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This paper proposes a general framework to interpret the concept of Instantaneous Frequency (IF) in three-phase systems. The
paper first recalls the conventional frequency-domain analysis based on the Fourier transform as well as the definition of IF which
is based on the concept of analytic signals. The link between analytic signals and Clarke transform of three-phase voltages of an
ac power system is also shown. Then the well-known five paradoxes of the IF are stated. In the second part of the paper, an
approach based on a geometric interpretation of the frequency is proposed. This approach serves to revisit the five IF paradoxes
and explain them through a common framework. The case study illustrates the features of the proposed framework based on a
variety of examples and on a detailed model of the IEEE 39-bus system.
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I. INTRODUCTION

A. Motivation

The recent move toward non-synchronous and distributed
generation has led the power system community to rediscuss
not only the operation and the economic aspects of the electric
grid but also its very basic mathematical foundation [1]–[3].
This paper focuses on a fundamental quantity of ac grids,
namely the frequency, its meaning and its many definitions, as
well as the paradoxes that these definitions appear to generate.
In this context, the paper aims at proposing a common
framework, based on the concept of invariant provided by
differential geometry, that can explain these paradoxes.

B. Literature Review

The Instantaneous Frequency (IF) of an ac signal is defined
as the time derivative of the signal’s phase angle [4]. This
definition assumes that the signal is described by a single
sinusoid. If the representation of the signal is a different
function, for example the sum of two sinusoids, then the
definition of its frequency is less straightforward. As a matter
of fact, the literature on this topic is vast, as much as the
different signal representations that have been considered [5].

Another issue that has been widely discussed in the lit-
erature is that the value of frequency seems to depend on
the transformation utilized to represent the signal itself. This
is an apparent inconsistency since, intuitively, the estimated
frequency should be the same independently of the transforma-
tion. This issue is clearly relevant in engineering applications,
for example in the design of control systems that regulate the
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frequency in a power system. If the estimation of the controlled
signal is not correct or accurate enough, then it also becomes
hard to ensure a reliable and robust control design [6]–[10].

Yet another issue with the common definition of frequency
and a large number of existing frequency estimation techniques
is that they do not account for variations of the magnitude of
the signal. However, the magnitude of measured signals, e.g.,
the voltage at a network bus, is not constant during electrome-
chanical transients, which is when it is of upmost importance
to be able to accurately estimate frequency variations [11],
[12]. Thus, only techniques that are able to measure the phase
angle independently of the magnitude of the measured signals
are useful in power system applications.

A last issue is that the estimation of the IF should be
available as soon as possible. This requirement conflicts with
the need of certain transform-based techniques, such as the
Fourier Transform (FT) and the Hilbert Transform (HT),
for several samples – in principle, infinitely many – of the
signal [13], [14]. Also in this case, several techniques that
involve, e.g., mobile windows, anti-aliasing, etc., have been
proposed [15]–[17], although the need for a minimum set of
measurements poses intrinsic and probably unsolvable limits
to this kind of approaches [18]. The inability of the FT to track
the IF is what has led, ultimately, to the well-known paradoxes
that are discussed in this work.

An option to overcome the limitations of the FT is to use
functions other than sine and cosine waves to decompose the
signal. This has been done for example with wavelets, which
include both a frequency and a damping, and thus appear
more adequate to represent the profile of electromechanical
oscillations observed in power systems [19]–[21]. The ultimate
resource is to use heuristic custom functions to decompose the
signal, which is, in turn, the solution provided by the Hilbert-
Huang Transform (HHT) [22]. For its flexibility, the HHT
has found applications also in the analysis of power system
transients [23]–[25]. However, this kind of adaptive transforms
do not solve the problem of the estimation of the IF [26].

Another family of techniques, which are based on Phase-
Locked Loops (PLLs), attempt to track the signal while it is
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evolving in time [27], [28]. The estimation of the frequency
based on PLLs is conceptually closer to the definition of IF
given in [4]. However, PLLs rely on a control loop, which can
be also quite sophisticated, but ultimately suffers from another
intrinsic dilemma: the faster is the tracking the more sensitive
to noise is the estimation.

A recent interpretation of electric quantities as “curves”
suggests that the frequency corresponds to the curvature of a
trajectory [29]. This interpretation is appealing as the curvature
is a geometric invariant and, as such, is independent from the
coordinates that are used to define the signal. However, the
analogy also comes with some unexpected byproducts, e.g.,
the fact that, if the curve has three (or more) dimensions, then
there exist more than one invariant (and, hence more than one
frequency) that define the trajectory [30].

C. Contributions

The contributions of this work are twofold. First, it provides
an overview of the existing transforms that have been tradi-
tionally utilized to define the “frequency” of a signal. This
overview prepares the ground for presenting the paradoxes
of IF. While the focus of this overview is on FT, HT and
analytic signals, we also discuss the links of these techniques
with quantities and techniques employed in circuit theory and
power system analysis, such as phasors, Harmonic Analysis
(HA) and Clarke Transform (CT). The second contribution is
to show that conventional techniques can be revisited in terms
of a geometric approach. This approach is used as a general
framework where FT, HT and analytic signals (and hence also
phasors, HA and CT) can be interpreted in terms of special
systems of coordinates and curves. The paradoxes of the IF
are then revisited using this framework.

D. Organization

The remainder of this paper is organized as follows. Sec-
tion II presents conventional techniques for the definition of
the frequency of a signal. This section also presents the clas-
sical paradoxes of the IF. Section III introduces the geometric
approach that is utilized in the paper to revisit conventional
techniques and the paradoxes. Section IV discusses the pro-
posed approach by means of analytic examples and a case
study based on an EMT model of the IEEE 39-bus system.
Section V draws relevant conclusions.

II. BACKGROUND ON FREQUENCY AND TIME ANALYSIS

Electrical quantities such as the voltage and the current
can be expressed, as many other quantities in physics and
engineering, as functions of time t. For example, a steady-
state ac voltage can be represented in time domain as:

v(t) = V cos(ωot) , (1)

where V and ωo are the amplitude and the angular frequency,
respectively, of the voltage.

