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Federico Milano, IEEE Fellow

Abstract—The paper proposes a generalization of the Park
transform based on the Frenet frame, which is a special set of
coordinates defined in differential geometry for space curves.
The proposed geometric transform is first discussed for three
dimensions, which correspond to the common three-phase cir-
cuits. Then, the expression of the time derivative of the proposed
transform is discussed and the Frenet-Serret formulas and the
Darboux vector are introduced. The change of reference frame
and its differentiation based on Cartan’s moving frames and
attitude matrices are also described. Finally, the extension to
circuits with more than three phases is presented. The features
of the Frenet frame are illustrated through a variety of examples,
including a case study based on the IEEE 39-bus system.

Index Terms—Park transform, differential geometry, Frenet
frame, Frenet-Serret formulas, Cartan’s moving frames, attitude
matrix, three-phase circuits, multi-phase circuits.

I. NOTATION

Scalars are indicated with Italic font, e.g. x, whereas vectors
and matrices are indicated in bold face, e.g. x = (x1, x2, x3).
Vectors have order 3, unless otherwise indicated.

Scalars:
s length of a curve
t time
v voltage magnitude
α 2π/3 rad
β 2π/6 rad
δ synchronous machine rotor angle
θ voltage phase angle
κ curvature
ϖ projection operator
τ torsion
χ generalized curvature
ω angular frequency

Vectors:
0 null vector
B binormal vector of the Frenet frame
ei i-th vector of an orthonormal basis
f i i-th vector of a generalized Frenet frame
ı current vector
N normal vector of the Frenet frame
r Darboux angular momentum vector
T tangent vector of the Frenet frame
v voltage vector
ϕ magnetic flux vector
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Matrices:
A attitude matrix of Cartan’s moving frame
C cylindrical frame
F matrix of the Frenet frame
P matrix of the Park transform
Ψ generalized matrix to change coordinates
Ω rotation matrix

Vector and Matrix Operations:
a, |a| vector magnitude
a′,a′,A′ derivative of a scalar/vector/matrix w.r.t. t
ȧ, ȧ, Ȧ derivative of a scalar/vector/matrix w.r.t. s
â, Â transpose of a vector/matrix
Ā inverse of a matrix

II. INTRODUCTION

A. Motivation

The Park transform is the most important transform uti-
lized in power system transient stability analysis and control.
Originally formulated by Park for the two-reaction theory of
synchronous machines [1], this transform has found applica-
tions in the control of induction machines and, more recently,
of converter-interfaced devices. In simulations, the Park trans-
form is also a fundamental tool for the implementation of
the devices that compose the grid [2] and for the modeling
on power electronic converters [3]. Despite its relevance,
there are not many attempts to generalize the Park transform,
except for some extensions to multi-phase circuits [4], [5], nor
to overcome its intrinsic idiosyncrasies or better understand
its geometric properties. This work addresses precisely these
issues through the theory provided by differential geometry.

B. Literature Review

Since the introduction of phasors by Steinmetz at the end of
the 19th century [6], domain and coordinate transformations
are a common practice for the analysis of electrical circuits,
electrical machines and for power system modeling, analysis
and control. Apart from the aforementioned Park transform,
well-known transforms are the harmonic analysis through
Fourier series [7], Fortescue symmetrical component theory
[8], the forward-backward transform [9], the Clarke transform
[10], and more recently, dynamic phasor analysis [11], [12].
Except for the Fourier analysis, the transforms above can be
represented as 3-by-3 matrices when applied to three-phase
circuits. Begin homomorphisms, it is also possible to find
the conversion matrices from one transform to another (see,
e.g., [13]). In the same vein, this work aims at discussing a
generalization of the concept of change of coordinates and
considers the most general case, i.e., the case for which the
axis of the coordinates are time dependent.
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The proposed generalization is inspired by the literature on
differential geometry and, in particular, by the Frenet frame,
the Frenet-Serret formulas and the theory of moving frames
developed by Cartan [14], [15]. These have found several
applications in mechanics, e.g., just to cite a recent relevant
one, in the area of autonomous vehicle driving [16], [17].
On the other hand, the Frenet frame has been only very
recently considered for circuit and power systems analysis
[18]. This was given raise by the geometrical interpretation
of the frequency developed by the author in [19].

References [18] and [19] assume that the instantaneous
values of electrical quantities such as voltages and currents of
three- or multi-phase circuits are vectors in a given coordinate
system. This idea was already developed in the past in the
context of the instantaneous power theory [20]–[23]. These
works define the active and reactive power as the dot and
cross (or wedge in multi-phase circuits) products, respectively,
of voltage and currents. A variety of recent works with same
starting point have focused on the analysis of electric circuits
using the formalism provided by geometric algebra [24]–[27].

The main difference of [18] and [19] with respect to
the more conventional theory on instantaneous power is the
hypothesis that the voltage (current) vector is the speed of a
curve, represented by the magnetic flux (electric charge). This
interpretation moves the focus from “algebra” to “calculus”
and allows interpreting the dynamic behavior of the voltage
and current in terms of the “invariants” of differential geom-
etry, such as curve length, curvature and torsion.

C. Contributions

This work elaborates on the results of [18] and determines
similarities and differences between the Park transform and
the Frenet frame. The novel contributions are the following.

• The derivation of the formal conditions under which the
Park transform and its time derivative is equivalent to the
Frenet frame and to the Frenet-Serret formulas.

