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On the Numerical Stability and Accuracy of
One-Step Delay Approximations

Georgios Tzounas, IEEE Member, Federico Milano, IEEE Fellow

Abstract— The One-Step Delay Approximation (OSDA) tech-
nique consists in delaying certain variables of a power system
model with time delays of magnitude equal to the step size of the
Time Domain Integration (TDI). The objective of the OSDA is
to reduce the mutual coupling of the system’s equations and the
density of the Jacobian matrix that needs to be factorized at each
step of the TDI. In turn, the OSDA leads to a simulation speedup
but may worsen the accuracy of the results. This paper provides a
novel matrix-pencil based approach to assess the OSDA technique
in terms of its impact on the accuracy and numerical stability of
the TDI of power systems. The case study illustrates the proposed
approach through the WSCC 9-bus benchmark system.

Index Terms— Time Domain Integration (TDI), delay-based
decoupling, One-Step Delay Approximation (OSDA), numerical
stability, Small Signal Stability Analysis (SSSA).

I. INTRODUCTION

A. Motivation

The transient stability analysis of power systems relies on
the Time Domain Integration (TDI) of a set of nonlinear
Differential Algebraic Equations (DAEs) [1]. Despite the ever
increasing computational capability of workstations, assessing
the performance of a power system by means of TDIs is
one of the most time-consuming processes solved by system
operators. Moreover, TDI requires to be evaluated continually,
for every operating condition and for a large number of
disturbance scenarios. Consequently, there is an incessant
interest for techniques that can reduce the total computational
cost of the TDI, as well as for novel tools to evaluate the
impact of these techniques on the accuracy and numerical
stability of the simulation. The latter is the focus of this paper.

B. Literature Review

Implicit numerical schemes are the most effective approach
to integrate a power system model, mainly due to their
numerical stability and their effectiveness in dealing with
stiffness [2]. Employing an implicit scheme, however, implies
the iterative solution at each step, of a set of non-linear
algebraic equations. The DAEs that describe a power system
are non-symmetrical and mutually coupled due to the meshed
topology of the transmission grid and the actions of centralized
secondary regulators. These features limit the performance of
algorithms that exploit the bordered block diagonal structure
of the Jacobian matrix of the DAEs, unless some form of
relaxation that reduces the coupling of the DAEs is imposed,
e.g. see [3]–[5]. These constraints make the solution of implicit
schemes cumbersome unless some approximation is adopted.
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The simplest approximation is a “dishonest” approach, which
consists in factorizing the Jacobian matrix of the DAEs only
once per time step or only when a structural change (e.g., line
outage) occurs in the system [6]. However, this approach only
reduces the number of factorizations, not the complexity of the
factorization per se. Another technique that has been proposed
in the literature exploits the “localization” of dynamics [7].

In [8], a time delay-based technique is proposed to reduce
the coupling and the density of the equations of power system
DAE models while maintaining the accuracy of the simulation.
This is achieved by introducing delays equal to the time step of
the TDI to – typically slow – variables whose dynamics are not
dominant in the time scale of interest. A good example of such
one-step delay is the use of the Center-of-Inertia (COI) at the
previous time step to decouple the equations of the rotor angles
of synchronous machines [9]. We note that the decoupling
properties of delayed variables is not a new concept, but a
feature first exploited for the simulation of electromagnetic
transients, e.g. see [10] and [11].

The accuracy of the OSDA in [8] is primarily evaluated by
comparing the dynamic response of the original and time-delay
system for certain variables and set of contingencies. However,
an important aspect, i.e. the impact of the OSDA on the
numerical stability and precision of the implicit TDI method
applied, is not addressed in [8]. To provide a useful tool to
address this point is the goal of the present paper. In this vein,
a matrix pencil-based framework to evaluate the numerical
distortion introduced by TDI methods to the dynamic modes
of power systems is described in [12], while an extension of
this technique for time-delay systems is presented in [13].

C. Contribution
This paper provides a tool to systematically assess the effect

of the OSDA on the precision and numerical stability of
integration methods employed for the time domain simulation
of power systems. The proposed tool, which is based on
Small-Signal Stability Analysis (SSSA), allows estimating
the amount of numerical distortion introduced by the OSDA
technique to the dynamic modes of the power system model
under study, as well as to evaluate the significance of this
amount when compared to the distortion induced by the
integration method itself.

