig. 4. Error comparison of the 2nd-order TS and PCE when OP is 80%PG0.
Upper panel: δ2; Lower panel: V9.

The trajectories of the Monte Carlo (MC) method and the
estimated upper and lower bounds obtained from the 2nd-
order TS and PCE are shown in Fig. 5. The input data sets
of MC are randomly generated within the ranges of PG2

and PG3. The expansion order of PCE is set to 3. For PCE,
the 3σ rule and the proposed strategy based on optimization
methods are utilized to estimate the bounds. It is observed
that the bounds of 2nd-order TS are more accurate than the
bounds obtained by the 3σ rule, while the proposed strategy
is of the highest accuracy among these three methods. In
addition, when the constraint reduction strategy is adopted, if
the estimated interval is larger than the actual one, such as the
bounds of PCE using the 3σ rule, then the final optimization
step contains redundant and ineffective constraints which may
lead to excessive computational burden. Conversely, if the
estimated interval is too small, then there may be too few
constraints in the optimization process, resulting in the final
optimized OP violating the stability constraint.

Table III shows the number of transient constraints before
and after applying the proposed constraint reduction strategy.
It is clear that the proposed strategy reduces the number of
transient constraints significantly. The difference in different
orders of PCE is on account of the accuracy of the constructed
surrogate model. The higher the accuracy of the surrogate
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Fig. 5. MC trajectories and estimated bounds of the 2nd-order TS and PCE.
Upper panel: δ2; Lower panel: V9.

model, the more effective the proposed strategy.

TABLE III
COMPARISON BEFORE AND AFTER APPLYING TRANSIENT CONSTRAINT

REDUCTION STRATEGY

Method
Number of transient constraints

δ V
Before After Before After

PCE, d=1
1305

40
3375

19
PCE, d=2 33 12
PCE, d=3 27 15

Since the constraints of TSC-OPF are transformed into the
explicit polynomial form using the proposed method as in (20)
and (21), the stable region (SR) of PCE can be estimated
as shown in Fig. 6. For MC and the collocation points of
PCE, an OP is unstable if at least one stability constraint is
violated, either in the steady state or transient process, and
either in terms of rotor angle or voltage magnitude, otherwise,
it is stable. The accuracy of the estimated SR increases as the
expansion order of PCE increases, as expected. Moreover, it
can be observed that the collocation points include both stable
and unstable operating conditions. The essential requirement is
that these points collectively provide sufficient coverage of the
input space, thereby enabling the PCE to accurately capture
the functional relationship between the control variables and
the system responses. Note also that, if unstable OPs are
included in the SR, the final results of optimization might
lead to instability. In contrast, if stable OPs are mistakenly
classified outside SR, the results could be too conservative
and uneconomical.

To further compare the optimization performance, the de-
cision tree (DT) method is also considered [32]. Table IV
provides the optimal operating point (OOP) and corresponding
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cost obtained from the base OPF, DT, the 2nd-order TS, and
different orders of PCE. Also, whether the rotor angle or
voltage curves under the given OOP are stable is presented.
The base OPF case contains only the steady-state constraints.
Though it is the most economical one, the transient stability
is not satisfied under this OOP. The OOP of PCE when d = 2
achieves rotor angle stability while failing to maintain voltage
stability. This means in this case, a higher order of PCE is
needed to capture the boundaries of voltage than rotor angles.
The main reason is that voltage undergoes a step change after
the occurrence and clearing of the fault, leading to stronger
nonlinearity. Although both 3rd-order PCE and DT satisfy
the transient stability constraints on rotor angle and voltage
magnitude, 3rd-order PCE attains a lower generation cost,
indicating a more accurate estimation of the stability boundary.

TABLE IV
COMPARISON OF OPTIMIZATION RESULTS

Method PG1 PG2 PG3 Cost Stability
(MW) (MW) (MW) ($/h) δ V

Base OPF 56.26 161.05 103.00 1140.93 ✗ ✗
DT 62.09 149.39 108.51 1146.06 ✓ ✓

2nd-order TS 62.04 151.19 106.76 1144.87 ✓ ✗
PCE, d = 1 64.54 157.31 98.05 1145.56 ✗ ✗
PCE, d = 2 62.08 153.17 104.74 1143.96 ✓ ✗
PCE, d = 3 61.89 149.96 108.14 1145.59 ✓ ✓