• An application of Cartan’s moving frames that allows in-
terfacing the local Frenet frame of each device connected
to the grid to the reference frame of the grid itself.

• An application of generalized n-dimensional Frenet
frame to multi-phase systems, i.e., systems with more
than three phases.

• A thorough example-based discussion of the added value
of the Frenet frame compared to the Park transform for
the study of the dynamic performance of power systems.

D. Organization

The remainder of the paper is organized as follows. Section
III recalls the definition of the Park transform and its time
derivative. Section IV introduces geometric calculus, provides
the definitions of curve length, curvature and torsion, recalls
the Frenet frame, the Frenet-Serret formulas and Cartan’s
moving frames and provides the formulas of the generalized
curvatures in n dimensions. Section V combines the definitions
provided in the previous sections and defines the conditions
under which the Park transform is a special case of the Frenet
frame. The interconnection of local Frenet frames of electrical

devices with the reference frame of the grid is also discussed
in Section V by means of Cartan’s moving frames. Section
VI illustrates the differences between the Park transform and
the Frenet frame through a series of examples in three and six
dimensions as well as the IEEE 39-bus system. Section VII
draws conclusions and outlines future work.

III. PARK TRANSFORM

The Park transform projects the phase components abc of
a three-phase electrical quantity onto a dqo frame, where
the axes d and q rotate at angular speed ωP. In his original
formulation, Park aimed at preserving the magnitudes of the
transformed quantities and did not define a power invariant
transformation. For the developments presented in this paper,
however, it is more convenient to retain power invariance.

The formulation of the dqo-transform utilized in this paper
is as follows:

vdqo(t) = P(ωP)vabc(t) , (1)

where v̂dqo = [vd, vq, vo], v̂abc = [va, vb, vc], and

P(ωP) =

√
2

3

sin(θP) sin(θP − α) sin(θP + α)
cos(θP) cos(θP − α) cos(θP + α)
1/

√
2 1/

√
2 1/

√
2

 , (2)

where:

θP(t) =

∫ t

0

ωP(r) dr + θP,0 . (3)

Note that ωP in (3) does not have to be constant. The power
invariance of the matrix P in (2) refers to the fact that if vabc

and ıabc are the voltage and current at a given point of a three-
phase circuits, then the instantaneous power is unchanged for
the same voltage and current transformed in dqo coordinates:

v̂abc(t) ıabc(t) = v̂dqo(t) ıdqo(t) , (4)

This property descends from the fact that P is orthonormal,
i.e., its transpose is equal to its inverse:

P̂(ωP) = P̄(ωP) . (5)

Equation (5) can be readily proved, as follows:

v̂dqoıdqo = ̂(Pvabc)P ıabc

= v̂abc P̂P ıabc

= v̂abc P̄P ıabc = v̂abcıabc ,

where the dependencies on time and on ωP have been dropped
for simplicity.

The choice for the angular speed ωP of the Park transform
depends on the device and the application. For synchronous
machines, ωP is generally chosen as the rotor angular speed
of the machine itself, namely ωP = ωr = δ′r. This allows
simplifying the equations of the machine and rewriting rotor
quantities and equations as they were a dc circuit. This is also
the motivation for the original two-reaction theory developed
by Park. For all other devices, however, including induction
machines, and in general for transient stability analysis studies
of interconnected systems, it is chosen ωP = ωo, namely, the
constant synchronous reference angular frequency of the grid,
e.g., ωo = 2π 60 rad/s.
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A. Time Derivative of dqo-Axis Voltages

The time derivative of a dqo-axis voltage is given by:

v′
dqo =

(
Pvabc

)′
= P′vabc +Pv′

abc

= P′ P̄vdqo +Pv′
abc ,

(6)

where the dependency of P on ωP has been dropped for
simplicity. Let us define:

ΩP = P′ P̄ = P′ P̂ =

 0 ωP 0
−ωP 0 0
0 0 0

 , (7)

which is a skew-symmetric matrix, i.e., Ω̂P = −ΩP. Then, (6)
can be rewritten as:

Pv′
abc = v′

dqo −ΩP vdqo

= v′
dqo + Ω̂P vdqo .

(8)

Equation (8) shows that the Park transform of the derivative of
vabc consists of two terms. The first term is the time derivative
of the Park-transformed voltage vdqo, which represents a
translation. The second term is given by product of ΩP and
vdqo, which is due to the rotation of the Park dq-axis. The
second term is null only if ωP = 0, which is the choice that
leads to the Clarke transform.

B. Interface between dqo-Axes Rotating at Different Speeds

We consider the relevant case of the interface of the sta-
tor terminal-bus synchronous generator with Park transform
P(ωr) with the grid, the Park transform of which is P(ωs).
Since the zero-axis of the Park transform does not rotate with
ωP, the interface between machine and network consists in a
rotation in the dq-plane, as follows:

vN
dqo(t) = P(ωs)vabc(t)

= P(ωs) P̂(ωr)v
G
dqo(t)

= CvG
dqo(t) ,

(9)

where N and G indicate “network” and “generator”, respec-
tively, and matrix C is orthonormal and represents a change
of coordinates in a cylindrical frame. In fact, developing the
matrix multiplication between P(ωs) and P̂(ωr), one obtains:

C =

cos(θs − δr) − sin(θs − δr) 0
sin(θs − δr) cos(θs − δr) 0

0 0 1

 , (10)

where δr =
∫ t

0
ωr(r)−ωo dr+δr,0 is the rotor angular position

of the machine and θs =
∫ t

0
ωs(r)− ωo dr+ θs,0 is the phase

angle of the terminal-bus voltage of the machine. In practical
implementations, one can only know a relative value of the
phase angles. For this reason δr and θs must be referred to the
same reference frame, which is generally chosen as rotating
at the constant reference angular speed ωo. Another common
choice for the reference is the angular frequency of the center
of inertia of the system [2]. This is utilized to avoid the drift
of the machine angles and bus voltage phase angles during the
transients following a large perturbation [28].