In signal processing, “signals” are also often called “time
waveforms”, which stresses the attention on the wave-like and
thus potentially periodic nature of signals. However, in the

remainder of this work we refrain from considering that signals
are necessarily periodic. On the contrary, we focus precisely
on the cases for which signals undergo a transient. Using the
notation of (1), one has:

v(t) = V (t) cos
(
ϑ(t)

)
, (2)

where V (t) and ϑ(t) are arbitrary functions of time.

A. Fourier Transform (FT)

The FT (or spectrum) of the signal v(t) is defined as:

v(ω) = F [v] (ω) =
1√
2π

∫
v(t)e−ȷωtdt , (3)

where ȷ is the imaginary unit and the integral has to be
intended to be calculated in the range t ∈ (−∞,∞). The
function v(ω) provides a representation of the signal v(t) in
the frequency domain or space. The fact that the frequency
domain is, in effect, an alternative space with its own coordi-
nate, has a relevant role in the discussion given in this paper
and is thus a point that we wish to highlight here.

The FT works the best, and in fact it was invented specifi-
cally for, stationary periodic signals. For (1), one obtains:

v(ω) = F [V cos(ωot))] (ω)

=
√
2π V

2

(
δ(ω − ωo) + δ(ω + ωo)

)
,

(4)

which is a spectrum with non-null values only in −ωo and ωo,
as the time-domain signal has only one frequency. The idea of
the FT is that, if a signal can be expressed (or approximated)
with a series of sinusoids, then one obtains a sharp spectrum
with only values corresponding to the frequencies of the
sinusoids that compose the time-domain signal.

The application of the FT to power system analysis has
found its natural field in the HA, i.e. the study of the effect
of frequencies multiple of the fundamental one in stationary
conditions, e.g., see [31]. In a HA, a signal can be represented
as a sum of sinusoids and, possibly, a non-null constant term:

v(t) =
∑
h

Vh cos(hωot+ θh) , h ∈ {0, 1, . . . , n} , (5)

which can be conveniently studied in the frequency domain
{0, ωo, . . . , hωo, . . . , nωo} rather than in the time domain.

Difficulties arise, however, when the signal is not periodic.
The spectrum becomes a continuum rather than a set of sharp
frequency values. Moreover, the integral of (3) has to be
calculated for t ∈ (−∞,∞), which is impractical for the vast
majority of real-world applications. This issue is particularly
relevant if one wants to apply the (discrete) FT to a measured
voltage that evolves during an electromechanical transient.

Several patches, more or less sophisticated, have been pro-
posed to compensate the inevitable approximations required
to calculate the FT of a non-stationary signal. The most used
approach is the short-time discrete Fourier transform (sDFT).
This utilises a “windowed” signal, i.e. the actual signal is
multiplied by a function that is nonnull only in the interval of
time of interest for the estimation of the frequency. While the
sDFT makes possible the calculation of the Fourier transform
as it restricts the integration of the signal to a finite interval,
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it also introduces, as it is to be expected, some issues, such as
aliasing and spectral leakage. The literature provides plenty
of techniques to reduce the impact of these issues on the
estimation. Among these, the appropriate choice of the window
profile and length, sampling rate, and spectral interpolation.
The literature on this topic is vast. We refer the reader to
the review of most common techniques provided in Chapter
3 of [32]. Relevant recent works are, e.g., [18] and [33]. The
main conclusion that can be drawn from existing literature is
that the FT can be adapted to transient signals and provide
a relatively good estimation of the frequency variations. It
remains, however, the fundamental issue that the FT is meant
for stationary periodic signals.

B. Hilbert Transform (HT) and Analytic Signals

For the definition of the Instantaneous Frequency (IF) it
is convenient to define a mathematical object called analytic
signal. This is a complex quantity, which is calculated from
the signal v(t) as follows:

ṽ(t) = v(t) +
ȷ

π

∫
v(r)

t− r
dr . (6)

This simplified notation is also utilized in the remainder of
this paper. The imaginary part of ṽ(t) is the HT of v(t) [14]:

H[v](t) = v̂(t) =
1

π

∫
v(r)

t− r
dr . (7)

The analytic signal ṽ(t) can thus be written equivalently as:

ṽ(t) = v(t) + ȷH[v](t) = v(t) + ȷv̂(t) . (8)

Differently from most transforms utilized in signal process-
ing, the HT retains the domain of the signal and, in fact, returns
a function of time. It is relevant to observe since now that the
HT is often interpreted as a rotation of −π/2 of the signal to
which it is applied. This notion is justified from the fact that
the HT of the sine and cosine functions are:

H[cos](ωt) = sin(ωt) , (9)
H[sin](ωt) = − cos(ωt) , (10)

for ω > 0. For negative frequencies, the signs of the right-hand
side of the equalities above are swapped. To avoid this issue,
analytic signals are conventionally defined only for ω > 0.
The rotation can be formalized observing that:

F [v̂] (ω) = −ȷF [v] (ω) , ω > 0 . (11)

While it is intuitive to appreciate a rotation of a periodic signal,
less clear is the meaning of a rotation for an arbitrary signal.

It is also relevant to note that the effect of the HT has a
resemblance with that of the time derivative of the signal:

F [v′] (ω) = ȷ ωF [v] (ω) , (12)

where v′(t) = dv(t)
dt . Merging (11) and (12) gives:

F [v̂] (ω) = −F [v′] (ω)
/
ω , (13)

and, hence:

v̂(t) = −F−1
[
F [v′] (ω)

/
ω
]
(t) , (14)

which shows how the HT of a signal is related to the FT of
the signal itself as well as the way to calculate it.

The Bedrosian theorem provides an important property of
the HT. This theorem proves that if two functions f̃(t) and g̃(t)
are analytic and if f(ω) = F

[
f̃
]
(ω) vanishes for |ω| > a and

g(ω) = F [g̃] (ω) vanishes for |ω| < a, where a is a positive
constant, then the following identity holds:

H
[
f̃ g̃

]
(t) = f̃(t)H[g̃](t) . (15)

The Bedrosian identity (15) has a special role in power
system analysis and the estimation of frequency variations
during electromechanical transients. In fact, in electromechan-
ical transients, the time-varying amplitude of the voltage has
a low-frequency spectrum that does not overlap the high-
frequency spectrum of the phase of the voltage itself [17]. In
turn, thus, if the voltage is expressed by (2) and is undergoing
an electromechanical transient, applying the HT to v(t) gives:

H[v](t) = H[V cos(ϑ)](t) = V (t)H[cos(ϑ)](t)

= V (t) sin(ϑ(t)) .
(16)

Hence, the analytic signal of the voltage can be written as:

ṽ(t) = V (t) (cos(ϑ(t)) + ȷ sin(ϑ(t))) = V (t) eȷ ϑ(t) ,
(17)

and, hence, its IF can, in theory, be calculated without having
to know V (t). We say in theory because one has to be able
to calculate H[v](t), which is obtained as an integral for
t ∈ (−∞,∞). This issue is further discussed in Section II-E
and constitutes, in effect, one of the five paradoxes of the IF.
Another issue is that, in practice, the (discrete) HT is in fact
calculated using the (discrete) FT and its inverse as indicated
by (14). Thus, apart from its intrinsic issues, the utilization
of the HT also suffers of the issues of the FT discussed in
Section II-A.