Table V summarizes the number of transient constraints and
required simulations under different approaches. As shown
in Table V, DT does not introduce explicit transient con-
straints because it classifies operating points based on stability
information rather than enforcing individual transient limits
within the optimization process, yet it requires a relatively
large number of time-domain simulations, namely 500 runs, to
prepare the dataset for training the classifier. By contrast, 2nd-
order TS generates a very large number of explicit transient
constraints, reaching 4680, although the number of required
simulations remains limited. The PCE-based method, com-
bined with the proposed constraint reduction strategy, achieves
a more favorable balance: when the expansion order increases
from 1 to 3, the number of explicit transient constraints is
progressively reduced from 59 to 42, while the number of
required simulations grows only from 3 to 10. These results
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Fig. 7. Error index of moments of the proposed method with different
expansion order d in evaluating δ2 and V9.

demonstrate that the PCE approach effectively identifies the
critical constraints, thereby alleviating the size of the opti-
mization model.

TABLE V
COMPARISON OF NUMBER OF TRANSIENT CONSTRAINTS AND

SIMULATIONS

Method Number of transient Number of
constraints simulations

DT - 500
2nd-order TS 4680 6
PCE, d = 1 59 3
PCE, d = 2 45 6
PCE, d = 3 42 10

To quantitatively and comprehensively compare the accu-
racy of different orders of PCE from a statistical perspective,
the following error index of moments eM is defined:

eM =

√√√√√ 2∑
j=1

[
Nt∑
i=1

∣∣∣∣∣M (j) (ti)− M̃ (j) (ti)

M (j) (ti)

∣∣∣∣∣ 1

Nt

]2

, (26)

where M (j) and M̃ (j) are the j-th actual and estimated central
moments of the system response. The first and second central
moments, namely the mean and variance, are considered.

Fig. 7 illustrates the trade-off between computational burden
and estimation accuracy of the proposed method under differ-
ent expansion orders, presented in semilogarithmic scale. It
can be observed that increasing the order from 1 to 3 leads to
a significant improvement in accuracy, whereas further raising
the order offers only marginal gains while the computational
burden grows considerably. It is also worth noting that the
increase in computational burden becomes more pronounced
at higher expansion orders. For example, when the order
increases from 1 to 2, the number of required time-domain
simulations rises from 3 to 6. By contrast, when the order
increases from 4 to 5, the simulations grow from 15 to 21. The
3rd-order PCE achieves sufficient accuracy to simultaneously
satisfy the transient constraints on rotor angle and voltage
magnitude. Therefore, the 3rd-order expansion provides the
most appropriate balance between accuracy and efficiency.

B. IEEE 300-Bus System

We use this case to illustrate the ability of the proposed
PCE-based method to approximate and control more state
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and algebraic variables that potentially violate the stability
constraints in a larger system. The detailed data and the
topology of the IEEE 69-machine, 300-bus system can be
found in [28] and [33], respectively. The fault is set as a three-
phase fault occurring at bus 4 at t = 0.5 s, and subsequently
cleared by tripping line 4-16 after 0.15 s.

The controllable generators include all generators in the
system except for the generator connected to the reference
bus. The hyperbolic truncation scheme is employed to alleviate
the curse of dimensionality caused by the large amount of
control variables. Since this truncation scheme is not the
contribution of this paper, further details can be found in
[34]. By eliminating the cross terms, the number of required
simulations is reduced significantly. Admittedly, the truncation
process introduces a certain degree of accuracy degradation.
However, as the same truncation scheme is consistently ap-
plied to both PCE and the finite difference-based 2nd-order TS
because both of them suffer from the curse of dimensionality, it
ensures a rigorous and unbiased comparison of their respective
approximation accuracies. The initial OP PG0 is the original
active power injection of the controllable generators and the
controllable range is [90%PG0, 110%PG0]. The steady-state
and transient constraint settings are the same as in the previous
case except td = 0 because the employed control measures
are capable of restoring the voltage above the transient limits
immediately after fault clearance. The reference cost coeffi-
cients of generators are utilized as provided in the benchmark
[28], maintaining consistency with established practices for
the larger system model. The rotor angle of the generator at
bus 76 (δ76) and the voltage magnitude of bus 42 (V42) are
selected as representatives.

Tables VI and VII show the MAPE comparison of PCE and
the 2nd-order TS under different OPs. The farther the OP is
from PG0, the lower the accuracy of the 2nd-order TS, while
the accuracy of PCE is stable, as expected. In addition, for
PCE, an increase in d leads to an increase in the accuracy of
the approximation of state and algebraic variables, as expected.
Meanwhile, the 3rd-order PCE achieves the highest accuracy.