Finally, the time derivative at the interface between a
generator and the network can be obtained in a similar way
as described in the previous section, as follows:

(vN
dqo)

′ =
(
P(ωs)vabc

)′
= P′(ωs)vabc +P(ωs)v

′
abc

= P′(ωs) P̂(ωr)v
G
dqo +P(ωs)v

′
abc ,

(11)

and substituting

v′
abc = P̂(ωr)(v

G
dqo)

′ − P̂(ωr)ΩP(ωr)v
G
dqo , (12)

one obtains:

(vN
dqo)

′ = C (vG
dqo)

′

+ [P′(ωs) P̂(ωr)−CΩP(ωr)]v
G
dqo .

(13)

Observing that:

P′(ωs) P̂(ωr) = P′(ωs) P̂(ωs)P(ωs) P̂(ωr)

= ΩP(ωs)C ,
(14)

and that ΩP(ωs)C = CΩP(ωs), one obtains:

(vN
dqo)

′ = C (vG
dqo)

′

+C [ΩP(ωs)−ΩP(ωr)]v
G
dqo ,

(15)

where it is relevant to observe that the term ΩP(ωs)−ΩP(ωr)
can be also obtained as:

C′ Ĉ =

 0 ωs − ωr 0
ωr − ωs 0 0

0 0 0

 . (16)

The latter expression does not appear out of the blue. It is the
consequence of a more general theory, i.e., Cartan’s moving
frames, which is described in the next section.

IV. FRENET FRAME OF SPACE CURVES

This section introduces the classical Frenet frame and the
Frenet-Serret formulas of space curves. With this aim, it is
relevant to provide first some definitions.

The starting point is a curve in a three-dimensional space,
say x = (x1, x2, x3) or, equivalently:

x = x1 e1 + x2 e2 + x3 e3 , (17)

where (e1, e2, e3) is an orthonormal basis. For the develop-
ment given below, it is relevant to define two types of products
that can be done with three-dimensional vectors, namely the
dot product and and the cross product. The dot product of two
vectors returns a scalar, as follows:

x · y = x̂ y = x1y1 + x2y2 + x3y3 . (18)

The cross product of two vectors returns a vector that is
orthogonal to the original vectors, as follows:

x× y =

∣∣∣∣∣∣
e1 e2 e3
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ . (19)

It is relevant to note that |x| =
√
x · x is the magnitude of

the vector, and x× x = 0.
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The length s of the curve is defined as:

s =

∫ t

0

√
(x′ · x′) dt , (20)

or, equivalently:

s′ =
√
x′ · x′ = |x′| . (21)

where
x′ = (x1 e1)

′ + (x2 e2)
′ + (x3 e3)

′

= (x′
1 e1 + x′

2 e2 + x′
3 e3)+

(x1 e
′
1 + x2 e

′
2 + x3 e

′
3)

(22)

is the speed of the trajectory described by x. For fixed
reference frames the terms e′i are null. However, in this work, it
is of interest to discuss moving frames, i.e., sets of coordinates
for which the position of the axes of the coordinates vary in
time. Both the Park transform and the Frenet frame, which are
introduced below, are special cases of moving frames.

The length s is a geometric invariant, i.e., its value does not
depend on the choice of the coordinates. Neglecting relativistic
effects, also its time derivative, s′, is an invariant and has a
special role in differential geometry. In particular, it is relevant
to define The derivative of x with respect to s, which, using
the chain rule, can be written as:

ẋ =
dx

ds
=

dx

dt

dt

ds
=

x′

s′
=

x′

|x′|
. (23)

The vector ẋ has magnitude 1 and is tangent to the curve
x. In the remainder of this paper, ẋ, ẍ,

...
x , etc. indicate the

derivatives of a vector with respect to s, whereas x′, x′′, x′′′

indicate time derivatives.
We have mentioned that invariants play a relevant role

in differential geometry as they are quantities independent
form the choice of the coordinates. Yet, among all possible
set of coordinates, there is one, the Frenet frame, that has
special properties. This frame is defined by the following three
vectors:

T = ẋ , N =
ẍ

|ẍ|
, B = T × N , (24)

where T, N and B are called tangent, normal and binormal
vectors, respectively. The vectors in (24) are orthonormal,
i.e. T = N × B and N = B × T, and satisfy the following
set of differential equations [14]:

Ṫ = κN ,

Ṅ = −κT + τ B ,

Ḃ = −τ N ,

(25)

where κ and τ are the curvature and the torsion, respectively,
which are given by:

κ = |ẍ| = |x′ × x′′|
|x′|3

, (26)

and

τ =
ẋ · ẍ× ...

x

κ2
=

x′ · x′′ × x′′′

|x′ × x′′|2
. (27)

Both κ and τ are geometric invariants, as the length s.