The notation of (17) is well-known in the analysis of ac
circuits and power systems, where, for historical reasons, is
called phasor and is generally utilized in stationary conditions
and shifted by the fundamental frequency ωo. In ac circuit
analysis, the HT and analytic signals are not well-known nor
needed, as a matter of fact, for the definition of phasors. This
is because phasors, by definition, are characterized by a unique
frequency, say ωo. On the other hand and for the same reason,
the phasors of a circuit require to be referred to a common
reference phase angle, say θo, which defines unequivocally
yet arbitrarily the coordinates – rotating with angular speed
ωo – with respect to which the real and imaginary parts of the
phasors are defined. In turn, thus, phasors are analytic signals
shifted by ωot+ θo.

Finally, it is relevant to observe that, given the linearity of
the HT, applying it to the signal defined in (5) gives:

H

[∑
h

Vh cos(hωot+ θh)

]
(t) =

∑
h

H[Vh cos(hωot+ θh)](t)

=
∑
h

Vh sin(hωot+ θh) ,

(18)
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and, hence, one can define the analytic signal of a sum of
sinusoids as the sum of the analytic signals of these sinusoids.
Thus, the analytic signal associated with each harmonic h is:

ṽh(t) = Vh cos(hωot+ θh) + ȷVh sin(hωot+ θh) . (19)

C. Clarke Transform (CT)

We have considered so far exclusively an individual “sig-
nal,” which can be opportunely manipulated with time- and
frequency-domain transforms. Power systems, however, are
mostly three-phase circuits. The voltage of a node is thus
a triplet of measurements rather than a single quantity. Of
course, one can treat the voltage of each phase as a signal and
proceed with the analysis discussed so far. But having more
then one phase provides additional information.

The framework proposed in this paper extends the notion
of a signal to that of a “curve” and, as such, it assumes
a multi-dimensional space. Limiting our analysis to three
dimensions, the phases of an ac three-phase system appear
as ideal candidates for the definition of such a space. Under
certain conditions, however, the dimension of this space can
be reduced to two. This is, in turn, the goal of the CT.

Let vabc(t) = (va(t), vb(t), vc(t)) be the voltage triplet of a
three-phase node. The CT applied to this signal returns another
triplet, say vαβγ(t) = (vα(t), vβ(t), vγ(t)) calculated as:

vαβγ(t) = Cvabc(t)

=
2

3

 1 − 1
2 − 1

2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2


va(t)vb(t)
vc(t)

 .
(20)

In general, the three components of vαβγ(t) are non-null.
However, in the special case of balanced voltages, namely:

va(t) = V (t) cos
(
ϑ(t)

)
,

vb(t) = V (t) cos
(
ϑ(t)− 2

3π
)
,

vc(t) = V (t) cos
(
ϑ(t) + 2

3π
)
,

(21)

the CT gives:

vα(t) = V (t) cos
(
ϑ(t)

)
,

vβ(t) = V (t) sin
(
ϑ(t)

)
,

vγ(t) = 0 .

(22)

The latter expression can be rewritten as a complex quantity:

v̄(t) = vα(t) + ȷ vβ(t) , (23)

which has a striking resemblance with an analytic signal.
This can be readily observed in Fig. 1 that shows a balanced
positive-sequence three-phase voltage. The curve generated by
the voltage vabc(t) is a circle that lies in the plane (vα, vβ).
Reference [30] shows that imbalances in the amplitude and/or
phase angles of the voltage also lead to a plane curve, typically
an ellipse rather than a circle. However the plane of such curve
is not the plane defined by the αβ-frame.

The quantity defined in (23) is not, in general, an analytic
signal as it can contain negative frequencies. The simplest case
for which this happens is the stationary conditions for which

va [kV]

−10
0

10

v b
[k

V]

−10

0

10

v c
[k

V
]

−10

0

10

(a) Space (va, vb, vc)

−10 0 10
vα [kV]

−10

0

10

v β
[k

V
]

(b) Plane (vα, vβ)

Fig. 1. Balanced positive-sequence three-phase voltage with V = 12 kV.

the voltage vαβγ(t) contains a positive and a negative se-
quence. Then, applying the symmetrical component transform
and observing that the CT is a linear operator, one obtains:

v̄(t) = v̄+(t) + v̄−(t)

=
(
v+α (t) + ȷ v+β (t)

)
+

(
v−α (t) + ȷ v−β (t)

)
,

(24)

where v̄+(t) has angular frequency ωo and v̄−(t) has angular
frequency −ωo. Clearly, v̄+(t) is an analytic signal. At this
point, one might raise the question why analytic signals are
defined only for positive frequencies. This is a consequence
of the fact that they are obtained starting from a single signal,
not a triplet. This leads to have no way to define the sign
of the frequency itself. In fact, the spectrum of a signal is
symmetrical and one can use conveniently only the part for
ω > 0, which is the common choice for analytic signals.

Finally, we note that applying the Park transform to v̄(t) in
(23) leads to the Park vector [34]. According to the discussion
above, the Park vector, like more conventional phasors, is just
v̄(t) shifted by ωpt+θp, where ωp and θp are the angular speed
and the phase reference of the Park dq-axis rotating frame.
From this definition, it descends that, in stationary conditions
and for ωp = ωo, the Park vector “downgrades” to a phasor.
Equivalently, phasors can be seen as steady-state Park vectors.