TABLE VI
MAPE OF TRAJECTORIES OF δ76 IN THE 2ND-ORDER TS AND DIFFERENT

ORDERS OF PCE

Method eδ76
90%PG0 95%PG0 105%PG0 110%PG0

2nd-order TS 4.04% 1.20% 0.94% 2.55%
PCE, d=1 7.21% 2.75% 1.96% 5.37%
PCE, d=2 2.59% 1.14% 0.92% 0.98%
PCE, d=3 0.47% 0.53% 0.31% 0.33%

TABLE VII
MAPE OF TRAJECTORIES OF V42 IN THE 2ND-ORDER TS AND DIFFERENT

ORDERS OF PCE

Method eV42

90%PG0 95%PG0 105%PG0 110%PG0

2nd-order TS 0.67% 0.25% 0.20% 0.91%
PCE, d=1 1.03% 0.52% 0.43% 1.28%
PCE, d=2 0.33% 0.27% 0.15% 0.29%
PCE, d=3 0.09% 0.14% 0.09% 0.16%

Table VIII summarizes the results before and after applying
the transient constraint reduction strategy. Because there are
more critical machines and buses in this case, more constraints
are preserved than in the previous case. It is worth noting
that in this case, the total number of transient constraints
reaches more than 86000. Although CONOPT in GAMS
is capable of handling constraint sets of this magnitude,
the computational burden would escalate significantly for
larger systems if no reduction strategy is employed. More
critically, an excessive number of transient constraints may
exceed the solver’s computational capacity, potentially leading
to infeasibility or numerical instability in the optimization
process. Furthermore, the discarded constraints correspond to
generator angles or bus voltages whose polynomial surrogate
representations remain strictly within admissible limits for all
control variable realizations. Consequently, their elimination
does not compromise the final optimization outcome.

TABLE VIII
COMPARISON BEFORE AND AFTER APPLYING TRANSIENT CONSTRAINT

REDUCTION STRATEGY

Method
Number of transient constraints

δ V
Before After Before After

PCE, d=1
16215

5379
70500

11375
PCE, d=2 5238 11146
PCE, d=3 5066 10921

Table IX shows stability and cost results using different
methods. From Table IX, it can be observed that while the
OOPs obtained from the base OPF, the 2nd-order TS method,
and both the 1st- and 2nd-order PCE methods result in
lower operational costs, they fail to simultaneously satisfy
transient stability requirements. This limitation arises due to
the insufficient approximation accuracy of these methods in
capturing the nonlinear dynamic behavior of the system. In
contrast, only the 3rd-order PCE successfully ensures both
rotor angle and voltage transient stability, demonstrating its
superior capability in accurately modeling system dynamics.

TABLE IX
STABILITY AND COST RESULTS

Method Stability Cost (106$/h)
δ V

Base OPF ✗ ✗ 1.07277
2nd-order TS ✓ ✗ 1.09062
PCE, d = 1 ✗ ✗ 1.08534
PCE, d = 2 ✓ ✗ 1.09099
PCE, d = 3 ✓ ✓ 1.10136

Figures 8 and 9 show the trajectories of rotor angles and
voltage magnitudes starting from the OOPs of base OPF
and 3rd-order PCE, respectively. The trajectories of the rotor
angle in Fig. 9 are far from the limit, while those of voltage
magnitude are close to the limit indicates that the SR of
voltage magnitudes is smaller around the OOP. Figures 8
and 9 show that, while the base OPF solution leads to rotor
angle and voltage limit violations, the 3rd-order PCE-based
solution avoids these violations. Figures 8 and 9 also show
the qualitative difference between these two operating points
in terms of transient performance.
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Fig. 8. Rotor angles and voltage magnitudes for base OPF.
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Fig. 9. Rotor angles and voltage magnitudes for 3rd-order PCE.

Fig. 10 shows the computation time versus the precision
of different orders of the proposed method in semilogarithmic
coordinates. As shown in Fig. 10, a significant improvement
in estimation accuracy is observed when the expansion or-
der d is increased from the 1st to the 3rd order. However,
further increases in the expansion order do not yield sub-
stantial improvements in accuracy, while the computational
time continues to rise rapidly. At the 3rd order, the transient
constraints on both rotor angle and voltage magnitude are
satisfied simultaneously. Therefore, based on a balance be-
tween estimation accuracy and computational efficiency, the
3rd-order expansion is considered the most suitable choice in
the context of this case.