Equations (25) are known as Frenet-Serret equations and
have a key role in this paper. Observe that (25) can be rewritten
as:

Ḟ =

 0 κ 0
−κ 0 τ
0 −τ 0

F , (28)

where

F =

T̂

N̂

B̂

 =

T1 T2 T3

N1 N2 N3

B1 B2 B3

 . (29)

Recalling (23), the Frenet-Serret equations (25) and, thus, (28),
can be rewritten, using the chain rule, as:

F′ = Ḟ s′ =

 0 ωκ 0
−ωκ 0 ωτ

0 −ωτ 0

F = ΩF F , (30)

where ωκ = s′κ and ωτ = s′τ have the dimension of
an angular frequency and are defined in [18] as azimuthal
frequency and torsional frequency, respectively. Similarly to κ
and τ , also ωκ and ωτ are geometric invariants, since they are
products of invariants.

From (30) and the orthonormality of F descend that [15]:

ΩF = F′ F̄ = F′ F̂ , (31)

whose resemblance with (7) is evident.

A. Time Derivative and Darboux Vector

This section is dual to Section III-B, i.e., discusses the time
derivative of vectors transformed using the Frenet frame. Let
us define:

xTNB = Fx . (32)

Then, the time derivative of xTNB is:

x′
TNB = Fx′ + F′ x

= Fx′ + F′ F̄xTNB

= Fx′ +ΩF xTNB ,

(33)

And, finally:
Fx′ = x′

TNB + Ω̂FxTNB , (34)

which has the same structure as (8). It is relevant to note that:

r = ωτ T + ωκ B = ⋆(ΩF) , (35)

where r is called Darboux vector (or angular momentum
vector) and ⋆ is the Hodge star operator, i.e., an isomorphism
between vectors and matrices (bivectors). Hence, one can
rewrite (34) as [14]:

Fx′ = x′
TNB − r× xTNB , (36)

where Fx′ is the transform of the speed of the curve x and can
be interpreted as the time derivative of the transformed curve
xTNB on the rotating frame defined by F plus a term that
depends on the rotation of the Frenet frame itself. Differently
from the Park transform, however, the Frenet frame has two
rotations: in the plane (T,N) with angular frequency ωκ and
in the plane (N,B) with angular frequency ωτ .
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B. Cartan’s Moving Frames

While the Darboux vector is useful to understand the
geometrical meaning of the rotation matrix ΩF, it cannot be
easily generalized to an arbitrary set of orthonormal basis. This
generalization is due to Cartan,1 who obtained the following
general expression for an orthonormal matrix A:

ΩA = A′ Ā = A′ Â , (37)

where ΩA has the following general structure:

ΩA =

 0 ω12 ω31

−ω12 0 ω23

−ω31 −ω23 0

 , (38)

which is a skew-symmetric matrix, namely Ω̂A = −ΩA.
In [29], A is called attitude (or orientation) matrix. Thus,

F is an attitude matrix for which ω31 = 0. It is possible
to demonstrate that the information contained in ΩF is all
the information on the rotation of the frame [15]. Hence, F
is not just any attitude matrix, but the matrix that represents
a particular (the only, in fact) moving frame following the
trajectory of the curve x for which ω31 = 0 for all t.

Based on the definition above, P(ωP) is also an attitude
matrix for which ω12 = ωP and ω23 = ω31 = 0. However,
since for P, ω23 is always null, the information provided by
P is incomplete in general. This point is a key contribution
of the paper and is further elaborated in Section V.

C. Extension to n-Dimensional Curves

So far, we have discussed three-dimensional vectors and
three-phase circuits. However, the Frenet frame and Frenet-
Serret formulas can be extended to n dimensions, and hence, to
circuits with an arbitrary number of phases. The starting point
are a set of independent vectors, e.g., (ẋ, ẍ, . . . ,x(n)). Then,
the orthonormal basis can be constructed through the Gram-
Schmidt process. With this aim, let define first the projection
operator as:

ϖu(w) =
u ·w
u · u

. (39)

Then the unnormalized orthogonal vectors ẽ1, ẽ2, . . . , ẽn are
obtained as:

ẽ1 = ẋ ,

ẽh = x(h) −
h−1∑
k

ϖẽk
(x(h)) , h = 2, . . . , n− 1 ,

(40)

Then, the normalized orthonormal n− 1 vectors are given by:

f i =
ẽi
|ẽi|

, i = 1, 2, . . . , n− 1 , (41)

and, finally, the n-th vector is defined as:

ẽn = ⋆(f1 ∧ ⋆(f2 ∧ ⋆(. . . ∧ fn−1) . . . )) ⇒ fn =
ẽn
|ẽn|

, (42)

1Cartan’s notation utilizes the differential 1-form d rather than the time
derivative. However, for sake of simplicity and consistency with the con-
ventional vector-based notation utilized in power systems, differential forms
are not used in this work. The interested reader can find an introduction to
Cartan’s forms and moving frames in [29].

where ∧ is the wedge product that can be thought as a
generalization of the cross product for vectors with dimensions
n > 3 [14]. Observe that the wedge product of two vectors is
a bivector, hence the need for the Hodge star operator.