D. Instantaneous Frequency (IF)

The importance of the HT is largely due to the fact that it
allows determining the IF of a time-varying signal. We note
that, since an analytic signal is a complex quantity, one has:

ṽ(t) = v(t) eȷ ϕ(t) , (25)

where
v(t) = |ṽ(t)| =

√
v2(t) + v̂2(t) ,

ϕ(t) = ∠ṽ(t) = arctan

(
v̂(t)

v(t)

)
.

(26)

Then, the IF is defined as:

ϕ′(t) =
v(t)v̂′(t)− v̂(t)v′(t)

v2(t)
. (27)

This definition has a very clear meaning only for signals
in the form of (2), for which v(t) = V (t) and ϕ(t) = ϑ(t),
and, consequently, ϑ′(t) coincides with the IF. However, in
the most general case, ϕ(t) is not simply the phase of the
original signal. Perhaps the simplest example that shows this
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underlying complexity is the case of a signal composed of two
harmonics:

v(t) = V1 cos(ω1t) + V2 cos(ω2t) , (28)

with ω1 > 0 and ω2 > 0, which leads to the following analytic
signal:

ṽ(t) = V1 e
ȷ ω1t + V2 e

ȷ ω2t , (29)

and to the following expression of the IF [13]:

ϕ′(t) =
1

2
(ω2 + ω1) +

1

2
∆ω

V 2
2 − V 2

1

v2(t)
, (30)

where ∆ω = ω2 − ω1, and:

v2(t) = V 2
1 + V 2

2 + 2V1V2 cos(∆ω t) . (31)

Equation (30) shows that the IF of the signal (28) is, in
general, not equal to ω1 and ω2 and, in fact, is not even
constant if V1 ̸= ±V2. Figure 2 illustrates the results obtained
above assuming ω1 = 10, ω2 = 70, V1 = 20, V2 = 10. The
shape of the IF is somewhat surprising as the intuition would
lead to think that the IF of a signal the positive spectrum
of which contains only two frequencies, namely ω1 and ω2

should be a simpler expression or, at least, a constant value.

0.0 0.2 0.4 0.6
t [s]

−20

0

20

v
[V

]

(a) Signal

0.0 0.2 0.4 0.6
t [s]

39.0

39.5

40.0

φ
′ [

ra
d
/s

]

(b) Instantaneous frequency

Fig. 2. Representation of signal (28) and its IF.

E. The Five Paradoxes of Instantaneous Frequency

We are ready to present the paradoxes of the IF mentioned
in the title of the paper. In Chapter 2 of the book “Time-
frequency analysis,” Leon Cohen presents five paradoxes on
the IF [13]. These paradoxes are well-known in the area of
signal processing. The time-frequency analysis is in effect an
attempt to overcome the apparently irreconcilable differences
between time and frequency domains by merging them into a
unique framework.

We report verbatim below the five paradoxes as written by
Cohen in [13].
P1: IF may not be one of the frequencies in the spectrum.
P2: If we have a line spectrum consisting of only a few sharp

frequencies, then the IF may be continuous and range
over an infinite number of values.

P3: Although the spectrum of the analytic signal is zero for
negative frequencies, the IF may be negative.

P4: For a band-limited signal the IF may go outside the band.
P5: If the IF is an indication of the frequencies that exists

at time t, one would presume that what the signal did a

long time ago and is going to do in the future should be
of no concern; only the present should count. However
to calculate the analytic signal at time t we have to know
the signal for all time.

The expression (30) obtained for signal (28) of the example
given in the previous section illustrates well the paradoxes P1
to P4. It appears that P1 to P4 constitute different hues of the
same issue and can be reformulated as follows:
P0: The range of the spectrum of an analytic signal is, in

general, different from the range of the IF of the same
signal.

The fifth paradox, on the other hand, refers to a different but
equally crucial inconsistency: the HT – as the FT – requires
to calculate the integral of the signal for t ∈ (−∞,∞).1 This
appears to be a contradiction when one is only interested in
the current time t. From a practical point of view, moreover,
the knowledge of a signal for t ∈ (−∞,∞) can be obviously
achieved only through an approximation, e.g., assuming that
certain steady-state conditions have been and will be in place
forever.

In [13], there is no attempt to solve these paradoxes, except
for an interesting discussion on P5, which argues that the
inconsistency arises for the twofold nature – local and non-
local – of signals [35]. For example, light is local when
interpreted as a particle and non-local when interpreted as a
wave. It is also interesting to note that the paradoxes above
are formulated from the point of view of the FT or, at least, of
the HT. The underlying assumption in the whole [13] as well
as in most works on signal processes is that the FT is right,
so one has to reconcile the IF with it. However, it would be
equally legitimate to discuss the inconsistencies between the
FT and the IF of a signal from the point of view of the IF,
i.e. assuming that the IF is right and trying to reconcile the
FT with it.

In this work, we do not take the side of either approach.
We propose a geometric framework that assumes that both
the IF (actually, a slightly more general concept, namely the
curvature, which is introduced in the next section) and the
FT (or any other time/frequency transform, in fact) are both
right and we explain why they seem to provide different
information. This is the topic of the next section.

III. GEOMETRICAL INTERPRETATION

This section approaches the problem of defining the tran-
sient behavior of a signal from a completely different point
of view with respect to Section II. In the same vein as [35],
one can argue that the underlying approach of the techniques
described in Section II is to consider the signal a wave, and,
as such, to study its properties non-locally, i.e., taking the
time as a unique block ranging from −∞ to ∞. One may
also argue that the approach described below is intrinsically
local, as it studies the properties of signal as a particle

1The discrete HT transform is obtained, in practice, based on the dis-
crete FT. Hence, the windowing techniques of the short-time discrete FT
described above to overcome the need for the calculation of an integral for
t ∈ (−∞,∞) can be applied also to the calculation of the HT. The reader
is referred to [14] for more details on the numerical calculation of the HT.
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the trajectory of which is known at a given position and
a given time. Yet, this interpretation must be reconsidered
as the paradoxes described in Section II-E arise using only
non-local approaches such as the HT. The purpose of this
section is thus twofold: to introduce first some elementary
concepts of differential geometry and then use these concepts
to define a common framework where both local and non-local
approaches consistently coexist.

A. Space Curves

The starting point of any geometry is to define a system
of coordinates. It is easy to accept that the coordinates of
a physical space are three. Extension to a fourth coordinate,
time, is less intuitive and a relatively recent extension. Multi-
dimensional spaces defined, for example, in string theories,
are even more recent and, for many, quite exotic spaces.