D. Organization
The remainder of the paper is organized as follows. Sec-

tion II provides a background on power system TDI. Sec-
tion III briefly summarizes the OSDA technique. The proposed
approach to assess the impact of OSDA on the numerical
stability and accuracy of the TDI is presented in Section III-
A. The case study is discussed in Section IV. Finally, the
conclusions are discussed in Section V.
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II. NUMERICAL INTEGRATION OF POWER SYSTEMS

Power system models are conventionally described by a set
of DAEs, as follows:

x′ = f(x,y) ,

0m,1 = g(x,y) ,
(1)

where x = x(t) ∈ Rn are the states and y = y(t) ∈ Rm

the algebraic variables; f : Rn+m → Rn, g : Rn+m → Rm,
are sets of non-linear functions; and 0m,1 is the m × 1 zero
matrix. In compact form, (1) can be rewritten as:

Ex′ = ϕ(x) , (2)

where

x =

[
x
y

]
, E =

[
In 0n,m

0m,n 0m,m

]
, ϕ(x) =

[
f(x,y)
g(x,y)

]
. (3)

A numerical method for the TDI of (2) is a discrete-time
approximation employed to provide a solution for given
initial conditions. Without loss of generality, in this paper
we focus on one method, namely the Implicit Trapezoidal
Method (ITM), which is known to be symmetrically A-stable.
Applying the ITM to system (2), we have:

η(i) = Ex
(i)
t −Ext−h − 0.5hϕ(x

(i)
t )− 0.5hϕ(xt−h) , (4)

where h > 0 is the integration time step. At each step, the
following system needs to be solved:

η(i) = 0r,1 , (5)

where the solution is found iteratively. For example, the i-th
iteration of Newton’s method applied to (5) is:

x
(i+1)
t = x

(i)
t −

[
A(i)

]−1

η(i) , (6)

where the Jacobian matrix A(i) is defined as:

A(i) = E− 0.5h
∂ϕ

∂x
(i)
t

. (7)

A. SSSA-Based Accuracy Assessment

In this section we briefly describe how the precision of the
ITM when employed for the solution of (2) can be studied
through SSSA [12]. Let xo be an equilibrium point of (2).
Linearization of (2) at xo gives:

E∆x′ = A∆x , (8)

where A = ∂ϕ
∂xt

∣∣
xo

. The eigenvalues of (8) are the solutions
of the associated characteristic equation det (sE−A) = 0,
s ∈ C, where the family of matrices

P (s) = sE−A (9)

is called the matrix pencil of (8), see [14].
Consider the ITM applied for the TDI of (2), as described

in (4). Linearization of (4) around the equilibrium gives:

(E− 0.5hA)∆xt =(E+ 0.5hA)∆xt−h , (10)

where we have taken into account that at xo (5) is satisfied.
Then, the matrix pencil of (10) is:

P ITM(z) = z (E− 0.5hA)− (E+ 0.5hA) . (11)

The eigenvalues of P ITM(z) represent the approximated by
the ITM dynamic modes of (2), while the eigenvalues of
P (s) represent the actual small-disturbance dynamics of the
system. Thus, comparing the two pencils allows quantifying
the numerical distortion introduced by the TDI method to
the system dynamics. Note that P (s) is referred to the S-
plane whereas P ITM(z) is referred to the Z-plane, hence the
eigenvalues of the two pencils can be compared with the
mapping sITM

k = 1
h log(z

ITM

k ), where zITM

k is the eigenvalue
of P ITM(z) that approximates the eigenvalue sk of P (s).

III. ONE-STEP DELAY APPROXIMATION

The OSDA technique consists in replacing certain variables
of system (2) with their values at the previous time step [8].
Such one-step delays do not model a physical phenomenon
but are rather introduced with the goal of reducing the over-
all computational cost of the simulation. Including one-step
delays in (2) yields the system:

Ex′ = ϕ̃(x,xd) , (12)

where xd = x(t − h). In this work, (12) is basically an
approximation of (2). Then, the OSDA relies on the fact that,
using (12) leads to Newton iterations with a sparser Jacobian
compared to (2). Applying the ITM to system (12), one has:

0r,1 = Ex
(i)
t −Ext−h − 0.5hϕ̃(x

(i)
t ,xt−h)

− 0.5hϕ̃(xt−h,xt−2h) .
(13)

From (13), the Jacobian matrix of Newton’s method is:

Ã(i) = E− 0.5h
∂ϕ̃

∂x
(i)
t

. (14)

Then, the following relationship holds, [8]:

∂ϕ

∂x
(i)
t

=
∂ϕ̃

∂x
(i)
t

+
∂ϕ̃

∂x
(i)
t−h

. (15)

Equation (15) implies that Ã(i) is sparser than A(i), see [8].
The goal of the OSDA is exactly to exploit this property by
adding one-step delays to elements that satisfy the following
conditions:

(i) When subject to small variations, they do not alter
significantly the system’s trajectories. In this regard, good
candidates are variables whose dynamics are slower than the
dynamics of interest. Systematic selection of the variables may
be done, for example, through a modal analysis [8], [15], [16].