The generalized curvatures are given by:

χi = ḟi · f i+1 , (43)

with generalized frequencies:

ωχ,i = s′χi = f ′i · f i+1 . (44)

Defining F = [f1, f2, . . . , fn], the generalized Frenet-Serret
formulas become:

F′ = Ωχ F , (45)

where

Ωχ =


0 ωχ,1 0

−ωχ,1
. . . . . .
. . . 0 ωχ,n−1

0 −ωχ,n−1 0

 . (46)

Finally, we note that Cartan’s moving frames and attitude ma-
trices also immediately extend to n dimensions. In particular,
observe that, if A is an attitude matrix with dimension n, (37)
returns a skew-symmetric matrix with dimension n.

V. GEOMETRICAL INTERPRETATION OF THE VOLTAGE

In [19], the author provides a geometrical interpretation
of electrical quantities in multi-phase circuits. Limiting for
simplicity but without lack of generality the discussion to
three-phase circuits, the key assumption of [19] is that the
voltage v is a vector representing the time derivative of a
space curve. According to the Faraday’s law, this space curve
has the physical meaning of a magnetic flux vector, say φ:2

φ = −x , (47)

which, from the Faraday’s law, leads to:

v = −φ′ = x′ . (48)

In [18], the author utilizes (48) to rewrite the equations of the
Frenet frame in terms of the voltage at a node of a three-phase
circuit, as follows.

From (21) and (48), the magnitude of the voltage vector is
equivalent to the length s of the trajectory of φ. Hence:

s′ = |v| , (49)

which leads to conclude that |v| is an invariant, as to be
expected. Then, the following identities hold [18]:

T =
v

|v|
, N =

ω × v

|ω| |v|
, B =

ω

|ω|
, (50)

where ω is the binormal vector before normalization:

ω =
v × v′

|v|2
. (51)

2Similarly, one can assume that the current in a three-phase line is the time
derivative of a space curve, which by definition of electric current, has the
meaning of an electric charge.
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The curvature κ and torsion τ that appear in the Frenet-
Serret equations (25) can be also expressed in terms of the
voltage, as follows:

κ =
|v × v′|
|v|3

, (52)

and:
τ =

v · v′ × v′′

|v × v′|2 |v|4
, (53)

respectively. From the latter two expressions and the identity
(49), one can also deduce that the azimuthal and torsional
frequencies that appear in (31) are [18]:

ωκ = |v|κ = |ω| ,
ωτ = |v| τ .

(54)

It is important to note that differential geometry in general
and the Frenet frame in particular assume smooth curves. This
is a reasonable assumption if the curve represents the trajectory
of a point-mass in a three-dimensional space (or even four-
dimensional if one considers space-time). On the other hand,
the fact that the voltage is a smooth function of time does not
necessarily always hold. It can be argued that instantaneous
variations of the voltage are an approximation as, in reality,
parasite capacitive (and inductive) effects will always make
voltages (and currents) smooth state variables. However, in
practice, very fast variations of the voltage complicate the
calculation of its time derivatives. The case study discussed
in Section VI-D shows that these discontinuities do not affect
the evaluation of the vectors of the Frenet frame and of the
quantities ωκ and ωτ .

A. Geometrical Interpretation of the Park Transform

We are now ready to present the main result of this work.
Let us consider a balanced three-phase voltage:

v = v[sin(θa)ea + sin(θa − α)eb + sin(θa + α)ec] , (55)

where v and θ′a = ωa are time-varying quantities. Then, the
calculation of (T,N,B) based on (50) leads to:

F =

√
2

3

sin(θa) sin(θa − α) sin(θa + α)
cos(θa) cos(θa − α) cos(θa + α)
1/

√
2 1/

√
2 1/

√
2

 , (56)

which, comparing to (2), indicates that for a balanced voltage
and assuming θP = θa the following identities hold:

P(ωa) = F , ΩP = ΩF ,

ωκ = ωa , ωτ = 0 .
(57)

Relevant special cases of (55) are:
• Stationary, balanced voltages with v = const. and ωa =

ωo. P(ωo) is the conventional Park transform utilized for
transmission grid elements.

• For balanced synchronous machines, v is the stator volt-
age and ωa = ωr is the rotor angular speed. P(ωr)
represents the conventional synchronous machine Park
transform P(ωr) utilized in transient stability analysis.

The identities in (57) also indicate that, in general, P(ωP) ̸=
F. In particular, in the transient following a fault, the frequency

of the bus voltages varies from point to point of the grid [30].
This implies that, in transient conditions, for any bus voltage,
P(ωP) = F if and only if ωP = ωκ.

The main conceptual difference between the Park transform
and the Frenet frame is that, for the former, ωP has to be
defined a priori and is, in general, a quantity detached from
the actual behavior of the quantities to which the transform
is applied. On the other hand, the Frenet frame is defined
based on the instantaneous values of the quantity to which it
is applied and ωκ is obtained as a byproduct of the calculation
of the frame itself.

Applying the Frenet frame to a three-phase voltage has the
following effect:

vTNB = Fvabc =

|vabc|
0
0

 . (58)

In fact:
T · vabc =

vabc

|vabc|
· vabc = |vabc| , (59)

and, by construction, N · vabc = 0 and B · vabc = 0.
Equation (58) indicates that the Frenet frame always – i.e.,

not only in balanced stationary conditions – makes the original
vector of voltage equivalent to a dc voltage. The “price” of
this transformation is that the time derivative of such a voltage
includes two terms, the conventional translation v′

TNB and the
rotation ΩFvTNB. In the other way round, thus, one can view
a dc voltage as a quantity referred to a Frenet frame for which
ΩF = 0, which is, in effect, the condition satisfied by straight
lines.