When dealing with electric circuits and power systems, it is
much less clear how many dimensions should be considered.
In this work, for simplicity, we consider three, for the three-
phase circuits and machines that are typically used in power
systems. It is important to note however that this choice is not
a hard limit. Higher dimensions can be taken into account and
there exists the math to do that, see e.g. the gentle introduction
to frames of arbitrary dimensions given in [36].

Assuming thus three dimensions as a non-binding con-
straint, let us consider a space curve x(t) : [0,+∞) → R3

with x(t) = (x1(t), x2(t), x3(t)). It is convenient and usual
to define an orthonormal basis, say (e1, e2, e3), to describe
the vector x(t), namely:

x(t) = x1(t) e1 + x2(t) e2 + x3(t) e3 . (32)

A common choice for the basis is the Cartesian coordinates:

e1 = (1, 0, 0) ,

e2 = (0, 1, 0) ,

e3 = (0, 0, 1) .

⇒ e123 = I3 , (33)

but, in turn, any triplet of linearly independent vectors that
are orthonormal is perfectly fine. For example, the rows of the
CT matrix C in (20) define a relevant basis in power system
analysis.2

In differential geometry, it is of particular relevance to define
quantities that are invariant, that is, do not change when the
basis of the coordinates changes. The most intuitive invariant
is arguably the length s of the curve, defined as:

s(t) =

∫ t

0

√
x′(r) · x′(r) dr + s0 , (34)

from which one obtains the expression:

s′(t) =
d

dt
s(t) =

√
x′(t) · x′(t) = |x′(t)| , (35)

where

x′(t) = d
dt
(x1(t) e1(t))+

d

dt
(x2(t) e2(t))+

d

dt
(x3(t) e3(t)) , (36)

2Note that C is not orthogonal. If a power invariant transform is required,
C is replaced with

√
3
2
C, which is orthogonal.

and · represents the inner (or scalar) product of two vectors,
hence:

x′(t) · x′(t) = x21(t) + x22(t) + x23(t) . (37)

Equation (36) is written assuming that, in general, the basis
e123(t) is time-dependent. The matrix of the Park transform,
say P(t), is a relevant example of time-dependent basis:

P(t) =

 cos (ϑp(t)) sin (ϑp(t)) 0
− sin (ϑp(t)) cos (ϑp(t)) 0

0 0 1

C , (38)

where ϑp(t) = ωpt+ θp.
According to the chain rule, the derivative of x(t) with

respect to s(t) can be written as:

ẋ(t) =
dx(t)

ds(t)
=
dx(t)

dt

dt

ds(t)
=

x′(t)

s′(t)
=

x′(t)

|x′(t)|
, (39)

where the unit vector ẋ(t) is tangent to the curve x(t).
We now define an important moving (e.g., time-dependent)

frame, called Frenet frame, that is defined locally for every
point of a smooth curve x(t). This frame is built with the
tangent vector, which is defined in (39), the normal vector
and the binormal vector, as follows:

F(t) =

T (t)
N(t)
B(t)

 =

 ẋ(t)
|ẍ(t)|−1 ẍ(t)
T (t)×N(t)

 , (40)

where × represents the cross product. The vectors in (40) are
orthonormal, i.e. T (t) = N(t) × B(t) and N(t) = B(t) ×
T (t), and satisfy the following relations, known as Frenet-
Serret formulas [37]:

Ṫ (t) = κ(t)N(t) ,

Ṅ(t) = −κ(t)T (t) + τ(t)B(t) ,

Ḃ(t) = −τ(t)N(t) ,

(41)

where κ(t) and τ(t) are the curvature and the torsion, respec-
tively, which are given by:

κ(t) = |ẍ(t)| = |x′(t)× x′′(t)|
/
|x′(t)|3 , (42)

and
τ(t) =

x′(t) · x′′(t)× x′′′(t)

|x′(t)× x′′(t)|2
. (43)

The quantities defined above, namely κ(t) and τ(t) may vary
from point to point but are invariants, like s(t), which means
that, while local, do not depend on the coordinates employed
to describe the curve.

B. Frequency as an Invariant

As discussed in the introduction, references [29] and [30]
present an interpretation of electrical quantities as geometrical
invariants of a space curve. The whole argument is based on
two assumptions. First, the voltage (current) is the velocity
of the trajectory of the magnetic flux (electric charge). This
assumption is supported by Faraday’s law for the voltage and
by the very definition of current intensity as the flow of electric
charges through a surface. The leap of this assumption is that
the magnetic flux and electric charge flow can be assumed to
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be “curves,” even though, in practice, they are scalar quantities
and, when measured, they can be more naturally thought as
signals rather than space curves. However, if one accepts this
assumption, and recalling the definitions given in the previous
section, then the following expressions for the voltage can be
obtained:

v(t) ≡ x′(t) , (44)

and, from (42):

κ(t) =
|v(t)× v′(t)|

|v(t)|3
, (45)

and, from (43):

τ(t) =
v(t) · v′(t)× v′′(t)

|v(t)× v′(t)|2
. (46)

We note that neither (45) not (46) depend on x(t), which in
this context is the vector of the magnetic flux. This is good
news as the magnetic flux is not an easy quantity to measure
or estimate.

Finally, we observe that, from (39) and (44), one obtains:

d

dt
s(t) = |v(t)| , (47)

which, in a non-relativistic framework, is also an invariant.
Reference [30] defines the azimuthal angular frequency as:

ωκ(t) = |v(t)|κ(t) , (48)

which can be interpreted as the angular speed in the plane
formed by the vectors T (t) and N(t); and the torsional
angular frequency as:

ωτ (t) = |v(t)| τ(t) , (49)

which can be interpreted as the angular speed in the plane
formed by the vectors N(t) and B(t).

The torsional angular frequency exists only for curves of
dimensions higher than two (i.e., τ(t) ≡ 0 for plane curves).
The examples discussed in [30] show that, for three-phase
circuits, ωτ (t) ̸= 0 for voltages with unbalanced phase angles
and/or harmonic content.