(ii) They produce dense rows/columns in the Jacobian
matrix. This way, the sparsity increase is combined with a
decoupling of the system’s equations, which is an important
advantage when exploiting parallelization techniques [17].
Relevant examples in power systems are the COI and the
variables of secondary controllers, see [8], [9].

A qualitative comparison between (2) and (12) can be made
by evaluating the small-signal dynamics of the two systems.
Linearization of (12) around the equilibrium yields:

E∆x′ = A0 ∆x+A1 ∆xd , (16)
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TABLE I: Summary of matrix pencils discussed.

Pencil Notation k-th eig. (S-plane) Approximation caused by

sE−A P (s) sk None (original system)
z (E− 0.5hA)− (E+ 0.5hA) P ITM(z) sITM

k = 1
h
log(zITM

k ) ITM
sE−A0 −A1e−sh P̃ (s) s̃k OSDA

z

 Ir 0r,r

0r,r E−
h

2
A0

−

 0r,r Ir
h

2
A1 E+

h

2
(A0 +A1)

 P̃ ITM(z) s̃ITM
k = 1

h
log(z̃ITM

k ) ITM-OSDA

where A0, A1, are the Jacobians of the delay-free and delayed
variables of the system, respectively, and A = A0 +A1. The
pencil of (16) is:

P̃ (s) = sE−A0 −A1e
−sh . (17)

Thus, with the formulation used in this paper1, this task
corresponds to comparing the eigenvalues of P (s) and P̃ (s).

A. Proposed Analysis

Comparing P (s), P̃ (s), allows assessing the approximation
introduced by the OSDA to the system’s dynamic modes.
Moreover, it allows extracting an estimate of the maximum
admissible one-step delay so that the approximation is lower
than a specified threshold. However, when employing the
OSDA in a TDI, the ability to increase the time step while
maintaining a good precision is also limited by the numerical
approximation caused by the integration method per se. An
estimation of the maximum admissible step size that also
accounts for the latter cannot be provided through P (s), P̃ (s).

In this section we propose an approach to assess the effect
of OSDA on the accuracy and numerical stability of the TDI.
For simplicity but without loss of generality we consider only
the ITM. Note that studying the impact on numerical stability
is relevant, since the asymptotic stability of the ITM, as well as
of any A-stable natural Runge-Kutta method, is not guaranteed
for delay differential equations [18].

Linearizing (13) around the equilibrium yields:

(E− 0.5hA0)∆xt =[E+ 0.5h(A0 +A1)]∆xt−h

+ 0.5hA1∆xt−2h .
(18)

We define yt = [∆xT

t−h ∆xT
t ]

T, yt−h = [∆xT

t−2h ∆xT

t−h]
T.

Then, (18) can be equivalently rewritten as:

Fyt = Gyt−h , (19)

where

F =

[
Ir 0r,r

0r,r E− h

2
A0

]
, G =

[
0r,r Ir
h

2
A1 E+

h

2
(A0 +A1)

]
.

The matrix pencil of system (19) is:

P̃ ITM(z) = zF−G . (20)

The eigenvalues of P̃ ITM(z) account, in the Z-plane, for
the approximation introduced to the dynamics of the original

1In this work, algebraic variables are treated as states with zero time
constants and thus they are not eliminated from the linearized model. This
preserves sparsity, while also preventing the birth of infinite spurious delays,
a modeling issue that is present in the formulation of [8].

system by the ITM combined with the OSDA technique.
Hereafter we will refer to this combination as ITM-OSDA.

Let z̃ITM

k be the eigenvalue of P̃ ITM(z) that approximates
the k-th mode of (2). The latter is represented by the eigen-
value sk. Then, z̃ITM

k becomes comparable to sk by using a
simple plane transformation, see also the relevant discussion in
Section II-A. Finally, a summary of the matrix pencils P (s),
P ITM(z), P̃ (s) and P̃ ITM(z) is provided in Table I. In the
remainder of the paper, we study how s̃ITM

k and sITM

k compare
to each other and to the original system mode sk.