In conclusion, at every instant, a three-phase voltage v
is fully characterized by three scalar quantities, namely |v|,
ωκ and ωτ . Again, this result does not apply only to bal-
anced stationary conditions, but always hold. Similarly, n-
dimensional voltage vectors are fully characterized by |v| and
n− 1 generalized frequencies, namely ωχ,1, . . . , ωχ,n−1.

B. Beyond Balanced Conditions

The previous section shows that, for balanced stationary
conditions and if ωP = ωa, the Park transform and the
Frenet frame coincide. In these conditions, in fact, the two
transforms differ at most by a phase shift. This occurs if
the Park transform reference angle is θP = θa + θP,0. The
differences – and generality – of the Frenet frame with respect
to the Park transform, however, manifests in unbalanced and/or
transient conditions.

The first difference is that the Frenet frame always follows
the curve and defines, at each instant, a set of orthogonal
coordinates that have a specific meaning for the trajectoy
itself (namely, tangent, normal and binormal vectors). For this
reason, ωκ (and ωτ ) is a byproduct of the Frenet frame, not an
arbitrary choice as it is ωP for the Park transform. The second
difference is that the Frenet frame does not require setting an
external and, again, arbitrary, reference phase angle.

The differences above have relevant consequences. For
example, all trajectories that lay in the plane (T,N) have
ωτ = 0. Reference [18] shows that voltages that are sta-
tionary unbalanced, balanced with harmonics, and balanced
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in transient conditions show ωτ = 0, whereas stationary
voltages with unbalanced harmonic content show ωτ ̸= 0.
On the other hand, since the Park transform does not follow
the trajectory described by the voltage, it shows a nonnull o-
axis component in unbalanced conditions. More importantly,
since the frequency ωP is not necessarily related to the time
evolution of the voltage, if ωP ̸= ωa, Park transformed dq-axis
components can vary in time also in stationary conditions. This
situation is common in power systems, where, due to the droop
and deadbands of primary frequency controllers, the frequency
of the voltages can be different (even if just slightly) from the
synchronous reference ωo. Instead, the Frenet frame satisfies
by construction the condition ωκ = ωa in stationary balanced
conditions.

In turn, the Park transform has a relevant geometrical mean-
ing only in the balanced stationary case. In all other conditions,
the components of the Park transform are simply projections
on an arbitrary (arbitrary in the sense that the coordinates
are not related in any way to the trajectory described by
the voltage) sets of time-varying coordinates. The geometrical
meaning of the Frenet frame and the and properties of the
Frenet transformed quantities and invariants, on the other
hand, are always the same. Based on this observation, the
Frenet transform can be seen as a generalization of the Park
transform.

Sections VI-B to VI-D further illustrate, through numerical
examples, all points discussed above.

C. Interconnection of Voltage Frenet Frames to the Grid

The “locality” of the Frenet frame of each individual device
has to be conciliated with the rest of the grid. To be able to
study the interaction of the devices and, ultimately, to study
and simulate the dynamics of the system, it is thus necessary
to have a mechanism to convert the local set of coordinates
(T,N,B) to the “system” coordinates.

In Section III, we have described the common way with
which synchronous machines are interfaces to the grid, namely
using a rotation in the plane dq through a cylindrical coordi-
nate change as in (10). Since the Frenet frame provides a
systematic way to define the “local” frequency of a device as
its azimuthal frequency, a change of coordinate can be done,
in effect, with any combination of transforms. For example,
assuming that the network is referred to the Park transform
P(ωs), the change of coordinate from a local Frenet frame of
a device to the network is given by:

vN
dqo = P(ωs) F̂vD

TNB = Ψ(ωs)v
D
TNB , (60)

where N denotes a quantity in the network reference frame
as in (9), and D denotes a quantity expressed using a local
reference frame. Then, the rotation of the attitude matrix Ψ is
given by:

ΩΨ =
(
P(ωs) F̂

)′ (
P̂(ωs) F̂

)
=

(
P′(ωs) F̂+P(ωs) F̂

′)
FP̂(ωs)

= P′(ωs) F̂ F P̂(ωs) +P(ωs) F̂
′
FP̂(ωs) .

(61)

Finally, recalling that F̂ F = I, Ω̂F = F F̂
′
, and Ω̂F = −ΩF,

(61) becomes:

ΩΨ = ΩP −Ψ(ωs)ΩF Ψ̂(ωs) , (62)

which is a skew-symmetric matrix in the form of (38).3 Matrix
Ψ is the Frenet frame equivalent to the cylindrical frame C
defined in (10). Or, equivalently, Ψ is the generalization of C.
In the same vein, the expression (16) represents the rotation
matrix ΩC, of which ΩΨ is the generalization.

VI. CASE STUDY

This section illustrates the theoretical results above through
a variety of examples, including a simulation based on the
IEEE 39-bus system. In Sections VI-A to VI-D, the voltages
vabc are assumed to be three-dimensional vectors on the basis:

ea = (1, 0, 0) , eb = (0, 1, 0) , ec = (0, 0, 1) . (63)

The last example (Section VI-E) considers a multi-phase
system with n = 6. In all cases, ωo = 2π 60 rad/s and
P = P(ωo). In the figures below, the trajectories of the voltage
are in pu with respect to a base of 15 kV and ωκ and ωτ are
in pu with respect to ωo.