On the other hand, we observe that, for balanced and
positive sequence voltages, the azimuthal angular frequency
ωκ(t) coincides in effect with the IF defined in (27). That is,
merging (24), (27) and (45) and assuming v̄−(t) = 0, then:

ωκ(t) ≡ ϑ′(t) ≡ ϕ′(t) . (50)

Finally, we note that all the formulas given in this section
are “instantaenous”, i.e., utilize only qunatities at a given time
t. As opposed to the FT and HT, thus, these formulas do not
require the calculation of integrals for t ∈ (−∞,∞). However,
the estimation of ωκ(t) and ωτ (t) does require the calculation
of time derivatives, which poses practical challenges. This
point is further discussed in Section IV-D.

C. Revisiting the Paradoxes of the Instantaneous Frequency

We are ready to revisit the paradoxes presented in Section
II-E. The geometric approach discussed above shows that there
is, in fact, no inconsistency between FT and IF. In turn, the
two approaches discuss different things. The frequency of
the spectrum is in effect a “coordinate” that can be used to
represent the signal, whereas IF is a quantity that represents
a property of a curve. Since there is no point to compare a
coordinate with a quantity, paradoxes P0 to P4 are cleared.

The discussion of paradox P5 is more involved. We start
by observing that the IF can be, under certain conditions, an
invariant of the signal for which is calculated. Assuming that
the signal is a curve, the calculation of the curvature depends
on the number of coordinates required to represent the curve.
For two-dimensional signals, the curvature (and hence the IF)
is an invariant and represents a local property of the curve. For
higher-dimensional curves, the curvature is still an invariant
but one can also define others. In turn, a space (or higher-
dimension) curve has more than just one frequency. Space
curves have two: ωκ(t) and ωτ (t). The azimuthal angular
frequency ωκ(t) coincides with the common notion of IF only
if the system is balanced and has only the positive sequence.
In this case, in fact, the three-phase signal can be represented
as a pair of quantities that is equivalent to an analytic signal.

A single-phase voltage or, more in general, a single signal
has an additional issue: the curvature does not exist in one
dimension. Yet, a signal is defined by two (possibly time-
variant) quantities: amplitude and phase, which suggests that
it can be described in a two-dimensional space. Thus, the
first step is to define a set of coordinates. This is usually an
implicit operation in ac circuit analysis as all phasors are,
in effect, analytic signals shifted by the reference angular
frequency and referred to a common reference phase angle. On
the other hand, in signal processing, the operation of defining
a set of coordinates is provided by the HT which generates a
coordinate shifted by −90◦ with respect to the coordinate of
the signal itself.

This observation allows reconsidering paradox P5. The fact
that one has to calculate HT of the signal for t ∈ (−∞,∞)
has not to be interpreted as an inconsistency of the calculation
of the IF. The function of the HT is just that of allowing
the definition of a system of Cartesian coordinates for the
signal. Now, the HT dictates that, to be able to define such
a coordinate, one needs to know the full signal. In stationary
ac circuits, the knowledge of the full signal is not needed
simply because every quantity only has one frequency (ωo) or
multiples of it (harmonics hωo). With this assumption, it is
possible to define an absolute reference angle and, hence, a
set of coordinates, without the need of calculating the HT.

IV. TOWARDS A UNIQUE GEOMETRIC FRAMEWORK

The identities given in (50) are an important result as
they constitute the conditions for which the HT, analytic
signals, CT and the geometric approach agree on what is the
“frequency” of a signal.

To have a common framework that connects all the trans-
forms that we have discussed so far, it remains to accommo-
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date the FT. With this aim, we observe that if ϑ(t) = ωot,
then one obtains:

ωκ(t) ≡ ϑ′(t) ≡ ϕ′(t) ≡ ωo , (51)

which is an expected result but does not help understand
the relationship between the various approaches. When there
is only one constant frequency in a balanced system, then
it comes with no surprise that, independently of how one
proceeds, the angular frequency is always the same. One can
also argue that the case of unique constant frequency is exactly
the case for which one does not need to estimate the frequency
at all [5]. And, as a matter of fact, when studying balanced
stationary ac circuits with phasors, the angular frequency is not
needed in the equations other than for calculating reactances
and susceptances.

The remainder of this section discusses a variety of ex-
amples, as follows: Section IV-A revisits the voltage of (28)
in view of the geometric approach discussed above; Section
IV-B discusses the case of a balanced three-phase voltage
resembling an electromechanical transient; Section IV-C dis-
cusses two relevant cases of stationary unbalanced three-phase
voltages; and Section IV-D compares the frequency estimation
of a conventional PLL with that obtained using the geometric
approach.

A. Single Voltage with Two Harmonics

Let us consider the case for which the voltage contains more
than one frequency. We utilize again the voltage of (28). As
per the FT, this signal is represented through a sharp spectrum
with two Dirac δ functions, as shown in Fig. 3.a. We can
also represent this signal in the state-space (v(t), v̂(t)), as
shown in Fig. 3.b. The latter representation is justified from
the observation that the HT of a signal shifts it by −90◦.
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(b) Space (v(t), v̂(t))

Fig. 3. Representation of the signal (28).

The proposed framework assumes that the analytic signal
and FT define a surface mapped by (t, ω) on the three-
dimensional space described by the coordinates (u, û, ω). The
representation of the signal of (28) in this space is shown in
Fig. 4. Since the spectrum of this signal is discrete, there is
no actual surface in this case. For every value of ω, this space
represents the content of the analytic signal for t ∈ (−∞,∞).
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Fig. 4. Representation of the signal (28) in the space (u, û, ω).

For the signal (28), this content is null except for ω = {ω1, ω2}
and the signal can be represented in the space (u, û, ω) as:

v(t, ω) =

v1(t)δ(ω − ω1) + v2(t)δ(ω − ω2)
v̂1(t)δ(ω − ω1) + v̂2(t)δ(ω − ω2)
ω1δ(ω − ω1) + ω2δ(ω − ω2)

 , (52)

where v1(t) = V1 cos(ω1t) and v2(t) = V2 cos(ω2t). Most
importantly, for every value of ω, the curve is a circle, which
has constant curvature and constant IF equal to the components
of v(t, ω) on the ω-axis itself. In this simple example, there
are only two circles and the IF becomes:

ϕ′(t, ω) = ω1 δ(ω − ω1) + ω2 δ(ω − ω2) . (53)

On the other hand, the curvature κ(t) – and thus ωκ(t), which
in this example is given by (30) – of the signal is an invariant
and must remain the same, regardless which reference is
utilized. This implies that the orthonormal basis that allows
projecting the plane (v, v̂) onto the surface defined by the
variables (t, ω) of the space (u, û, ω) is time-dependent and
rotates with an angular frequency that is a function of ωκ(t).3

Fortunately, one does not have to find explicitly the equations
of this projections, as κ(t) and ωκ(t) can be obtained directly
from (45) and (48), respectively.