IV. CASE STUDY

This section presents an application of the proposed ap-
proach on the WSCC 9-bus system. The system consists
of 6 transmission lines, 3 transformers, and 3 Synchronous
Machines (SMs) equipped with Turbine Governors (TGs) and
Automatic Voltage Regulations (AVRs). During transients,
loads are modeled as constant admittances. SMs in this study
are referred to the system’s COI, i.e. the differential equation
of the rotor angle of the i-th SM is:

f(δ′i) := δ′i = Ωb

(
ωi − ωCOI

)
, (21)

where Ωb is the nominal synchronous angular frequency in
rad/s. The COI speed is defined by the algebraic equation:

g(ωCOI) := 0 = ωCOI −
3∑

i=1

Mi

MT

ωi , (22)

where ωi, Mi are the rotor speed and the starting time of the
i-th SM, respectively; and MT = M1 + M2 + M3. Finally,
SMs are assumed to provide secondary frequency regulation
through an Automatic Generation Control (AGC). The AGC
produces a dynamic active power command ps as follows:

f(p′
s)
:= p′s = Ki (ω

ref − ωCOI) . (23)

The power command ps is distributed to the TGs proportion-
ally to their droops [19]. The power order pr,i received by the
i-th TG is defined by the algebraic equation:

g(pr,i) := 0 = pr,i −
Ri

RT

ps , (24)

where Ri is the droop of the i-th TG; and RT = R1+R2+R3.

A. Example 1

OSDA in this section is performed by delaying (i) ωi in (22),
which removes ∂g(ωCOI)/∂ωi from the Jacobian, (ii) ωCOI in
(21), (23), which removes ∂f(δ̇i)/∂ωCOI, ∂f(p′

s)
/∂ωCOI, and

(iii) ps in (24), which removes ∂g(pr,i)/∂ps. This setup is not
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TABLE II: 15 rightmost eigenvalues and relative errors.

h = 0.01 s h = 0.2 s

ITM ITM-OSDA ITM ITM-OSDA
sk sITM

k ϵITM[%] s̃ITM
k ϵ̃ITM[%] sITM

k ϵITM[%] s̃ITM
k ϵ̃ITM[%]

−0.0200 (×2) −0.0200 (×2) 0.000 −0.0200 (×2) 0.000 −0.0200 (×2) 0.001 −0.0200 (×2) 0.001
−0.0555 −0.0555 0.000 −0.0556 0.000 −0.0556 0.001 −0.0564 1.487
−0.0997± ȷ0.1332 −0.0997± ȷ0.1332 0.000 −0.0994± ȷ0.1334 0.221 −0.0997± ȷ0.1332 0.009 −0.0926± ȷ0.1356 4.468
−0.1699± ȷ7.6696 −0.1697± ȷ7.6658 0.049 −0.1698± ȷ7.6659 0.049 −0.1070± ȷ6.5435 14.701 −0.1070± ȷ6.5436 14.701
−0.4263± ȷ0.4945 −0.4263± ȷ0.4945 0.000 −0.4263± ȷ0.4945 0.000 −0.4255± ȷ0.4950 0.142 −0.4255± ȷ0.4950 0.143
−0.4394± ȷ0.7390 −0.4394± ȷ0.7390 0.001 −0.4394± ȷ0.7390 0.001 −0.4373± ȷ0.7391 0.246 −0.4373± ȷ0.7391 0.247
−0.4441± ȷ1.2110 −0.4441± ȷ1.2110 0.001 −0.4441± ȷ1.2110 0.001 −0.4380± ȷ1.2075 0.550 −0.4380± ȷ1.2075 0.551
−0.6720± ȷ11.6396 −0.6697± ȷ11.6266 0.113 −0.6697± ȷ11.6266 0.113 −0.2851± ȷ8.6197 26.114 −0.2851± ȷ8.6197 26.114

expected to notably impact on TDI accuracy, since COI and
AGC dynamics are slower than the dynamics of interest [8].

We carry out a TDI2 to show the impact of OSDA on the
transient response of the system. To this aim, we consider a
three-phase fault at bus 4, applied at t = 1 s and cleared after
80 ms by tripping the line between buses 4 and 5. Two step
sizes are considered for the TDI, 0.01 and 0.2 s. The rotor
speed of the SM at bus 2 is shown in Fig. 1. Increasing the
step size from 0.01 to 0.2 s causes a significant distortion of
the trajectory by the ITM. Compared to this distortion, the ad-
ditional approximation introduced by the OSDA is negligible.
In fact, the trajectories corresponding to the original and the
OSDA system are basically indistinguishable for h = 0.01 s,
while they show only a slight deviation for h = 0.2 s.
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h = 0.20 s,OSDA

Fig. 1: Transient of ω2 after the fault, ITM (with and without OSDA).