A. Balanced Three-Phase AC Voltages

The examples presented in this section utilize a balanced
three-phase AC voltages in the form:

va = V sin(ωa t+ θa,0) ,

vb = V sin(ωa t+ θa,0 + α) ,

vc = V sin(ωa t+ θa,0 − α) ,

(64)

where θa,0 = π/6 rad. The following four cases are consid-
ered:

• E1: ωP = ωa = ωo, V = 15 kV.
• E2: ωP = ωo, ωa = 1.2ωo rad/s, V = 15 kV.
• E3: ωP = ωa = ωo, V = 15 + 3 sin(0.2ωot) kV.
• E4: ωP = ωo, ωa = ωo+2π sin(20πt) rad/s, V = 15 kV.
The voltage vabc, vdqo, vTNB as well as the angular fre-

quencies ωκ and ωτ for the examples E1-E4 are shown in
Figs. 1.(a)-(p).

Example E1 is the standard balanced, stationary case, for
which the Park transform and the Frenet frame substantially
coincide, except for the fact that the Frenet frame is indepen-
dent from the angular position θa,0. This is a consequence
of the fact that the Frenet frame follows the voltage locally,
whereas the Park transform follows an independent reference.

Example E2 shows one of the critical issues (especially,
in the context of state estimation) of the Park transform:
the fact that if ωP ̸= ωa then, the Park dq-axis components
oscillates at frequency ωa − ωP, even if the amplitude of the
measured signal is perfectly stationary [31]. As expected, on

3Note that (62) holds in general for any product of attitude matrices. In
fact, if A and B are attitude matrices of same order, then:

E = AB̂ ⇒ ΩE = ΩA −EΩBÊ .
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Fig. 1: Examples E1-E6.
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the other hand, the Frenet frame returns a steady-state voltage
magnitude v and azimuthal frequency ωκ.

Examples E3 and E4 represent dual scenarios. In E3,
the voltage magnitude is time varying and the frequency is
constant whereas, in E4, the voltage magnitude is constant and
the angular frequency ωa is time varying. The Park transform
is unable to distinguish between these two situations, once
again because of the constant external reference angular speed.
On the other hand, the Frenet frame separates the effects of
the variations of the voltage magnitude and of the angular
frequency. It is relevant to observe that this property holds also
for signals with time-varying voltage magnitude and angular
frequency, which is the typical scenario in the first seconds of
power system transients following a large disturbance (see the
case study in Section VI-D).

B. Unbalanced Three-Phase AC Voltages

This section discusses the effect of unbalanced conditions.
Let us define the following unbalanced three-phase AC volt-
ages (example E5):

va = V sin(ωo t+ θa,0) ,

vb = 1.2V sin(ωo t+ θa,0 + α) ,

vc = 0.8V sin(ωo t+ θa,0 − α) ,

(65)

where θa,0 = π/6 rad. The voltage vabc, vdqo, vTNB as well
as the angular frequencies ωκ and ωτ for the voltage vector
(65) are shown in Figs. 1.(q)-(t).

The unbalanced conditions give birth to a non-null zero-
sequence component in the vector vdqo. However, the curve
associated with these conditions is still a plane curve, as
confirmed by the fact that ωτ = 0. In turn, the trajectory
described by the voltage is an ellipse rather than a circle. Then,
to describe the curve it suffices to know only two quantities,
not three as suggested by the Park transforms. This situation
is properly captured by the Frenet frame: both the magnitude
of the voltage and the azimuthal frequency are periodic, which
reflects the fact that in ellipse, both the radius and the curvature
are not constant and repeat periodically at every full turn.

C. Three-Phase AC Voltages with Harmonics

This example (E6) describes the effect of unbalanced har-
monics on voltages transformed with the Park transform and
the Frenet frame. We consider the following voltage vector:

va = V {sin(ωo t+ θa,0) + 0.1 sin[5(ωo t+ θa,0)]} ,
vb = V {sin(ωo t+ θb,0) + 0.2 sin[5(ωo t+ θb,0)]} ,
vc = V {sin(ωo t+ θc,0) + 0.1 sin[5(ωo t+ θc,0)]} ,

(66)

where V = 15 kV, θa,0 = π/6 rad, θb,0 = π/6 − α rad, and
θc,0 = π/6 + α rad. The voltage vabc, vdqo, vTNB as well as
the angular frequencies ωκ and ωτ for the voltage vector (66)
are shown in Figs. 1.(u)-(x).

Unbalanced harmonics leads to a time-varying torsional
frequency ωτ (see also the examples included in [18]). It
is relevant to note that, from the Park transform point of
view, both E5 and E6 lead to a periodic vo. Of course, the
frequency of the oscillations allows distinguishing between

E5 (unbalance voltages at the fundamental frequency) and E6
(harmonic content). However, only the Frenet frame allows
interpreting correctly the “non-planar” nature of E6.

D. Power System Transient

This last example considers the IEEE 39-bus system. The
model utilized in the simulation below is provided as an
application example with DIgSILENT PowerFactory. This
consists of a detailed EMT three-phase model. Beside machine
and control dynamics of the original IEEE 39-bus benchmark
system, the model includes the electromagnetic dynamics of
transmission lines, transformers and synchronous machines.
The contingency is a three-phase fault at bus 4. The fault
occurs at t = 0.2 s and is cleared at t = 0.3 s. The time
step of the numerical integration is 0.01 ms. Figure 2 shows
the trajectories of vabc, vdqo and vTNB at bus 24 in pu with
respect to a base of 220 kV and of the azimuthal and torsional
frequencies in pu with respect to ωo = 2π 60 rad/s.
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Fig. 2: Example E7: Transient behavior of the voltage and frequency
at bus 26 of the IEEE 39-bus system following a fault at bus 4.