Finally, one can view the plots of Fig. 3 with a different
perspective. On the one hand, v(ω) is the projection of ṽ(t)
onto the ω-axis, which is, in effect, the meaning of the integral
(3) that defines the FT. On the other hand, ṽ(t) can be
interpreted as the projection of v(ω) onto the space (v, v̂).

B. Three-phase Voltage Resembling an Electromechanical
Transient

So far, we have discussed the case of a single signal. As
discussed in Section II-C, balanced three-phase systems with
only the positive sequence are equivalent to a single signal
assuming the use of the space (uα, uβ , ω) rather than (u, û, ω).

To illustrate the proposed framework for a non-stationary
case, we consider another example that resembles the dynamic
performance of a voltage during a typical electromechanical

3The projection of a two-dimensional space onto a surface of a three-
dimensional one is a common operation in differential geometry. This op-
eration is called mapping. For example, complex numbers can be represented
unequivocally on the surface of a sphere through a conformal stereographic
projection (see, for example, [38]).
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transient. To this aim, we consider the following balanced
positive-sequence three-phase voltage in CT coordinates:

vαβγ(t) =

Vo (cos(ωot) + 0.1 cos(ωot+ ψ(t)))
Vo (sin(ωot) + 0.1 sin(ωot+ ψ(t)))

0

 , (54)

where Vo = 10 kV and ωo = 2π 60 rad/s and

ψ(t) = e−t cos(0.1t) . (55)

Figure 5 shows the spectrum of the signal obtained with a
discrete sine transform in the interval t ∈ [0, 5] s as well as
its representation in the state-space (vα, vβ). As expected, the
spectrum is concentrated close to 377 rad/s but does not have
a simple representation as the one of the signal (28).

350 400
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(a) Space (ω, v(ω))

−10 0 10
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−10
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v β
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(b) Space (vα, vβ)

Fig. 5. Representation of the voltage (54).

The IF, which in this case coincides with ωκ(t), can be
calculated from the trajectory in the coordinates (vα, vβ) with
an expression similar to (27), as:

ϕ′(t) = ωκ(t) =
vα(t)v

′
β(t)− v′α(t)vβ(t)

v2α(t) + v2β(t)
. (56)

Figure 6 shows the IF obtained with (56) as well as the
transient behavior of the dq-axis component calculated using
the Park transform matrix given in (38) with ϑp = ωot:

vd(t) = 10 + cos
(
ψ(t)

)
,

vq(t) = sin
(
ψ(t)

)
.

(57)

Note that in Park coordinates the IF is the same as that
obtained with Clarke coordinates – as it has to be – and has
the following expression:

ϕ′(t) = ωo +
v′q(t)vd(t)− v′d(t)vq(t)

v2d(t) + v2q(t)
= ωo + ϕ′p(t) . (58)

The curve shown in Fig. 6.a has IF equal to ϕ′p(t) but its ωκ(t)
is invariant as the dq-axes are rotating with angular speed ωo.

In the same vein as the previous example, one can represent
the voltage in a three-dimensional space (uα, uβ , ω). This is
shown in Fig. 7. The information given in these coordinates is
the same as that in Figs. 5 and 6. However, since the harmonic
content of the voltage is not trivial, the information that can be
obtained from this representation is not straightforward. The
best representation is, in this case, that provided by the Park
transform, which explains its common utilization in the study
of electromechanical transients of power systems.
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Fig. 6. Representation of the voltage (54) and its IF.

uα [kV]

−5
0

5

u β
[k

V]

−5

0

5

ω
[r

ad
/s

]

350

400

Fig. 7. Representation of the voltage (54) in the space (uα, uβ , ω).

It appears, thus, that the spectrum of a transient voltage
is not particularly representative of the transient itself. There
exist, of course, a variety of techniques to properly window
the measurements of the voltage to obtain an estimation of its
IF (see, e.g., [18]) but all of these techniques have the intrinsic
limitation that the FT is not suited for non-stationary signals.

Finally, we note that the ω coordinate introduced by the FT
is only incidentally a frequency. Other transforms use func-
tions other than sines and cosines, and may be characterized
by different parameters. For example, wavelets are based on
the sinc function and the wavelet decomposition consists in
finding a scale a and a shift factor b of each wavelet that form
the original signal [39].

C. Unbalanced Three-phase Voltage

The examples so far have shown cases for which ϕ′(t) =
ωκ(t). This is, however, not always the case. The simplest
scenario for which the azimuthal frequency is not as expected
is a voltage vector with unbalanced amplitudes. Let us consider
the following example:

va(t) = 12 cos(ωot) ,

vb(t) = 20 cos(ωot− 2
3π) ,

vc(t) = 12 cos(ωot+
2
3π) ,

(59)

where the amplitudes are in kV and ωo = 2π 60 rad/s. One
can readily observe that ωτ (t) = 0, hence the curve described
by vabc(t) lies in a plane. However, this plane is not (α, β) as
vγ(t) ̸= 0 (see Fig. 8.a). Moreover, the curve is not a circle,
because ωκ(t) is not constant (see Fig. 8). The curve is in fact
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an ellipse with periodic ωκ(t). This result is consistent with the
definition of ωκ(t) but, of course, it is not the expected result.
The issue is that vabc(t) contains positive, negative and zero
sequences. Applying the Fortescue symmetrical component
transform in phasor domain, in fact, one obtains:

v̄o = −4− ȷ 6.93 ,

v̄+ = −4 + ȷ 6.93 ,

v̄− = 44 + ȷ 0 ,

(60)

and, thus, vabc(t) is not an analytic signal. Only after filtering
the negative and zero sequences, one can obtain the expected
result, namely ϕ′(t) = ωo. Finally, note that, in this case, the
spectrum coincides with the expected value of the IF.
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Fig. 8. Representation of the voltage (59) and its ωκ(t) and IF.