Table X summarizes the computational burdens. It can be
seen that the base OPF achieves the highest calculation speed
because a large amount of transient stability constraints are
ignored. In the time-domain simulation (TDS) stage, the time
consumption of the 2nd-order TS and PCE are similar because
both methods are essentially quadratic approximations. The
number of required time-domain simulations increases approx-
imately linearly with the PCE expansion order when using the
hyperbolic truncation scheme. Therefore, the computational
burden of the TDS stage increases accordingly. Specifically, 69
simulations are required for 1st-order, 137 for 2nd-order, and
205 for 3rd-order PCE. Compared with the full tensor-product
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Fig. 10. Error index of moments of the proposed method with different
expansion order d in evaluating δ76 and V42.

expansion without truncation, which requires 69, 2415, and
57155 simulations for 1st- to 3rd-order PCE, respectively, the
truncation scheme eliminates higher-order interaction terms
among control variables, substantially reducing the total num-
ber of simulations and improving computational tractability. In
the optimization stage, by implementing the proposed transient
constraint reduction strategy, PCE achieves higher efficiency
than the 2nd-order TS. As a result, although the 3rd-order
PCE takes the longest time, it provides an effective solution.
In addition, although the proposed algorithm is designed for
offline implementation, it is important to note that it is intended
for “preventive” control. In practical power systems, operators
typically perform short-term analyses every 15 to 30 minutes.
Thus, despite the computational demands of the proposed
method, the computational burden is considered acceptable in
real-world applications. Additionally, during the time-domain
simulation stage, which accounts for the majority of the
computational burden, the simulations are independent of one
another inherently. This independence allows for the straight-
forward implementation of parallel computing frameworks,
which could further enhance computational efficiency.

TABLE X
COMPUTATIONAL BURDEN RESULTS

Method Computational burden (s)
TDS stage Optimization stage Total

Base OPF — 0.63 0.63
2nd-order TS 237.07 47.38 284.45
PCE, d = 1 121.60 6.62 128.22
PCE, d = 2 236.43 8.65 245.08
PCE, d = 3 349.26 11.49 360.75

V. CONCLUSIONS

This paper proposes a PCE-based TSC-OPF approach to
accurately assess the dynamic response and provide reliable
preventive control so that the operating point achieves eco-
nomic and transient rotor angle and short-term voltage stability
simultaneously. The DAEs constraints of the dynamic system
are eliminated by substituting the objective function, steady-
state, and transient constraints with a set of polynomials of
control variables. This process is nonintrusive which provides
ease of use for utility companies. In addition, a transient con-
straint reduction strategy is embedded to significantly reduce
the number of constraints which improves the efficiency.

Numerical results clearly demonstrate the effectiveness of
the proposed method in solving the TSC-OPF problem. Re-
garding the 9-bus system, the DT and the proposed 3rd-
order PCE are the only approaches that simultaneously satisfy
both transient rotor angle and voltage constraints. The cor-
responding operating costs are 1146.06 $/h for the DT and
1145.59 $/h for the 3rd-order PCE, with the latter demon-
strating superior economic performance. Although the 2nd-
order TS approach achieves a lower cost of 1144.87 $/h, it
fails to satisfy the transient voltage constraints. Moreover,
by applying the proposed reduction strategy, the number of
transient constraints in the 3rd-order PCE is decreased from
4680 to 42, which substantially reduces the dimensionality of
the reformulated optimization problem. In the 300-bus system,
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although the 3rd-order PCE yields a higher operating cost of
1.10136×106 $/h compared with 1.09062×106 $/h under the
2nd-order TS approach, only the 3rd-order PCE is able to
simultaneously satisfy both transient rotor angle and voltage
constraints, whereas the 2nd-order TS method ensures rotor
angle stability only. In addition, the 3rd-order PCE requires
205 time-domain simulations, which is larger than the number
required by the 2nd-order TS and leads to a longer simulation
stage. Nevertheless, the adoption of the proposed constraint
reduction strategy substantially decreases the computational
burden in the optimization stage, where the solution time
is reduced to 11.49 s, significantly shorter than the 47.38 s
required by the 2nd-order TS approach.

Future work includes investigating preprocessing techniques
to facilitate the integration of PCE into transient stability anal-
ysis, with particular emphasis on improving the accuracy of
stability boundary characterization. Also, future work involves
testing the proposed methodology on electromagnetic transient
models that include more nonlinear elements. Other directions
for future work include extending the framework to account
for model variations induced by non-uniform operational con-
straints, such as ramping limits and the activation of reactive
power controller limits as well as for scenarios with dynamic
generator control actions in the post-fault stage.
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