The untransformed voltage vector vabc carries “too much”
information for the time scale of the simulation (several
seconds), which is the typical one utilized to study elec-
tromechanical transients after a fault. This fully justifies the
common practice to utilize a RMS model for the study of these
transients. The Park-transformed voltage vdqo suffers of the
decoupling between the reference angular frequency utilized
in P(ωo). The slip between the actual frequency at the bus
and ωo makes the interpretation of the behavior of the dq-axis
components vd and vq not intuitive. The Frenet frame, on the
other hand, provides straightforward information. The tangent
component vT is the time envelope of vabc. Then ωκ shows
the behavior of the local frequency at the bus. Finally, ωτ ,
which is null except during the fault, indicates that the system
does not include unbalanced harmonics.

On a practical note, the accuracy of the evaluation of the
vectors of the Frenet frame as well as of the geometric
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invariants depends exclusively to the precision with which
the time derivatives of the voltage can be evaluated. In fact,
T is the normalized three-phase ac voltage vabc, whereas N

and B are obtained based on the first time derivative of vabc,
see (50) and (51). Similarly ωκ requires only the calculation
of first time derivatives, whereas ωτ requires also second
time derivatives, see (52) and (53). In this case study, the
derivatives were obtained by numerically differentiating the
sampled phase voltages at bus 26 and then removing noise
with discrete butterworth and low-pass filters.

Finally, it is relevant to remark that, for a balanced case
as the one discussed in this section, vN =

√
v2d + v2q and

ωκ = ωo +
d
dt arctan(vq, vd). Moreover, the drift of the dq-

axis components can be compensated by using the frequency
of the center of inertia rather than ωo in matrix P. However,
the center of inertia is a quantity that can be calculated
only in a computer simulation, not in practice. And, more
importantly and as shown from examples E3 to E6, the Park
transform does not always provide an easy way to interpret the
results. The feature of decomposing the original voltage vector
into meaningful quantities (invariants) is, by construction,
specific only of the Frenet frame and constitutes thus its main
advantage with respect to any other transforms.

E. Balanced Six-Phase Voltage

The Gram-Schmidt process described in Section IV-C is
illustrated using a balanced six-phase system. Consider the
following voltage vector:

v = V

6∑
h=1

sin
(
ωot− (h− 1)β

)
eh , (67)

The first two orthonormal vectors of the Frenet frame are:

ẽ1 =
v

|v|
⇒ f1 =

1√
3

6∑
h=1

sin
(
ωot− (h− 1)β

)
eh ,

ẽ2 =
v′

|v|2
⇒ f2 =

1√
3

6∑
h=1

cos
(
ωot− (h− 1)β

)
eh .

(68)

Then, note that v′′ = −ω2
ov and v′′′ = −ω2

ov
′, etc. This

indicates that the balanced six-phase voltage (67) is in effect
a plane curve. The only nonnull remaining vector of the basis
is thus the normalized vector perpendicular to both f1 and f2,
namely:

ẽ3 = ⋆(f1 ∧ f2) ⇒ f3 =
1√
6

6∑
h=1

ei . (69)

The obtained Frenet frame F = [f1, f2, f3] is exactly the
same 6-to-dqo Park transform matrix proposed in [4]. The
procedure utilized in [4], however, is more involved than
the one proposed here as it utilizes the definition of groups.
We have thus obtained that for a stationary balanced n-
dimensional voltage vector the generalized Park transform
is equivalent to the generalized Frenet frame. However, as
expected, the Frenet frame is more general as it does not
require the voltage to be balanced or stationary. Finally, we
observe that ωχ,1 = ωo and ωχ,i = 0 for i = 2, . . . , 6, which
confirms that the curve lays on a plane.

VII. CONCLUSIONS

The paper presents a geometrical interpretation of the Park
transform, its time derivative and its generalization based on
the Frenet frame and Cartan’s moving frames. The Frenet
frame appears particularly relevant for the transient stability
analysis of power systems for various reasons, as follows.

• The Frenet frame returns a set of geometric invariants
which are as many as the phases of the circuit. These
quantities represent fully and unequivocally the transient
conditions of the voltage (or current) under consideration.

• The Frenet frame provides a natural phase angle refer-
ence as well as intrinsic angular frequency (namely the
azimuthal frequency) for the voltage without the need for
an external reference or a device that links to an external
reference, such as the phase-locked loops.

• Cartan’s moving frame approach provides a systematic
and general way to link the local Frenet frames to a
common reference. The equations of such interfaces are
duly provided in this work.

• The paper also shows how the Frenet frame can be
extended to any number of phases and provides the
steps required to calculate the generalized coordinates and
curvatures for an arbitrary multi-phase circuit.

In the case study section, a variety of examples support the
theory and show how the proposed approach solves the many
idiosyncrasies of the Park transform.

The ability to identify the angular frequency of devices
that do not have a rotor appears particularly promising for
the study of converter-interfaced generation. Another relevant
aspect is the practicality of the implementation of the proposed
technique for on-line applications, such as control and dynamic
state-estimation. These topics will be the focus of future work.
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