Let us now show how unbalanced phases lead to a nonnull
torsional frequency. Consider the three-phase voltage:

va(t) = 12 cos(ωot+ 0.05π sin(0.6t)) ,

vb(t) = 12 cos(ωot+ 0.05π sin(0.6t)− 2
3π) ,

vc(t) = 12 cos(ωot+ d 0.05π sin(0.6t) + 2
3π) .

(61)

Figure 9 shows two cases: d = 1 and d = 1.1. The latter
introduces an imbalance in the voltages that leads to high-
frequency oscillations of ωκ(t) and ωτ (t). These oscillations
can be easily filtered. However, the two examples discussed
in this section pose the question whether, in real-world appli-
cations, small imbalances can significantly distort ωκ(t). This
point is further discussed in the following section.

D. Frequency during Power System Transients
In high-voltage transmission systems, harmonics and imbal-

ances are minimized by design and proper filtering, in order
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Fig. 9. Representation of ωκ(t) and ωτ (t) of the voltage (61).

to comply with network codes. One has thus to expect that,
in most cases, ωκ(t) and the IF return fairly similar values.
In this section, we support this statement by comparing the
estimation of the frequency as obtained with a PLL and the
one obtained with (45) starting from the voltage vector vabc(t)
at the bus of a high-voltage transmission system.

The PLL estimates the IF based on (23), as follows. As-
suming vα(t) and vβ(t) at the bus of interest are known (or
measured) and according to the expresison of phase angle of
an analytic signal given in (26), one has:

vβ(t)

vα(t)
=

sin(ϕ(t))

cos(ϕ(t))
, (62)

or, equivalently:

vβ(t) cos(ϕ(t))− vα(t) sin(ϕ(t)) = 0 . (63)

The PLL does not calculate ϕ(t) from (63) but estimates it,
say φ(t), and then tracks the error:

ε(t) = vβ(t) cos(φ(t))− vα(t) sin(φ(t)) . (64)

Among the many implementations of PLLs, the one utilized
in this case study is the synchronous reference frame model,
which is shown in Fig. 10. The input to the integrator, φ′(t),
is the sought estimation of the IF [40]. In the simulations, the
proportional and integral gains of the PI control of the PLL
are set to 10 and 30, respectively.

ε

+

− ϕϕ
′

vα

vβ

PI

sin

cos

1

s

Fig. 10. Scheme of the synchronous reference frame PLL.

To carry out the comparison, we consider the fully-fledged
EMT model of the IEEE 39-bus system provided by DIgSI-
LENT PowerFactory. The system model is based on the
original IEEE 39-bus benchmark network and is modified to
capture the behavior during electromagnetic transients of the
power network, namely, the frequency dependency of trans-
mission lines and the non-linear saturation of transformers.
For reference this model is available as an application example
with DIgSILENT PowerFactory.
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Fig. 11. IEEE 39-bus system, balanced scenario: voltage at bus 26 following
the fault at bus 4.
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A three-phase fault is simulated at terminal bus 4 of the
system at 0.2 s and cleared at 0.3 s. The integration time step
considered is 0.01 ms. We consider the voltages at bus 26
following the contingency. Figure 11 shows the trajectories in
time of three-phase voltages.
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Fig. 12. IEEE 39-bus system. (a, b) Base-case balanced system; (c, d)
unbalanced system; (e, f) unbalanced harmonic current sources; and (g, h)
balanced system with Gaussian noise. (a, c, e, g) Voltage at bus 26 in the
space (va, vb, vc); (b, d, f, h) estimated frequency.

Figure 12 shows vabc(t), ωκ(t) and φ′(t) as obtained for
four scenarios, as follows.

• Base-case balanced system. This is the benchmark system
provided with DIgSILENT PowerFactory.

• Unbalanced system. The power consumption of all 19
loads of the system is unbalanced, with imbalances rang-
ing from 5 to 10% on one of the phases.

• Unbalanced harmonic current source. Unbalanced 5-th
and 7-th harmonic current sources are added to bus 26.

• Balanced system with noise. A Gaussian noise is added to
the measurement voltage input of all excitation systems
of the synchronous machines.

Before the fault, the three phases are balanced and thus,
the corresponding part of the curve is circular and lies in a
plane. The same holds after the fault clearance but the voltage
converges to a circle that is different from that of the initial
steady-state. During the fault, the voltages are not perfectly
balanced and symmetrical, which gives rise to the non-circular
and non-planar sections observed in the left column of Fig. 12.

Regarding the estimation of the azimuthal frequency, we
have adopted a simple numerical procedure. First we have
estimated the time derivatives using a numerical central deriva-
tive, i.e., the derivative of the voltage sample vi at time ti is
approximated with:

v′i ≈
vi+1 − vi−1

2h
,

where h is the time interval of the somapling rate and vi+1

and vi−1 are the voltage samples at ti + h and ti − h,
respectively. Then we have calculated the azimuthal frequency
using equation (48) and finally used a properly tuned lead-
lag filter to remove high frequency noise. The best results
have been obtained using h = 0.1 ms. For bigger h the
estimation becomes inaccurate and for smaller h the effect
of noise becomes dominant. In turn, the estimation of the
azimuthal (and, similarly, of the torsional frequency) presents
same challenges and same tradeoffs as the estimation of
the instantaneous frequency through PLLs. Overall, and as
expected, there is a very good match between ωκ(t) and φ′(t),
also for the scenarios with unbalanced voltages and harmonic
contents.

V. CONCLUSIONS

The paper elaborates on the concept of frequency and
discusses a geometric approach that allows defining a common
framework for time- and frequency-domain approaches. With
this framework the well-known paradoxes of the IF can be
explained in terms of curves and of coordinate transformations.
A variety of examples illustrate the proposed framework as
well as the conditions for which the IF matches the expected
shape and behavior of the frequency of a signal. A case study
based on the IEEE 39-bus system shows that PLLs closely
match the proposed geometric approach.

The geometrical approach appears promising and paves the
way to a variety of future developments. Reference [30] is
our first work that utilizes the geometrical framework and
focuses on circuit analysis. We believe that this framework
can be also exploited for practical applications, i.e., to design
better controller and improve the dynamic performance of
power systems, in particular the control of non-synchronous
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devices in low-inertia networks. We are currently working in
this direction.
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