We discuss the effect of the ITM and OSDA on the accuracy
of the TDI based on the proposed approach. Table II shows
the relative percentage error introduced by the ITM to the 15
rightmost eigenvalues of the system when employed without
and with the OSDA. The relative errors are defined as follows:

ϵ̃ITM =
|s̃ITM

1 − s1|
|s1|

, ϵITM =
|sITM

1 − s1|
|s1|

. (25)

Results indicate that for h = 0.01 s, the ITM introduces a
very small numerical distortion to the dynamic modes of the
system. The conclusion is the same when the ITM is combined
with the OSDA (ITM-OSDA). On the other hand, for a large
time step (h = 0.2 s), the error caused by the ITM is significant
and, most importantly, impacts the system’s critical modes.
This is also clearly shown in Fig. 2. The two most poorly

2Simulations are executed with the power system analysis software tool
Dome [20].
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Fig. 2: Eigenvalue analysis, h = 0.2 s.

damped modes of the system are electromechanical and are
represented by the complex pairs −0.1699 ± ȷ7.6696 and
−0.6720 ± ȷ11.6396 with damping ratios 2.215%, 5.764%,
respectively. The error ϵITM for these pairs is 14.7% and
26.1%, respectively. Compared to ϵITM, the additional error
due to the use of the OSDA, i.e. ϵ̃ITM − ϵITM, is negligible.
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Time [s]
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Fig. 3: Transient of ps following the fault, ITM, h = 0.2 s.

For h = 0.2 s, the mode mostly impacted by the OSDA is
the pair −0.0997± ȷ0.1332, for which ϵ̃ITM− ϵITM = 4.459%.
Participation analysis [16] shows that the variable mostly
contributing to this mode is the AGC power command ps.
Figure 3 shows the trajectory of ps for h = 0.2 s with and
without the OSDA (we assume the same disturbance with
Fig. 1) and indicates that, as expected, the impact of the one-
step delay increases for larger values of h.

It is relevant to note that the proposed approach is based on
SSSA and is thus technically valid only around steady-state
solutions. That said, the structure of the modes of a power
system as well as the qualitative properties of TDI methods
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are features that tend to be “robust” for varying operating
conditions and hence, we can reasonably accept that results
provide rough yet accurate estimates of the modes’ distortion.

B. Example 2

The results above indicate that the OSDA does not substan-
tially impact on the TDI accuracy, which was expected for
the selected setup [8]. To further illustrate the features of the
proposed approach, we consider an example of poor OSDA
setup. In particular, apart from the elements already delayed,
we also delay the input voltage signals of the AVRs, whose
accurate representation is very important in transient stability
analysis. The rightmost eigenvalues and the corresponding
distorted eigenvalues for h = 0.2 s are presented in Fig. 4.
Relative error analysis shows that the complex pair mostly
impacted by the OSDA is −0.4441 ± ȷ1.211, for which
ϵ̃ITM − ϵITM = 14.2%. This mode is largely linked to the
dynamics of the stator’s transient voltage of the SM at bus 1.
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k s̃ITM

k

Fig. 4: Eigenvalue analysis, h = 0.2 s.

We focus on two modes, (i) the most poorly damped mode
−0.1699± ȷ7.6696 and (ii) the mode mostly impacted by the
OSDA, i.e. −0.4441 ± ȷ1.211. We will refer to these modes
as M1 and M2, respectively. For M1, M2, Fig. 5 presents
the relative errors introduced by ITM (ϵITM) and ITM-OSDA
(ϵ̃ITM) as functions of the time step size. We see that the
OSDA causes a significant distortion to M2, which in practice
seriously impacts our ability to increase the step size while
maintaining precision. Finally, a rough yet accurate estimation
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Fig. 5: Relative errors, h = 0.2 s.

of the maximum admissible time step size hmax may be
obtained by setting an upper threshold to the relative error.
For example, considering the 15 rightmost eigenvalues, we
obtain that an error threshold of 0.7% yields hmax = 0.01 s.

V. CONCLUSION

This paper presents a novel tool to assess the effect of the
OSDA on the precision of the TDI of DAE power system
models. The proposed approach is based on SSSA matrix pen-
cils and thus avoids a full evaluation of the effect of one-step
delays through time-domain simulations, which would require
running a large set of disturbance scenarios and assessing the
trajectories of many variables. The features of the proposed
tool is tested on the WSCC 9-bus system integrated through
the ITM, but the approach is general enough to be applied, in
principle, to any numerical method and DAE model. In future
work we will further exploit matrix pencil-based techniques
to assess the stability and accuracy of numerical methods.
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